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For more than two thousand years Euclid's Fifth
Postulate produced a discussion on the foundations of
geometry, and it was so important that we tend to for-
get many other issues that also played a role in shap-
ing the field of geometry. The concept of angle is one
of them. For more than two thousand years a debate
has been developing on the nature of the concept of
angle, and the discussion is not over yet.

This article will present a historical account of the
development of the concept of angle in an effort to
understand the ways in which mathematicians con-
ceived angle, the properties that they attributed to the
concept, and the problems they felt were solved and
unsolved by their research. It is not the purpose of
this paper to search for the mathematically correct
way to define angle, or to refute the concepts of the
several mathematicians who expressed their opinions
about the angle.

My attempt to understand the historical develop-
ment of the notion of angle is rooted in the belief that
the historical genesis of a notion may illuminate its
psychological development. The several forms that
the concept assumed, its differential development in
several cultures, its plural relationship with other
mathematical topics, and its immersion in several cul-
tures may provide insights that help educators to spec-
ulate and produce models of children’s conceptions of
a mathematical topic. This should not be taken to im-
ply that historical development mirrors psychological
development of children’s thinking. There are enor-
mous objections to this later point of view, namely
that: (a) it underlies the assumption that there is a
unique, additive, progression of mathematical knowl-
edge, (b) it forces a psychological identification be-
tween an Egyptian scribe and a modern child, (c) it
assumes that mathematical knowledge is separable
from the rest of the culture. Instead, I will assume that
a historical investigation on the origins of a mathe-
matical concept is fruitful as a guide for developing a
pedagogical perspective.

Angles and directions in neolithic cultures

Although the concept of angle seems to have origi-
nated only in recent times, ancient cultures had means
to solve problems that related to angles. One of them
is the movement of the stars and planets that many
cultures investigated as a way to predict seasonal
changes of the weather, to predict the future, or to
know when it was time to conduct their rituals.

Alignments of neolithic or paleolithic monuments
with the summer solstice and other celestial events 

have been reported by archaeologists and astrono-
mers. The megalithic culture that flourished in the
British Isles produced stone circles fit for astronomi-
cal observations, the most famous being the one at
Stonehenge (Hicks, 1984). Also archaeological medi-
cine wheels left by the ancestors of the Plains Indians
seemed to have been used to predict the time of the
sundance ceremony (Eddy, 1980). The Bighorn medi-
cine wheel, that can be found in the Bighorn Moun-
tains of Wyoming, has a diameter of 27 meters. In the
center, there is a cairn from which radiate 28 spokes.
Along the periphery, there are six other cairns. Ar-
chaeologists assume that this monument had the fol-
lowing function:

Aldebaran’s brief flashing in the sky ...
would warn you that the day of summer sol-
stice had arrived. An hour later, the location
of the sunrise itself would confirm this. So
would the sunset that night. One month lat-
er [28 days, to be exact], Rigel would ap-
pear in the morning sky; and one month af-
ter that [again 28 days, to be exact], Sirius.
These alter events may simply have marked
off the time during which the mountain
could be occupied. The rising of Sirius
would have been a good sign to leave Medi-
cine Mountain because winter was coming
(Eddy, 1980, p. 14).

A rudimentary system for comparing different di-
rections seems to have been used together with the
idea of measuring the days that separate the risings of
the successive stars by the 28 spokes. Other cultures
also used celestial events to measure time. The Incas,
for example, built cylindrical towers on the highest
hill west of Cuzco, and from a central pyramid they
observed the position of the sunset relative to those
towers. This permitted them to determine the times
for planting and for holding the corresponding relig-
ious ceremonies (Aveni, 1980; Broda, 1982).

Early cultures also used angles to solve problems
related to the construction of buildings. The Mayas of
Uaxactun constructed their buildings in such a way
that their position, when observed from the top of a
central pyramid, would permit them to determine the
sunrise on the days of the summer and winter solstic-
es. The equinoxes were also embodied in the con-
struction arrangements (Aveni, 1980; Broda, 1982).
Mayan processes for the observation of the sky and
for the determination of directions that matched the
position of the sun at precise astronomical events
were not followed by their rigor in the determination
of right angles. Aveni and Hartung (1982) show how 
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the precision in the layout of parallel lines in the di-
rection of special positions of the sun equates the ac-
curacy achieved in modern buildings, but that direc-
tions perpendicular to these are not as exact.

