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A Simplified Approach to Measuring Bond Duration 
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Because interest rates vary over time, the realized return on a fixed-income investment 
will depend on the price at which the instrument is ultimately liquidated and the rate at 
which interim cash flows are reinvested. This variation in realized return, known as 

interest-rate risk, should be addressed by both individual and institutional investors. Tools 

for measuring the impact and adjustingfor the efsects ofinterest nate changes on fixed-income 
inst~me~t pe~o~ance have long been available with duration and its com~an~n adjust- 

ment factor, convexity. In this article, a simpltjied a~te~ati~Ie to the tr~itional complex 

duration calculation is developed and demonstrated. Thus, anyone who can calculate a bond 

price can quickly estimate the interest rate risk associated with a bond as well as calculate 
the expected bond price change for a given change in market yield-to+naturuy. 

I. INTROW~T~ON 

Because interest rates vary over time, the realized return on a fixed-income investment will 
depend on the price at which the instrument is ultimately liquidated and the rate at which 
interim cash flows are reinvested. This variation in realized return, known as interest-rate 
risk, should be addressed by both individual and institutional investors. Tools for measuring 

&he impact and adjusting for the effects of interest rate changes on fixed-income instrument 
performance have long been available with duration and its companion adjustment factor, 
convexity.’ Although the rigorous calculation of these measures is intellectually appealing 
to academics, and easy to employ in a high-tech institutional setting, such calculations can 
be daunting to individual investors. In this paper a different, yet simple, approach for 
m~suring duration and convexity is developed and demonstrated. 

II. PRIOR APPROACHES TO COMPUTING DURATION 

Duration was originally derived as a superior way of capturing in a singlemeasure the impact 
of the pattern of a bond’s cash flows on its sensitivity to interest rate changes. Two bonds 
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with the same maturity and yield-to-maturity (yield) but different periodic coupon cash 
flows can result in very different levels of terminal wealth for their owners. As market interest 
rates fluctuate following the acquisition of a bond, the rate at which interim cash flows are 
reinvested will vary. Also, if the bond is liquidated prior to maturity, the price received will 
depend on market interest rates at that time. The decrease (increase) in liquidation value 
seldom exactly offsets the increase (decrease) in reinvestment income that results from 
changing market interest rates. One way to avoid such terminal wealth risk is to hold only 
zero-coupon bonds that have a maturity equal to the planned holding period. However, 
because of a shortage of a range of “zeros” with desired risk/return relationships as well as 
certain tax implications associated with holding zeros, other strategies for addressing interest 
rate risk are necessary. 

In a book written for the National Bureau of Economic Research in 1938, Frederick 
Macaulay first developed the concept of bond duration, Duration basically measures the weighted 
average amount of time it takes to receive the present value of cash flows from a bond. 

Duration = [x tC, / (1 + i)‘] / [x C, / (1 + i)‘] 

where C, is the cash payment received at time t and i is the yield-to-maturity. Reilly (1989) 
shows that the duration of a 4% annual coupon bond that matures in 10 years with a 
yield-to-maturity of 8% is computed as follows: 

(1) (2) 
Year Cash Flow 

1 40 
2 40 
$ 40 

10 1040 

(3) (4) (5) (6) 
PV @8% PV of CF PV as % of Price (1) x (5) 

.9259 37.04 .0506 .0506 

.8573 34.29 .0469 ,093s 

.5OQ2 . . . . . . 20.02 . . . . .0274 . . . . . .2466 . . . . . 

4632 481.73 .6586 6.5850 
731.58 l.WOO 8.1193 

Duration = (6) + (5) = 8.12 Years 

As noted by Reilly (1989), generally: 

1. Bond duration is less than term to maturity; 

2. There is an inverse relationship between duration and coupon rate; 

3. There is an inverse relationship between duration and yield-to-maturity; and 

4. Bond price movements vary proportionally (linearly) with duration 

The estimated bond price change resulting from a change in yield is: 

where: AP = the change in bond price caused by Ai 

P = the beginning price of the bond 

-&od = modified duration in years = duration / (l+iln) where n is the number of 
coupons per year 

Ai = the change in yield-to-maturity 

Thus, for the above bond, if the market yield-tc+maturity declined by 7.5 basis points, the 
change in price would be: 
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p, _ . . . . . 

i i+Ai 

Figure 1. Price/Yield curve 

Yield to Maturity 

AP G (-8.1211 .OS) x (-.0075) x (73 1.58) = 41.25 

This indicates that if the market yield-t*maturity declines from 8% to 7.25%, the bond 

price would increase to: 

$731.58 + 41.25 = $772.83 

Duration can be viewed as the slope of a straight line tangent to the price/yield curve. 

