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The Historical Development of the Concept of Angle (2) 1

José Matos

In the first part of this article published in the
Summer 1990 issue of the Mathematics Educator,
we discussed the use of directions by paleolithic and
neolithic cultures.  We saw how angles, as distinct
geometric entities, had their origin in Greek culture,
and we discussed several problems associated with
them.  We also saw how other cultures like the Chi-
nese and the Hindus could solve geometric problems
without angles.  In this second part, we will proceed
by discussing the notion of angle during the middle
ages, the narrowing of the concept by seventeenth
century mathematicians, and the enlargement of the
notion of angle by nineteenth century mathemati-
cians.  Finally, we will briefly discuss contemporary
approaches to angle, namely its disappearance in a
branch of contemporary geometry.

Proclus’ conception of angle

Proclus, who lived in Athens and died in 485, is
our main source of information about the geometri-
cal concepts of the high middle ages. He provided an
extensive discussion on the concept of angle in his
comment on Euclid’s Elements (Morrow, 1970) and
described a classification of angles that seems to
have its origin in the work of Geminus (Heath,
1956). Angles for Proclus were formed by two inter-
secting surfaces or lines.  The surfaces did not need
to be flat, nor did the the lines need to be straight.
Angles between two straight lines (rectilinear angles)
fell into three cases: acute, right, and obtuse angles.
The angles between a circle and its tangent included
an angle in a semicircle and a horned angle.  These
angles were also called mixed angles.  Figure 1 illus-
trates these different types of angles.  In the special
case of the angles between two circles, Proclus dis-
tinguished among biconcave, biconvex, and lunular
angles (Figure 2).  Figure 3 on the following page
provides a summary of Proclus’ classification of an-
gles.

For Proclus, angles, as all mathematical entities,
had strong philosophical, ethical, and ontological
meanings.  For example, he made an interesting dis-
tinction between a perpendicular drawn to a line and
a line erected from another at right angles (Morrow,
1970).

The line erected at right angles is an imita-
tion of life lifting itself to the upper world
from the hollows below, rising undefiled
and remaining uninclined towards worse
things, whereas the perpendicular is a like-
ness of life following the path downwards
and holding itself free of the indeterminate-
ness in the world of generation. (p. 226)

The perspective that mathematical entities had
strong connections to philosophical, ethical, and met-
aphysical problems was also present in two important
issues about angles confronting the mathematicians of
his time:  the nature of angle, and the paradoxes pro-
duced by mixed angles.  First, let us consider Proclus’
discussion about the nature of angles, namely, wheth-
er an angle is a relation, as Euclid thought, a quality
of a surface or of a solid, or a quantity.

Proclus (Morrow, 1970) argued that an angle could
be divided by a line or by a surface, like an ordinary 

angle in a semicircle

horned angle

Figure 1:  Proclus' description of angles
between a circle and its tangent

lunular angles

biconvex angle

biconcave angle

Figure 1:  Proclus' description of angles
between two circles
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Figure 3:  Proclus' classification of angles
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mathematicians of his time, the concept of non-
rectilinear angles. In his discussion of Postulate IV of
the Elements, which says that all right angles are
equal, he quoted Pappus as saying that the converse is
not true, namely, that there are non-rectilinear angles
which equal one right angle and are not equal to a rec-
tilinear right angle. As an example, Proclus drew the
following figure where AB and BC were equal and
formed a right angle, and AEB and BFC were semi-
circles.

Angle AEB is equal to angle BFC because the sem-
icircles are equal. Let us add the angle ABF to each of
those angles. Then <ABF + <FBC is equal to <ABC
which is a right angle. But then <AEB + <ABF is also
equal to a right angle. So we have an example of a
curvilinear angle that is equal to a right angle. Proclus
commented that the same held true if AB and BC met
at angles other than right angles. Figure 5 illustrates
two such cases (Morrow, 1970).  

For any given rectilinear angle, Proclus was able to
construct an equal lunular angle (Morrow, 1970). 

quantity or magnitude. This meant that it was not a
linear quantity, since linear quantites could be divid-
ed by a point; thus it should be either a surface or a
solid.  This fact seemed to deny an angle the attribute
of being a quality because qualities can not be divid-
ed.