Astronomical activities however did not serve the
sole purpose of predicting natural phenomena. Cos-
mos, society, and ritual were a whole in these cultures
and so the search for understanding phenomena that
ruled the cosmos was also a means to regulate life on
earth (Broda, 1982). Anthropological data suggest
that for some cultures they were also a process of un-
derstanding philosophical, moral, and metaphysical
dimensions (Reichel-Dolmatoff, 1982). Andean time
and space and their relation to such broad dimensions
as urban organization, social structure, ritual, and sub-
sistence, were ordered by a complex system of astro-
nomical observations. Andean villages were orga-
nized along a series of lines that radiated from a
ceremonial center where astronomical observations
were made. These lines were oriented towards a local-
ly important geographical feature and showed the po-
sition of the rising or the setting of an important celes-
tial body. These arrangements were embodied in a
calendar system that related closely to the regulation
of Andean life. Among the Inca, these spatial divi-
sions were the responsibility of specific clans at spe-
cific times of the year. It is interesting to note that the
Quechua Indians have the same word for space and
time (Fabian, 1982). This very blend of space and
time can also be found in the Aztec culture, where the
count of days in many Aztec calendars was linked to
directions in space (Aveni, 1980).

Egyptian use of inclination

In Egypt, the construction of pyramids and other
buildings with inclined walls did not seem to make
use of angles (Robins & Shute, 1985), nor did they
have a specific word for angle (there is none in Gill-
ings, 1972). To have an idea of how problems involv-
ing inclination were solved, let us observe Problems
56-60 of the Rhind Papyrus (c. 1650 BC.) Problem 56
asks: “if a pyramid is 250 cubits high and the side of
its base 360 cubits long, what is its seked?” (Chace,
1986, p. 51). “Seked” (or “seqet”) is an Egyptian
word whose meaning is close to our notion of gradi-
ent (literally, “that which makes the nature,” Heath,
1931, p. 79). It is a measure equivalent to the cotan-
gent of the angle of slope. The solution of the prob-
lem above involves dividing 360 by two, which is
half the base, and then finding the quotient of 180/
250. Since one cubit is 7 hand’s breadths, the result is
multiplied by 7 so that the result can be presented in
hand’s breadths. In contemporary terms, we would
say that the scribe was using either similar triangles
or an early version of trigonometric ratios (Boyer,
1968; Gillings, 1972). A similar process seems to
have been used in two-dimensional draw-

ings, except that a drop of six units was used instead
of seven (Robins & Shute, 1985).

Egyptian astronomers invented what is called a di-
agonal star clock, which was in use by 2400 BC
(Neugebauer, 1957; Krupp, 1977). This star clock
was in tune with the Egyptian calendar that accounted
for 365 days divided into twelve months, each divid-
ed into three ten-day weeks, plus five extra days.
Each “week” (decade) was marked by the heliacal ris-
ing of a star, which provided a rough division of the
celestial globe into 36 zones. This star clock is simply
a grid, in which each square represents a date and a
time. The user just has to identify the star that is ris-
ing in the horizon at that particular time and, by
knowing the decade of the year, determines the hour
of the night. The Egyptians essentially measured the
night time by the position of stars or groups of stars.

This method was replaced by the Ramsside star
clock  about 1500 BC. This latest system required that
the position of the star in the sky be compared relative
to the direction North-South and to the body of one of
the astronomers. The two astronomers sat facing each
other on a north-south line, and the northernmost as-
tronomer, the observer, watched the progress of stel-
lar transits in the sky behind his partner to the south.
The observer apparently obtained a reading by super-
imposing his plumb line upon a star (Krupp, 1977).

This system apparently made use of a coordinate
system where the horizontal lines represented the
hours and the vertical lines the positions of the stars,
but the records of the positions of the stars remained
essentially qualitative (Neugebauer, 1957). The Egyp-
tians also made use of shadow clocks that would per-
mit the readings of daytime hours by observing the
length of the shadow formed by the sun (Krupp,
1977).

Babylonian invention of the 
zodiac circle measurement

Although the Babylonians, as the Egyptians, had
no word for angle (Bruins, 1964), they developed
very sophisticated techniques for recording and pre-
dicting the movement of celestial bodies. A Chaldean
cuneiform text, for example, shows a table recording
the motion of the planet Jupiter including the constel-
lations where the planet is located and the position in
degrees and minutes of arc (Aveni, 1980). The fact
that the planets, as the sun and the moon, move inside
a narrow band that stretches through the sky seems to
facilitate the development of this technique.