Figure 1 presents the price/yield curve for the 4 percent coupon bond in the preceding 

example. Points along the curve represent prices for differing yields-tc+maturity. If the yield 

changes from i to i + A, the price of the bond would change from point PO to point U. The 

slope of the tangent line at point PO estimates the change in the bond price that would occur 

given a change in the yield. Because the curve is convex, the accuracy of the estimate of 

price change depends on that degree of convexity. A convexity correction factor is often used 

to adjust the price change estimated by using the bond duration. That factor is given by: 

Convexity = CVX = (62P/Zii2)/ P 

= [1/(1+i)*]x[~C,(t2+t)/(1+i)‘] 

The total change in price resulting from a change in yield is therefore:2 

AP z Duration change + Convexity change 

= -D,,,od x Ai x P + 0.5 x P x CVXx (Ai) 

From the above calculations, we observe that estimating the expected change in bond price 

for a given change in yield-to-maturity is quite complex and time consuming. However, 

duration has several valuable uses for investors, including individual investors. 
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First, duration serves as a measure of interest rate risk. The prices of bonds with greater 
durations are more sensitive to interest rate changes. Thus, knowledge of a bond’s duration 
provides a useful benchmark for comparing the riskiness of alternative bonds. Second, 
investors with a specific investment planning horizon can select those bonds having 
durations most closely matching their planning horizon. Interest rate risk is minimized for 
bonds whose duration matches the planning horizon. Third, because the duration of a 
portfolio is the weighted average of the individual bond durations, investors can readily 
compute their total interest rate risk exposure from durations of the component bonds. 

Numerous attempts have been made to simplify the estimation of Macaulay’s duration 
measure. Jess Chua (1984) derived a closed-form formula that enables faster computation 
of duration. Chua’s formula is: 

D = C[i(l +YY+l -Cl +Y>-yMVy2(1 +y>"l +(~(~/(l +y)M 
B 

where: D = duration in periods 

M = maturity in periods 

C = coupon in dollars per period 

F = face value 

y = yield to maturity per period 

B = value of the bond at y 

Caks, Lane, Greenleaf, and Joules (1985) (hereafter, CLGJ) utilized the linearity of 
duration to calculate duration for a coupon bond as a combination of the interest and matu~ty 
payments: 

D=N-(Ufy) [N-(1 +y)A,,J 

where: D = duration in years 

N = years to maturity 

C = yearly coupon payment 

P = market price of bond 

y = yield to maturity in annual terms (all periods in CLGJ are annual periods) 

AN = present value of an annuity yielding y for N years 

Moser and Lindley (1989) adapted the CLGJ formula to the case of multiple coupons 
per year with the following: 

D-N-C/Py[N-(1 +y/k)]A,/k] 

where y/k is the rate per period and kN is the total number of periods. Benesh and Celec 
(1984) offered the following simplified formula with the alternative assumption that annual 
yields are arrived at by com~unding periodic yields rather than the usual assumption that 
annual yields are computed by multiplying the periodic yield by the number of periods per year: 

D = l/m + c/k[(ACF,, - n) + (n - l)] / [cACF, + m] 

where: ACF,,= (m/k)[(l +k/m)“- I] 

c = annual coupon rate 

k = annualized yield to maturity from compounding periodic ~~ 
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m = number of payments per year 

n = total number of payments remaining until maturity 

The choices for calculating duration boil down to the original procedure involving 

numerous weighted present value calculations or the above “simplified” formulas. All of the 
choices are daunting for the typical individual investor. To address this problem, the 
following section develops a simplified procedure for calculating duration that is “truly” 
simple. 