If we assume that an angle is a quantity, we run
into problems from another area.  Euclid’s Proposi-
tion III.16, asserting that a horned angle (remaining
angle, in Euclid’s terminology) is smaller than any
rectilinear angle, shows that there exist angles that no
matter how much they increase, they will never be-
come greater than a right angle.  So there will never
be a number that multiplied by any given remaining
angle will produce an angle greater than a rectilinear
angle. This contradicts Euclid’s Axiom X.1 (current-
ly called Archimedes’ Axiom), and presents an im-
mense obstacle to conceiving angles as a quantity. 

A third possibility is to conceive angles as a rela-
tion between lines (or surfaces), as Euclid did.  Pro-
clus, however, pointed out that a relation between
lines is not solely determined by the lines them-
selves.  He gave an example of a cone cut by a trian-
gle that passes through its apex. Although there is
only one inclination between the sides of the triangle,
two different angles are formed, namely, the angle in
the plane of the triangle, and another on the surface
of the cone. Both angles are contained by the two
lines. Finally Proclus chose to follow the opinion of
his teacher, Syrianus, and claimed that an angle was
a combination of all of these categories. He equated
an angle with a triangle that also presented these
three attributes.  He concluded that an angle was a
quantity that provided it with the ability to be divided
and compared, it was a quality by virtue of its shape,
and it incorporated a relation because it needed the
relation of the lines or surfaces that bound it (Mor-
row, 1970).

Proclus also provided some interesting develop-
ments on a second issue about angles confronting 
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Note that that it could also be proven that the angle
between two equal (congruent) curves was equal to
the angle between the two tangent lines.

Proclus carried this notion of angle a step further.
In a comment about the exterior angle of a triangle
(Euclid’s Proposition I.32) and the sum of the three
angles of a triangle, Proclus added that the converse
of this theorem may not be true for figures with
curved sides as in Figure 6.

 Figure 6 has four curved sides (ACDB is a
square) and angle A and angle B are equal to right
angles, as  shown previously. Proclus concluded that
the sum of the interior angles of this figure was two
right angles, yet the figure was not a triangle (Mor-
row, 1970). It is not clear why Proclus did not con-
sider angles C and D. It may be conjectured that he
did not recognize a mixed angle at C in the interior
of the figure. This was confirmed in at least another
instance. Proclus argued that not all triangles had
three sides and gave as an example Figure 7 which
he said was a four-sided triangle (Morrow, 1970).

This also is one
of the paradoxical problems in geometry,
to find a four-sided triangle, such as BAC.
Though bounded by four sides BA, AC,
CE, and EB, it has three angles, one at B,
another at A, and a third at C. Consequent-
ly the figure here presented is a four-sided
triangle (p. 257).

The angle BEC is said to be outside the figure. For
Proclus, this confirmed the idea, as for Euclid, that
angles greater than two right angles were not accept-
ed (Morrow, 1970; Heath, 1956). Proclus referred to
Zenodorus, a geometer of the second or first century
B.C., who called Figure 7 hollow-angled (Morrow,
1970). It is worth noting that defining an angle as the
inclination between two lines, did not allow one to 

recognize the internal angle BEC of the figure as an
angle at all. In fact, it did not permit the recognition of
angles beyond two right angles.

Along the same lines, Proclus rejected zero and
straight angles.  He pointed out that Euclid carefully
worded the definition of perpendicular lines to make
sure that the definition would only hold if the straight
lines would make an angle at all, excluding intersect-
ing straight lines with the same direction. He made
the following comment referring to the possibility that
one line was placed at the extremity of the other in the
same direction.

Suppose it [a straight line] stands at the ex-
tremity of the [other] straight line and
makes one angle with it. Would it be possi-
ble for this to be equal to two right angles?
Obviously not, for every rectilinear angle is
less than two right angles, just as every sol-
id angle is less than four right angles. Even
if you take the angle that seems the most ob-
tuse, you can only give it such a magnitude
as will still fall short of the measure of two
right angles (p. 228).

Proclus’ concept of angle is quite different from
our contemporary perspective. For him, an angle was
essentially a quality, or a relation between two lines
(or more than two lines in the case of the solid angles)
not necessarily straight. Only in some cases are we
able to quantify this relation and measure an angle.