The arrangement of stars into constellations that
formed the zodiac signs seems to be their first device
devoted to recording the motion of the planets. This
first approach was followed by a numerical procedure
to record the position of celestial bodies. This proce-
dure combined the notions of space and time differ-
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ently than Andean cultures. It seems that a Sumerian
(3000 BC - 2500 BC) unit of calculating distances
was the “mile”, corresponding  roughly to 10 km.
This unit quite naturally became an unit of time, one
“mile” being the amount of time it took to walk one
“mile”. Gradually the time associated with these
“time-miles” became quite independent of their
“length-miles” roots. A parallel process took place in
astronomy. In the first part of the first millennium
BC, Babylonian astronomers transferred the “mile” to
the measurement of celestial events, by stipulating
that the number of miles contained in one day is sim-
ply equivalent to one revolution of the skies. Each
day contained 12 “miles” (danna) and so the circum-
ference of the sky contained also 12 “miles”.  Each of
these miles was then divided into 30 subdivisions,
called “lengths” (us), which produced 360 parts for
the whole sky. This seems to be the origin of the as-
tronomical division of time into 360° and, conse-
quently, the division of the circle into 360°. These
“degrees” were the fundamental units for the meas-
urement not only of arcs, but also for the measure-
ment of time. This way of measuring time using a dis-
tance unit carried its influence to the Greeks and
Romans (Neugebauer, 1983).

By 700 BC, the Babylonians had organized the
fixed stars in three “roads”, the middle one being an
equatorial belt of 30° width. By this time there were
systematical observations of celestial events, and by
400 BC the Babylonians created the zodiacal circle.
The constellations which lent their names to the zodi-
acal signs are, of course, much older. But it was only
for mathematical reasons that a definite great circle
which measured the progress of the sun and the plan-
ets with respect to exactly 30°-long sections was in-
troduced ( Neugebauer, 1957).

From this time on, the Babylonians produced accu-
rate tables of astronomical events which would, for
example, give the days and the positions measured in
degrees within each zodiacal sign. Their theoretical
model involved the use of zig-zag functions in order
to account for the variation of the speed of the sun
across the sky in different epochs of the year. Its pre-
dictions were almost accurate, and it seems that the
Babylonians were not very concerned with a precise
determination of the position of celestial bodies. In
fact, they even seem to lack accurate instruments to
do so. The Babylonians produced detailed tables for
the astronomical events of the moon and several plan-
ets, which seemed to be used essentially to determine
favorable and unfavorable conjugations (Seidenberg,
1975). Their calculations involved complex concepts
such as the angular velocity of the celestial bodies,
but the complexity of their astronomical methods did
not transfer to other geometrical problems.

Greek pre-Euclidean conceptions 
of angles and directions

Early Greek astronomy was essentially qualitative.
A quotation from Eudoxus (408-355 BC) gives us a
perspective of how early Greeks described the posi-
tion of the stars :

There are on this the middle section of the
Crab and the longitudinal part of the body
of the Lion, a small part of the upper sec-
tion of the Virgin, the neck of the gripped
Serpent, the right hand of the Kneeler (i.e.
Hercules), the head of Ophiuchus, the neck
of the Bird (i.e. Cygnus, the Swan) and its
left wing, the feet of the Horse (i.e. Pega-
sus) (quoted in Dicks, 1970, p. 158).

This shows the kind of verbal description of the posi-
tion of stars common in those times.  Although Eu-
doxus conceived the stars as evolving on concentric
spheres that can be plotted on a celestial sphere and
dividing it into twelve parts, his descriptions are es-
sentially qualitative.

Although their astronomical methods are rudimen-
tary when compared to the Babylonians, Greek geom-
eters seem to be the first to have a word for angle
(Gray, 1979) and, as reported by Plato, to distinguish
between acute, right, and obtuse angles (Heath,
1956).  They were also the first to develop geometri-
cal proofs. Pythagoreans, for example,  proved that
the angle sum of a triangle equals two right angles
(Gray, 1979).