III. DERIVATION OF SIMPLIFIED DURATION FORMULA 

Most individual investors have access to a financial calculator and are capable of calculating 
a bond price. If not, learning to do so is quite simple. The derivation of the simplified formula 
is based on Figure 2 and the definition of duration as the negative interest rate elasticity of 
the bond price. At the market yield-to-maturity, i, a bond would be priced at Pa. The 
modified duration for a bond is related to the slope of the tangent line at M. However, for 
small changes in i, the slope of that tangent line at point M is equal to the slope of the line 
drawn from point L to point M. Thus, it follows: 

and 

Slope of tangent line = (P+-P_) / (2Ai) = (PO-P.) / Ai = (P+-PO) / Ai 

Slope of line from L to M = (M - L) / Ai 

Therefore: 

lim (L-M)/Ai lim (M-l/)/AI’ lim (P_-P+)/A2i) 
Ai-Sl Ai+0 

= 
= Ai-0 

PO PO PO 
= Modified duration 

Therefore: 

D 
(L-M)/Ai 

mod = 
(1) 

PO 

Also, convexity is proportional to the change in slope at point M: 

Convexity = 
(Slope” - SlopeL)lAi (2) 

PO 

and, from Figure 2, we see that: 

Convexity = 
-(M-lJ)/Ai - [-(L-M)]/Ai = L+U-2M 

PO P&i 

Duration is reported in terms of a number of periods while the units of convexity are 
periods squared. With semi-annual coupons, duration would be in terms of half-years, while 
convexity is in terms of half-years squared. Thus, with semi-annual coupons, semi-annual 
duration is divided by 2 to arrive at duration in years while convexity is divided by 4. 
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Price $ 

P_ -’ 

P,=M -. 

u -’ 

P+ -’ 

tangent slope = -D 

(P+-PJAi 

x PO/(1 +i) 

i-Ai i i+Ai 

Figure 2. Price/Yield curve 

Yield to Maturity 

It should be noted that the above calculations for duration and convexity hold for general 

conditions about the shape of the yield curve. In particular, Macaulay’s duration assumes 

that the yield curve is flat and that changes in the level of interest rates result in parallel shifts 

in the yield curve. The analytic “simplifications” described by others also rely upon these 

restrictive assumptions. Our methodology is more general because we compute duration 

directly from the prices implied by any yield curve. Thus, our method is not only simpler 

but in general more accurate than previous methodologies. 

A. Example of Duration and Convexity Calculations 

The simplicity of these newly derived duration and convexity calculations is best 

demonstrated through an example. Consider an l&year to maturity, 12% coupon bond, 

which is selling to yield 9% (Reilly, 1989, p. 432). Using the traditional procedures, we find 

the following: 

Price3 = 1265 

Modified duration = 8.38 years 

Convexity = 107.7 

Ai = 100 basis points 

Using the Macaulay Steps:4 

z [60 x (1 + .045)-’ x 1 
+ 60 x (1 + ,045)~’ x 5 

Duration Calculation: 

+ 60 x (1 + .045)-*x 2 + 60x(1 +.0415~‘x3 + 60x(1 +.O45)Ax4 
+ 60x(1 +.O45)6x6 + 60 x (1 + .045)-’ x 7 + 60~(1+.045)~x8 

+ . + . + . + . 
+ 60x(1+.045)-‘3x33 +6O~(l+.O45)-~~x34 +60~(1+.045)-~~x35 +60x(1+.045)-‘6x36 
+ 1000 x (1 + .O45)-36 x 36]+ 1265 + 2 
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Duration = 8.76 
Modified Duration = 8.76/l .045 = 8.38 

Convexity Calculation: 

Z [60x(1+.045)-‘x2 + 60x(1+.045)-‘x6 + 60x(1+.045)-‘x12 + 60x(1 +.045)Ax20 
+ 6Ox(l+.O45)-5x3O + 6Ox(l+.O45)“x42 + 60x(1+.045)-‘x60 + 60a(l +~M5)-~x72 
+ . . . . . . . . . + . . . . . . . . . + . . + . . . . . . . . . . 
+ 60x(1 +.O45)-33x 1092 + 60 x ( 1+.045)-34 x 1190 + 60 x (1 + ~I45)-‘~ x 1260 + 60 x (1 + .O45)-36 x 1332 
+ 1000x(1 +.045)-36x1332]x[1/(1.045)2]+ 1265-4 

Convexity = 107.70 

For a 100 basis point decrease in yield, the predicted price change would be: 

Predicted price change z Duration change + Convexity change 

= -Dmod x Ai x Price + S x Price x Convexi x Ai 

= -8.38 x (-.Ol) x 1265 + 5 x 1265 x 107.70 x (-.Ol)* 

= 112.82 

Predicted new price after Ai = 1265 + 112.82 = 1377.82 

The actual bond price with a yield to maturity of 8% would be $1,378.17. Thus, using 
the usual measures of duration and convexity to predict the new bond price results in an 
error of 35 cents. 