After Proclus' time, the debate continued about the
nature of angle. Simplicius (beginning of the sixth
century A.D.), extending Apollonius’ opinion that an
angle was the contraction of a surface or a solid to one
point, said that a surface angle (an angle determined
by the intersection of any two arcs) was a new entity
intermediate between a line and a surface. Moreover a
solid angle was midway between a surface and a sol-
id. Aganis, a contemporary of Simplicius, said that an
angle is a quantity having two or three dimensions
whose extremities come together at a point. Philopo-
nus (5th and early 6th centuries A.D.) extensively dis-
cussed the nature of mixed angles (Bello, 1983;
Knorr, 1986).

Middle ages’ perspectives

The debate about both the nature of angle and
mixed angles continued during the 11th through the
15th century. The focus, however, was more on the
philosophical assumptions behind the concept, and no
important mathematical developments were produced.

Avicenna, an Arabic mathematician at the end of
the eleventh century, said that we could use the word
“angle” for the quantity itself, or for the quality of be-
ing “angular” (although he did not use this last word).
The same applies to the words “square” and “squar-
ing.” As we shall see, this opinion was pursued by
Albertus Magnus. Averroes, another Arabic mathema
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Figure 6:  An example of a figure with curved sides
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Figure 7:  Proclus' four
sided triangle
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Figure 9:  A diagram to
illustrate Campanus'
objection with Euclid's
Proposition III.16
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Figure 8:  Dimensions of
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earlier, posed a problem.  Imagine that the diameter
AC is rotated about C (Figure 9).  As long as it cuts
the circle, it will make consecutive acute angles with
its initial position.  This angle is less than the angle of
the semicircle ADC. But in the moment that it ceases
to cut the circle, it makes a right angle greater than that
angle of the semicircle. During this process, the recti-
linear angle is never equal to the angle of the semi-
circle. “The transition from the less to the greater, or
vice versa, takes place through all intermediate quanti-
ties and therefore through the equal” (Heath, 1926, p.
41). Campanus concluded that these angles were not of
the same kind. The same was observed by Cardano in
the 16th century.   He used the term angle of contact.

The problem of the corruption of the soul by an infi-
nite number of sins produced very interesting argu-
ments of a mathematical nature in the twelfth and thir-
teenth century. William of Auxerre, who died in 1231
or 1237 and was a teacher of theology in Paris, used
contingency angles (his terminology for the horned an-
gle) to claim that the soul contained an infinite number
of parts, if not more, as a right angle contained an infi-
nite number of angles of contingency (Tummers,
1980). He also argued that daily sins are infinitely
smaller than mortal sins, as the relationship of a point
with a line, or a line with a plane, or a contingency an-
gle with a right angle.

Developments after the sixteenth century

The end of the 16th century saw a continuing dis-
cussion between the French geometer Peletier and Cla-
vius about the nature of the angle of contact, the angle
between a circle and one of its tangents.

Peletier held that the “angle of contact” was
not an angle at all, that the “contact of two
circles”… is not a quantity , and that the
“contact of a straight line with a circle” is
not a quantity either; that angles contained
by a diameter and a circumference whether
inside or outside the circle are right angles
and equal to rectilinear right angles, and that
angles contained by a diameter and the cir-
cumference in all circles are equal (Heath,
1926, p. 41).

The last part was proved in the following way. Let
A and B be two angles of semicircles drawn on the
same line with one point in common as in Figure 10 on
the following page.  Then A cannot obviously be
smaller than B. But also A cannot be greater than B, 

tician of the twelfth century, claimed that angle might
be considered a fourth genus, the others being point,
line, and surface (Tummers, 1984).

Albertus Magnus (1193-1280) was Thomas Aqui-
nas’ teacher and one of the first medieval scholars to
write a commentary on the works of Aristotle. In a
commentary on Euclid’s Elements, he continued the
debate, started by Aristotle, about whether an angle is
a quantity, a quality, or a relation.  From that discus-
sion, we were able to make a composite picture of his
concept of angle. He considered two dimensions in an
angle: “breadth” and “length” (or “latitude” and “lon-
gitude”).

In Figure 8, α indicates a direction of increasing
breadth and β a direction of increasing length. Solid
angles also have “depth” which apparently would
constitute a third dimension.  Most of Albertus
Magnus’ arguments were almost certainly taken from 
Anaritius (end of the ninth century A.D.), who pro-
posed that: 

1) As an angle has breadth it is not a line. Nor
is it a body because it might not have depth.
Neither is it a surface, because it cannot be
divided breadthwise, only lengthwise. An
angle is the indivisible contact of two lines.