Aristotle is one of the early Greek philosophers
whose mathematical observations are well document-
ed. He made explicit references to angles (as he does
to lines, surfaces, and other mathematical objects).
One very interesting reference can be found in his
book Analytics Posterior.  He discussed the rule that
the two premises of every syllogism must have be-
tween them an affirmative and a universal proposition
(Maziarz & Greenwood, 1968).  From his argument a
valid proof of the equality of the base angles of an
isosceles triangle can easily be constructed, provided
we accept his underlying conception of angle. The
proof goes like this (Aristotle used different notations
and terminology). Let AOB be an isosceles triangle
inscribed in a circle of center O.  Consider now the
angle A, which is the mixed angle between the diame-
ter that contains OA and the circle (angle α+γ of the
Figure 1).  Identically, consider the

  Figure 1
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mixed angle B. We know that angles A and B are
equal because “angles of semicircles are equal”. We
also know that angles γ and τ are equal because “the
two angles of all segments are equal” (segments here
refer to chords). Consequently, α = A - γ = B - τ = β
(Heath, 1956; Heath, 1949).

If we accept the terms angle of a semicircle and an-
gle of a segment, this proof is logically coherent. His
works do not discuss mathematics per se  because al-
though Aristotle had a strong background in mathe-
matics (after all it was one of the topics extensively
taught in Plato’s school), he was primarily a philoso-
pher and not a mathematician. In spite of the fact that
this proof does not play a central role in the point he
is making (Maziarz & Greenwood, 1968), it does pro-
vide a perspective of his concept of angle.

A central issue in Aristotle’s discussion of geomet-
rical objects was the determination of their nature.
Length, for example, was a quantity; parallelism, was
a relation, and a triangle was a quality. Angle,
straight, and circular were kinds of figures for him.
Aristotle himself is believed to have had the opinion
that an angle was a quality.  In some writings, Aristo-
tle seems to have conceived of angle as a deflection
or breaking of a line: “a line, if it be bent, but yet con-
tinuous, is called one” (Heath, 1956, p. 159).  Eude-
mus, a disciple of Aristotle who wrote books about
the history of arithmetic, astronomy, and geometry
and is said to have written a book about angle, is
quoted by Proclus as saying that an angle is a quality.
Moreover Eudemus had the opinion that an angle is a
fracture or a deflection of a line (Heath, 1956; Mor-
row, 1970).

Another issue is the way the diverse types of angles
relate to each other. Aristotle discussed the priority of
the right angle in comparison with the acute. On the
one hand, the right angle is defined first and so should
have priority. On the other hand, the right angle is
composed of acute angles, which seems to give priori-
ty to acute angles. Aristotle also hints at what could
be a nice definition of right angles. A right angle is
reached when a thing falls on the ground and re-
bounds, making similar angles on both points of im-
pact. The right angle is seen here as the limit of the
opposite angles (Heath, 1956).

These early Greek geometric efforts were also con-
cerned with the issue of tangency which, as we shall
see, will relate closely to the concept of angle. The
concept of the tangent to a circle in a point led to
some controversy about the nature of this contact, i.e.,
on how many points does the tangent touch the circle.
Protagoras, the Sophist, appealing to common sense
arguments, claimed that the tangent actually must
have more than one point common to the circle or, in
other words, that it touches the circle in some length.
A related problem arose when discussing the nature
of the tangency between a sphere and a plane. De-
mocritus seemed to have answered this critique by

a circle and a tangent (Heath, 1949; Maziarz &
Greenwood, 1968).

Euclid’s conception of angle

“A plane angle is the inclination to one another of
two lines in a plane which meet one another and do
not lie in a straight line... when the lines containing
the angle are straight, the angle is called rectilinear”
(Heath, 1956, p. 176), is the definition that Euclid
presented in Book I of the Elements.  On the one hand
Euclid seems to define angle as a set of two lines with
specific characteristics, but on the other hand, he sug-
gests that angle is a kind of area contained by two
lines.  This definition of angle is included in the be-
ginning of Book I, together with the definition of
points, lines, surfaces, figures, and parallel lines.

According to Heath (1956) the concept that angle is
an inclination is a new departure.  The prevailing ten-
dency at that time, as we saw in Aristotle, was that an
angle resulted when a straight line would break or de-
flect, that is, the two sides of the angle originated
from the same line. Nevertheless, as we saw above,
Euclid also used the terminology that an angle is con-
tained, much in the same way that he talks about fig-
ures being contained by lines (Heath, 1926).  It seems
that Euclid thought of an angle as the space “in be-
tween” the two lines. Heath (1956) argues that this
shows that Euclid also conceived of angle as a quanti-
ty, as can also be seen, for example, by his quantifica-
tion of angles in Propositions I.9 and I.13.