B. Using the Heck/Zivney/Modani (HZM) Steps 

To compute duration and convexity using our simplified procedures, calculate bond prices 

for a small change in i above and below the current semi-annual yield-t*maturity for the bond. 
Because of rounding in the Reilly example, our calculations will differ slightly.5 For example: 

At i = 4.5%, Price (M) = 1264.99 

At i = 4.49%, Price (L) = 1267.11 

At i = 4.51%, Price (U) = 1262.87 

Thus: 

Ai = .0450 - .0449 = .OOOl 

D mod = [(L-M)/MJ + Ai + 2 

= r(1264.99 - 1267.11)/1264.99] + .OOOl + 2 

= 8.39 

The percentage change in price is divided by 2 in the equation for modified duration to reflect 
semi-annual compounding. The formula for convexity involves dividing by 22, or4, to reflect 
the semi-annual compounding: 

Convexity G (L+U-2M) + Ai* + M + 4 
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= (1267.11 -t- 1262.87 - 2 x 1264.99) + .OOOl* + 1264.99 + 4 

= 107.70 

The Ai used to compute duration and convexity (generally a very small number) need not 
be the same as the Ai used to estimate price changes. Therefore, the predicted change in the 
price for a 100 basis point change in i (50 basis points each six-month compounding period) 
results in the following predicted price: 

Price change 3 Duration change + Convexity change 

= -DMMod x Ai x Price + 0.5 x Price x Convexity x Ai* 

= -8.39 x (-.Ol) x 1264.99 + 0.5 x 1264.99 x 107.70 x (-.Ol)* 

= 112.94 

Predicted price after Ai = 1264.99 + 112.94 = 1377.93 

The predicted price of $1,377.93 is only 24 cents from the actual price of $1,378.17 and, 
hence, more accurate than the traditional computations, which resulted in an error of 34 cents. 

The HZM estimated bond price change calculations involve seven separate mathemati- 

cal steps. To summarize those seven steps, calculate: 

1. Bond price at current yield-to-maturity 

2. Bond price for a small increase from current yield-to-maturity 

3. Bond price for a small decrease from current yield-to-maturity 

4. Change in yield-to-maturity (step 1 yield minus step 2 yield) 

5. Modified duration 

6. Convexity 

7. Expected price change as sum of duration change and convexity change 

C. Evaluating the Performance of HZM 

The previous section demonstrated the ease with which the expected bond price change 
can be estimated using the HZM method. In the above example, the HZM and traditional 
Macaulay results were quite similar. The obvious question the example raises is how 
consistent is the accuracy of the HZM method. To address this question, a simulation was 
performed. 

Table 1 presents some of the results of a simulation that generated predicted bond price 
changes for both the HZM and traditional methods under varying scenarios. Using a 10 
percent coupon bond with maturities ranging from five to 30 years, predicted bond price 
changes were calculated for yield-to-maturity changes ranging from one to 100 basis points 
and for HZM Ai ranging from .Ol to 100 basis points. 

Results presented include yield-to-maturities of 3% to 18% in three-percent intervals, 
for the HZM method using Ai of .Ol and one basis point as well as the traditional Macaulay 
method. It can be seen in each cell of Table 1 that the prediction error associated with the 
HZM method decreases with smaller Ai; also, for small Ai, HZM and Macaulay yield nearly 
identical results. The last row and column of cells compares the average error under each 
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TABLE 1 
Actual Price Change Minus Predicted Price Change Using 