2) It does not seem to be a quantity because
when a particular angle, the right angle, is
doubled it is no longer the same kind of
continuous quantity.

3) An angle is a property of a surface or a
body so it is not a quantity.

4) An angle has an ability to divide a figure,
and this ability is a kind of quality.

5) But angles can be increased and decreased
so they seem to be a quality.

6) Acuteness and obtuseness are conditions of
quantity.

7) An angle has breadth and length and so is a
quantity (Bello, 1983; Tummers, 1980,
1984).

In his comments on the Elements, Albertus Magnus
concluded that an angle tells us a quality about a cer-
tain quantity. An angle (angulus) was a quantity, but
to be angular (angulatio) was a quality. However in
his comments of Aristotle’ Metaphysics, he presented
a different conclusion asserting that an angle was a re-
lation because the angle was a “medium” between a
line and a surface (Tummers, 1984).

The problem of the nature of mixed angles contin-
ued to be discussed in the Middle Ages. Johannes
Campanus who edited the Elements in the 13th centu-
ry, inferred that Euclid’s Proposition III.16, discussed
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because if it were so we could draw larger and larger
angles of semicircles and eventually we would have
an angle of a semicircle larger than a right angle,
which is absurd. So, he concluded, all angles of a sem-
icircle were equal, and their difference was nothing,
which implied, he said, that they were non-angles
(Heath, 1926). Still in the end of the 16th century and
the beginning of the 17th century, Vieta supported Pe-
letier and Galileo seems to have done the same thing.
Clavius argued that the angles of two semicircles of
different sizes cannot be equal since they do not coin-
cide. Moreover, in order for the Archimedian Axiom
to hold, it was only necessary to assume that these an-
gles were a quantity of a different nature than rectilin-
ear angles (Heath, 1926).

The controversy continued well into the 17th centu-
ry, with the discussion between Wallis and Leotaud.
Wallis, who wrote an essay of 100 pages on the vari-
ous opinions about the nature of horned angles (Kas-
ner,1945), argued that for two lines to make an angle
it was necessary for an inclination to exist. But that
was not the case between the circle and its tangent. In
the point of contact, the straight line was not inclined
to the circle but lied on it, was coincident with it. In
the course of this argument Wallis expanded some in-
teresting conceptions about angles. Let us quote Heath
(1926):

As a point is not a line but a beginning of a
line, and a line is not a surface, but a begin-
ning of a surface, so an angle is not the dis-
tance between two lines, but their initial ten-
dency towards separation… How far lines,
which at their point of meeting do not form
an angle, separate from one another as they
pass on depends on the degree of curva-
ture… and it is the latter which has to be
compared in the case of two lines so meet-
ing (p. 42).

The use of the notion of degree of curvature provided
a clarifying context to discuss angles of contact. Both
Newton and Leibniz applied analytical methods to de-
termine the curvature of a curve (Boyer, 1968; Kline,
1972), and Newton clearly distinguished in his writ-
ings the rectilinear angle from the contact angle
(Struik, 1986) but none of them provided a way to ac-
tually measure these angles.

It is interesting to note that there is evidence that
this whole discussion was not limited to the mathe-
matical circles.  For example, two of Voltaire’s nov-
els contain extensive references to the horned angle
(Kasner, 1945).

The nineteenth century shift

The discussion of the nature of angles shifted sig-
nificantly during the nineteenth century. A different
concept of angle was developed by the works of Lo-
batchevsky, Gauss, and Bolyai on non-Euclidean ge-
ometries. Lobatchevsky extended the notion of angle
by calling the angle made by two limit parallel lines
the angle of parallelism.  Geometry had ceased to be
limited to the study of physical space, which meant
that there was no longer a need for a visual interpreta-
tion of geometric entities.  Another extension of the
notion of angle was developed in the beginning of the
nineteenth century when angles were used to express
the time interval between two periodic events.  The
crucial idea came from the development of functions
in trigonometric series by Fourier (Kline, 1972). With
regards to the issue of horned angles, Cantor showed
how these were a concrete illustration of geometries
that did not obey the Archimedian Axiom and re-
solved the related paradoxes that had puzzled mathe-
maticians for centuries (Kasner, 1945).