Euclid’s definition of rectilinear angles excludes
the zero angle and angles greater or equal to a straight
angle. This view was taken consistently across the
Elements. Whenever straight angles are involved, Eu-
clid instead talked about two right angles. Even on
two propositions (Propositions III.20 and VI.33) that
could be applied to angles greater than two right an-
gles, Euclid did not even hint at that possibility, and if
such angles were presented to him, he would not rec-
ognize them as angles at all or would consider them a
composition of angles (Heath, 1926).  That is exactly
what Heron (third century AD) did in his discussion
of Proposition III.20 of the Elements, where he con-
sidered “angles” (plural) whenever the angle BEC in
figure 2 below exceeds two right angles.  Only the
Middle Ages’ commentators (Tartaglia, Peletier, and
Clavius) considered angles greater  than  two  right
angles  to  be  a  whole  angle

Figure 2

A

B

C

E
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(Heath, 1926).  Another proof of the absence of
straight angles in Euclid’s geometry can be found in
his definition of perpendicular lines. When two
straight lines intersect at equal angles, Euclid called
these right angles, and the lines were said to be per-
pendicular to each other (Definition 10).  If Euclid
had conceived of zero or straight angles, this defini-
tion would not hold because two collinear straight
lines would also intersect at equal angles, and would
consequently be perpendicular to each other.  Euclid’s
word for perpendicular means literally “let fall”
which shows its connection with the plumb line
(Heath, 1956). Proclus informed us that in ancient
times the perpendicular was called “gnomon-wise”
because the gnomon was set up at right angles to the
horizon (Morrow, 1970).

The contemporary requirement that angles have
straight sides was not followed by Euclid.  In his
Proposition III.20, when talking about angles at the
circumference of a circle (inscribed angles, in our ter-
minology, Euclid referred to a portion of the circle as
the base of an angle (Figure 3).  But, more important

than that, Euclid’s defini-
tion of angles holds for
both angles with curved
and straight sides. These
different types of angles
are further elaborated in
Book III (Heath, 1926). In
this book, as illustrated by

Figure 4, Euclid defined the segment of a circle as
“the figure contained by a straight line and a circum-
ference of a circle”, an angle of a segment as “con-
tained by a straight line and a circumference of a cir-
cle”, and an angle in a segment as “the angle which,
when a point is taken on the circumference of the seg-
ment and straight lines are joined from it to the ex-
tremities of the straight line which is the base of the
segment, is contained by the straight lines so joined”
(p. 1).  Later in Book III, Euclid used the “remaining
angle”, that will be known as a “cornicular angle” or

as a “horned angle” in Proclus’ terminology (Morrow,
1970).  Euclid also used this type of angle in his book
Optics (Knorr, 1986).  Although Heath (1926) consid-
ers that this type of angle plays no significant role in
the Elements, its use in Book III is not easy to dismiss
as an archaism.  It seems that Euclid’s concept of 

angle was similar to a corner between two lines that
could be straight or curved. In several propositions he
stresses the fact that he is referring to rectilinear an-
gles (Propositions 9, 23, 42, 44, 45 from Book I, for
example.)

As we shall see, this type of angle raised much con-
troversy which lasted until at least the 17th century
(Heath, 1956). In Euclid’s time, the discussion was
about ways to compare the angle of a semicircle with
rectilinear angles, and the Elements provide a crucial
proof that establishes this relationship. Proposition
III.16 of the Elements states that the angle of a semi-
circle is greater than any acute rectilinear angle, and
that the remaining angle is less than any acute recti-
linear angle. Euclid proved it in three steps. Let AB
be the diameter of the circle ACB as shown in Figure
5, and let AE make a right angle with AB. First he
proved that any straight line drawn from A making a
right angle with AB lies outside the circle. Then he
proved that no straight line can fall in the space be-
tween AE and the circumference. To conclude he
showed that “the angle of the semicircle contained by
the straight line BA and the circumference… is great-
er than any acute rectilinear angle, and the remaining
angle contained by the circumference… and the
straight line AE is less than any acute rectilinear an-
gle” (Heath, 1926, p. 38). This was certainly a para-
doxical result because it showed that there were some
quantities (namely remaining angles) that no matter
how much they were increased would never become
greater than other quantities (acute rectilinear angles,
in this case.)