100 Basis Point Change in YTM 

Yield-to-Motrtritg on 10% Coupon Bond 

Maturity Method 3% 6% 9% 12% 15% 18% Average Error 

5 years HZMA=l.O 0.26* 0.2 I 0.18 0.15 0.12 0.10 0.174 
HZM A = .Ol 
Macaulay 

10 years HZMA= 1.0 
HZMA=O.l 
Macaulay 

15 years HZMA= I.0 
HZM A = .Ol 
Macaulay 

20 years HZMA= 1.0 
HZMA=.Ol 
Macaulay 

25 years HZMA= 1.0 
HZM A = .Ol 
Macaulay 

30 years HZMA= 1.0 
HZM A = .Ol 
Macaulay 

Average Error HZM A = 1 .O 
HZM A = .Ol 
Macaulay 

0.20 
0.20 

I.56 
1.35 
1.35 

0.17 
0.17 

1.13 
0.98 
0.98 

4.54 2.90 
4.09 2.60 
4.08 2.60 

0.14 0.11 
0.14 0.11 

0.83 0.6 1 
0.71 0.52 
0.71 0.52 

1.87 1.22 
1.67 1.08 
1.67 1.08 

9.64 5.43 3.11 1.82 
8.85 4.97 2.84 1.65 
8.84 4.96 2.84 1.65 

17.08 8.54 4.39 2.33 
15.88 7.92 4.05 2.14 
15.87 7.91 4.05 2.14 

0.09 
0.09 

0.45 
0.38 
0.38 

0.80 
0.71 
0.7 1 

1.09 
0.98 
0.98 

1.28 
1.16 
1.16 

26.95 12.02 5.59 2.72 1.39 
25.29 11.24 5.20 2.51 1.28 
25.27 11.23 5.20 2.51 1.28 

10.007 5.043 2.665 1.478 0.859 
9.28 1 4.649 2.439 1.341 0.773 
9.273 4.645 2.437 1.340 0.772 

0.08 0.136 
0.08 0.136 

0.33 0.821 
0.28 0.708 
0.28 0.707 

0.53 1.981 
0.47 1.775 
0.47 1.773 

0.66 3.629 
0.59 3.318 
0.59 3.315 

0.73 5.728 
0.66 5.307 
0.66 5.302 

0.75 8.242 
0.68 7.704 
0.68 7.699 

0.523 3.429 
0.465 3.158 
0.465 3.155 

Note: *For a 10% coupon bond maturing in 5 years, with a yield-tomaturity of 3%. and experiencing a 100 
basis point change in yield, the difference between the actual change in price and the price change 
predicted using the HZM model (with a A = 1 .O) is 26 cents. A i = 1 .O means that a one basis point change 

was used to compute duration and convexity with the HZM method while A i = .Ol means that a 
one-hundredth basis point change was used to compute duration and convexity. 

scenario. The results suggest that not only is the HZM method easier to employ, but it yields 

equally accurate results when computed using small Ai. 

Although the derivation of the HZM simplified formulas for duration and convexity 

calculations is somewhat complex, the resulting duration and convexity formulas are much 

easier for an individual investor to use. The HZM simplified method provides estimates of 

price changes which differ from those produced by traditional duration measures by less 

than one penny on average. Anyone who can calculate a bond price (actually, three different 

bond prices) can now quickly estimate the interest rate risk associated with a bond as well 

as calculate the expected bond price change for a given change in market yield-to-maturity. 

Also, unlike previously derived closed-form formulas, our formulas can be used in the 

general cases of sloping yield curves and nonparallel shifts in yield curves. 
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1. For a detailed discussion of convexity, see Riley (1989, pp. 427-431), Francis (1991, 
pp.407-411), Kolb (1992, pp. 245-251), and Maginn and Tuttle (1990, pp. 68-69). 

2. The expression is the first two terms of a Taylor expansion series. An explanation of the 
origins of the 5 and (AD2 terms can be found in Reilly (p. 430) and Dunetz and Mahony (1988, p. 57). 

3. Reilly uses $1,265, although the actual price would be $1,264.99. The $1,265 figure is used 
here to maintain comparibility with the Reilly text example. 

4. For semi-annual coupon bonds, the duration calculation must be divided by 2. Because 
convexity is the second derivative, the Ai/ term is squared, yielding Ai’/4. Thus, the convexity 
calculation must be divided by 4 for semi-annual coupon bonds. 

5. Answers are shown to the nearest cent. All calculations are performed using the memory 
functions of the calculator to maximize the accuracy for small changes in i. 
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