As we have
seen, the issue of

lines tangent to a circle was a much debated topic in
Greek geometry.  Euclid contributed to this debate by
showing that a straight line is tangent to a circle at a
point if any other straight line that contains the point
of tangency also contains another point of the circle.
This concept of tangent was also used by Archimedes
(Knorr, 1986). Although Euclid does not use the word
“tangent”, he drew the conclusion that the straight
line AE (Figure 5), drawn at right angles to the ex-
tremity of the diameter of a circle evidently touches
the circle. This notion that straight lines touch circles
appears in many other places of the Elements to refer
to tangents.  Euclid’s insertion of this proposition
seems to be his contribution to the controversy that
was current in his time about the nature of tangency.

base

Angle of a segment
(Aristotle, Euclid)

Angle in a segment
(Euclid)

Angle of a semicircle
(Aristotle, Euclid)

A

B

D

C

E

Figure 3

Figure 4

  Figure 5
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Post-Euclidean conceptions of angle

The discussion about the nature of angle in post-
Euclidean geometry centered around three related
problems: what is a good definition of angle; where
do angles fit the Aristotelian categories of quantity,
quality, and relation; what is the nature of curvilinear
angles.

Apollonius of Perga (262-190 BC) is quoted by
Proclus as having provided a new general definition
of angle.  For him an angle was “the contracting of a
surface at a point under a broken line, or of a solid un-
der a broken surface” (Morrow, 1970, p. 99). Note the
movement implied by this definition. Again a refer-
ence to a broken line or surface shows up. He con-
ceived a cone as an angle formed by lines that came
to an end at the apex (Bello, 1983). Geminus (first
half of the first century BC) is quoted also by Proclus
as saying that an angle is formed when a line is brok-
en (Morrow, 1970).

Heron (third century AD) said that an angle is a
quantity which a simpler related quantity encloses
when it comes to a point.  Albertus Magnus gave the
following explanation for this definition (Bello,
1983):

For a surface angle is enclosed by lines, since
it is midway between a quantity that has one
dimension and another that has two, while it-
self it has two. A solid angle, though, termi-
nates in surfaces, being midway between a
surface, which has two dimensions, and a sol-
id, which has three.  (pp. 9-10)

The surface of a cone, for example, was thought to
enclose the solid angle that terminates at the apex of
the cone. Heron was the representative of a Babyloni-
an tradition in geometry, and was more concerned
with the actual calculation of solutions that opposed
the new proof-oriented approach (Bruins, 1964).

A different perspective was taken by Plutarch of
Athens who was Proclus’ teacher.  Plutarch contend-
ed that an angle is “the first interval under the point,
[because] there must be some first interval under the
inclination of the containing lines or planes” (Mor-
row, 1970, p. 101). Plutarch seems to have been
thinking about a rate of divergency of the lines under
consideration (Heath, 1956). Similarly Carpus of An-
tioch (a Pythagorean) conceived angle as a quantity,
namely a distance between the lines or surfaces con-
taining it. But paradoxically, he did not think of this
distance as a line (Morrow, 1970).

Mixed angles or horned-shaped angles continued to
exist in the literature. Heron used them in his book
Catroptrics, as did Theon (Knorr, 1986).  Diocles, au-
thor of a book about burning mirrors written around
190-180 BC, made occasional use of them.  In his
second proposition he considered the line AB (Figure
6) which is reflected on B (reflected by a mirror) to 

produce the line BC such that angle α is equal to an-
gle β (Toomer, 1976).

Figure 6

Another interesting use of mixed angles can be
found in a mathematical fragment of disputed origin,
called the Bobbio Mathematical Fragment which
seems to have been influenced by the work of Dio-
cles. The manuscript may be dated from the late an-
tiquity before the seventh century AD, and presents a
proof about the focal property of the parabola. Figure
7 illustrates an important part of this proof. A parabo-
la is drawn with A and B referring to the marked rec-
tilinear angles. All the Greek letters refer to mixed an-
gles either between the parabola and its tangent (α
and β) or between the parabola and other straight
lines (γ and θ).  In the proof the author made 

Figure 7

the following point: as <β = <α then <θ is equal to
<γ, probably because <A is equal to <B, although the
author did not add this last condition (Toomer, 1976).
The remarkable feature of this is that the author was
equating two mixed angles that are in fact not visually
equal. The manuscript is just a fragment and does not
allow us to go any further. Mixed angles were also
briefly used by Pappus with no demonstrative pur-
pose (Jones, 1983).
 
The development of trigonometry

One of the developments of post-Euclidean geome-
try was the systematical development of trigonome-
try.  Aristarchus (300 BC) seems to be the first to
have developed a sketch of trigonometry in Greek 
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several distances (Yan & Shirán, 1987). Chinese
mathematicians made use of the equivalent of our
trigonometric methods based on an extensive use of
similar right triangles and the Pythagorean Theorem,
but the concept of a ratio of segments as a function of
an angle was completely absent (Libbrecht, 1973).

Ratios were also used by the Hindus. In a book
from the late fourth or early fifth century AD,
Siddhãntas, a study of the relation between the half
chord and the half angle subtended at the center was
developed, thus producing our contemporary trigono-
metric functions (Boyer, 1968). Hindu theoretical as-
tronomy measured radial distances using the same
units as the length of the circumference.  As they
were also using the Babylonian division of the circle
into 360°, they were compelled to use a radius of 57°
18' to obtain a circumference of 360° for the circle
(2π x 57° 18' = 360°) (Neugebauer, 1983).

Note

1. This is the first of two parts.  Part 2 will be appear in the
next issue.

References

Aveni, A. (1980). Old and New World naked-eye astrono-
my. In K. Brecher & M. Feirtag (Eds.), Astronomy of
the ancients (pp. 61-89). Cambridge, MA: MIT Press.

Aveni, A. & Hartung, H. (1982).  Precision in the layout of
the Maya architecture. In A. Aveni & G. Urton (Eds.),
Ethnoastronomy and Archaeoastronomy in the Ameri-
can tropics (pp. 63-80).  New York: New York Acade-
my of Sciences.

Bello, A. (1983). Albertus Magnus and mathematics: A
translation with annotations of those portions of the
commentary on Euclid’s Elements published by Bern-
hard Geyer. Historia Mathematica, 10, 2-23.

Boyer, C. (1968). A history of mathematics. New York:
John Wiley.

Broda, J. (1982).  Astronomy, cosmovisión, and ideology
in pre-Hispanic Mesoamerica. In A. Aveni & G. Urton,
Ethnoastronomy and Archaeoastronomy in the Ameri-
can tropics (pp. 81-110).  New York: New York Acade-
my of Sciences.

Bruins, E. (Ed.) (1964). Heronis Alexandrini Metrica.
Leiden, Netherlands: E. J. Brill.

Callinger, R. (1982). Classics of mathematics. Oak Park,
Illinois: Moore Publishing.

mathematics.  In his book, On the Sizes and Distances
of the Sun and the Moon, he set out to prove several
propositions about distances and apparent diameters
of the sun, the moon, and the earth. To do this, he
used properties of what we know now as trigonomet-
ric ratios. These properties allowed him to calculate
intervals for the values of sines and cosines of 3° and
1°. The apparent diameters of the earth, the sun, and
the moon, were given in fractions of the zodiac circle.
The sun’s apparent diameter, for example, was esti-
mated as 1/15 of a sign (i.e., 2° in our units), which is
a gross overestimation (Heath, 1931). 

Hypsicles (second half of the first century BC) pro-
vided the first evidence of the division of the ecliptic
into 360° in Greece. It is interesting to take a look at
his method:

The circumference of the zodiac circle having
been divided into 360 equal arcs, let each of
the arcs be called a degree in space, and simi-
larly, if the time in which the zodiac circle re-
turns to any position it has left be divided into
360 equal times, let each of the times be
called a degree in time  (Thomas, 1968, pp.
395-397).

At about the same time trigonometric methods for
astronomy were developed by Hipparchus (second
century BC), who wrote a treatise on straight lines in
a circle (i.e. chords) developing a table which related
arcs of a circle to the chords subtending them (Dicks,
1970; Neugebauer, 1983).  Hipparchus apparently
was also the first to state the position of more than
850 stars in terms of latitude and longitude in relation
to the ecliptic (Heath, 1931).  Ptolemy (second centu-
ry AD) completed Hipparchus’ developments. He
worked with a circle whose diameter was divided into
120 parts. Using both elementary geometry and ap-
proximation procedures he computed a table of
chords at 1/2° intervals (Callinger, 1982).

Angles in India and China

Other cultures did not seem to have shared the
Greek's interest in angles and other geometric topics
of Euclidean geometry.  The Elements of Euclid and a
book on arithmetic were the first Western works
translated into Chinese at the end of the sixteenth cen-
tury, and they required the creation of new words for
the concepts of point, line, straight line, curve, paral-
lel lines, angle, right, acute, and obtuse angle, trian-
gle, and quadrilateral (Yan & Shirán, 1987).

Chinese mathematics included the solution of con-
crete geometrical problems (determining the height
and distance of a mountain, finding the width of a
stream, measuring square and circular towns) using
ratios. A Chinese mathematics book, the Zhõubi
suànjing, dating from the end of the second century
BC (some historians place it much earlier), uses pro-
portions between similar right triangles to compute



 
Summer 1990                                                                                                                                                                            11

Chace, A. (1986). The Rhind Mathematical Papyrus. Res-
ton, VA: National Council of Teachers of Mathematics.

Dicks, D. (1970). Early Greek astronomy to Aristotle . Itha-
ca, NY: Cornell University Press.

Eddy, J. (1980). Medicine wheels and Plains Indian astron-
omy. In K. Brecher & M. Feirtag (Eds.), Astronomy of
the ancients (pp. 1-24). Cambridge, MA: MIT Press.

Fabian, S. (1982). Ethnoastronomy of the Eastern Bororo
Indians of Mato Grosso, Brazil. In A. Aveni & G. Urton
(Eds.), Ethnoastronomy and Archaeoastronomy in the
American tropics (pp. 283-301). New York: New York
Academy of Sciences.

Gillings, R. (1972). Mathematics in the time of the Pha-
raohs. Cambridge, MA: MIT Press.

Gray, J. (1979). Ideas of space. Euclidean, non-Euclidean,
and relativistic. Oxford: Clarendon.

Heath, T. (1926). The thirteen books of Euclid’s Elements.
Translated from the text of Heiberg with introduction
and commentary (Vol. II) (2nd ed.). Cambridge: Uni-
versity Press.

Heath, T. (1931). A manual of Greek mathematics. Oxford:
Clarendon.

Heath, T. (1949). Mathematics in Aristotle. Oxford: Oxford
University Press.

Heath, T. (1956). The thirteen books of Euclid’s Elements.
Translated from the text of Heiberg with introduction
and commentary (Vol. I). (2nd. ed.). New York: Dover.

Hicks, R. (1984). Stones and henges: Megalithic astronomy
reviewed. In E. Krupp (Ed.), Archaeoastronomy and
the roots of science (pp. 169-210). Boulder, CO: West-
view.

Jones, A. (1983). Pappus of Alexandria. Book 7 of the Col-
lection (2 vols.). New York: Springer-Verlag.

Knorr, W. (1986). The ancient tradition of geometric prob-
lems. Boston: Birkhäuser.

Krupp, E. (1977). Astronomers, pyramids, and priests. In
E. Krupp (Ed.), In search of ancient astronomers (pp.
203-239). New York: Doubleday.

Libbrecht, U. (1973). Chinese mathematics in the thir-
teenth century. Cambridge, MA: MIT Press.

Maziarz, E. & Greenwood, T. (1968). Greek mathematical
philosophy. New York: Frederick Ungar.

Morrow, G. (1970). Proclus: A commentary on the first
book of Euclid’s Elements. New Jersey: Princeton Uni-
versity Press.

Neugebauer, O. (1957). The exact sciences in antiquity.
Providence, Rhode Island: Brown University Press.

Neugebauer, O. (1983). Astronomy and history. Selected
essays. New York: Springer-Verlag.

Reichel-Dolmatoff, G. (1982). Astronomical models of so-
cial behavior among some Indians of Colombia. In A.
Aveni & G. Urton (Eds.), Ethnoastronomy and Archae-
oastronomy in the American tropics (pp. 63-80). New
York: New York Academy of Sciences.

Robins, G. & Shute, C. (1985). Mathematical bases of an-
cient Egyptian architecture and graphic art. Historia
Mathematica, 12, 107-122.

Seidenberg, A. (1975). Did Euclid’s Elements, Book I, de-
velop geometry axiomatically? Archive for History of
Exact Sciences, 14, 263-295.

Thomas, I. (1968). Selections illustrating the history of
Greek mathematics with an English translation. Vol. II
From Aristarchus to Pappus . Cambridge, MA: Harvard
University Press.

Toomer, G. (1976). Diocles. On burning mirrors. Berlin:
Springer-Verlag.

Yan, L. & Shirán, D. (1987). Chinese mathematics: A con-
cise history. Oxford: Clarendon.

It hath been an old remark, that Geometry is an excellent Logic.  And it must be owned that when the definitions
are clear; when the postulata cannot be refused, nor the axioms denied; when from the distinct contemplation
and comparison of figures, their properties are derived, by a perpetual well-connected chain of consequences,
the objects being still kept in view, and the attention ever fixed upon them; there is acquired a habit of reason-
ing, close and exact and methodical, which habit strengthens and sharpens the mind, and being transferred to
other subjects is of general use in the inquiry after truth.                                                                       George Berkeley