Research in Euclidean geometry continued to try to
clarify the notion of rectilinear angles, and new per-
spectives emerged.  Veronese argued that an angle
was an entity in one dimension with respect to the
ray, and an entity in two dimensions with respect to
the points of the plane. His idea was to define angle
as “the aggregate of the rays issuing from the vertex
and comprised in the angular sector” (Heath, 1956, p.
180). For him, an angle was the set of all the rays that
are “between” two given rays (Enriques, 1911). An
angle was “a part of a cluster of rays, bounded by two
rays (as the segment is a part of a straight line bound-
ed by two points)” (Heath, 1956, p. 180). A different
approach was the one undertaken by Bertrand. An an-
gle of two straight lines was the portion of the plane
that is common to the two semi-planes limited by the
two lines, or it was the interference of these two semi-
planes (Enriques, 1911).

Contemporary conceptions

The twentieth century saw two main developments
of the concept of angle.  One was influenced by Hil-
bertian formalism, and the other by Klien’s Erlan-
gen’s Program.  Hilbert (1902) in his book The Foun-
dations of Geometry  defined angle as follows:

Let a be any arbitrary plane and h, k any
two distinct half-rays lying in a and emanat-
ing from the point O so as to form a part of
two different straight lines. We call the 

A

B

Figure 10:  Angles contained by the diameter
and circumference of circles
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could order all these angles considering that an angle
is greater than another if, when the straight lines and
the vertices of both angles coincide, this angle extend-
ed beyond the other, and he showed that this was a
well-ordered set.

In particular, if we take the contact angles between a
circle and its tangent, then we have a way of actually
measuring the angles. We just need to define the unit
of measurement of the angle that a circle of radius 1
makes with its tangent, and take 1/r as the measure of
the magnitude of the angle of any other circle of radius
r with its tangent. We can define multiplication of an
angle of amplitude 1/r by an integer n, as being the an-
gle with amplitude n/r and radius 1/r. Addition be-
tween two angles of amplitudes 1/r and 1/r' is an angle
of amplitude 1/r + 1/r' (Waismann, 1959). As we have
seen before, no matter how big r is, the contact angle
will always be smaller than any acute angle, which
means that we are not using measures of the same
type, or as Waismann put it, we are dealing with what
he called ultrareal numbers.

This process of measuring contact angles was prob-
ably inspired by Klein who in a lecture given in 1908
outlined an approach similar to Waismann (Klein,
1939). In fact, he went further. He argued that if we
consider all the analytic curves through a point O, we
can develop each curve in a power series whose coeffi-
cients depend on the derivatives of successive orders.
This development allows us to order all the analytic
curves through that point.  Given two such curves

y1= a1x + b1x2 + g1x3 + …

y2= a2x + b2x2 + g2x3 + …

we shall say that the angle of the first curve with the x
axis is greater or less than that of second curve accord-
ing as a1 > a2 or a1 < a2. If a1 = a2 then we will ana-
lyze the next coefficients and proceed the same way.

To conclude

Human concern about directions appeared very ear-
ly, embodied with mystic, social, practical, and intel-
lectual concerns. The concept of direction, or more
precisely, of the difference in directions, was present
in early cultures. Attempts to actually provide a meas-
ure of a difference of directions succeeded both in con-
struction and in astronomy. Both Egyptians and Chi-
nese, for example, used a process involving ratios, that
anticipated trigonometry and made no use of angles, to
determine what the Egyptians called the “seked” of a
pyramid. Although the Babylonians had no word for
angle, they developed a quantitative process that in-
volved the use of a background of stars to measure dif-
ferences in direction.

The Greeks were the first to investigate several pos-
sible definitions of angle. But their angle, as Euclid’s 

system formed by these two half-rays h, k
an angle (p. 13).

Hilbert then proceeded to define the interior and exte-
rior of an angle. Like Euclid, Hilbert’s system did not
recognize zero and straight angles, nor angles greater
than two right angles. This system did not allow one
to produce theorems about the sum of the angles of
concave polygons. However, this system is followed
by many contemporary mathematicians and used in
school mathematics of some countries.

Contemporary definitions of angle, following Bour-
baki’s reductionist view of geometry, make use of an
algebraic approach influenced by the work of Klein.
Dieudonné (1964), for example, defined the group of
angles of rays as an additive group isomorphic to the
group of plane rotations. Through the use of this defi-
nition, and extensive use of the dot product, he quick-
ly derived the main trigonometric formulas. Choquet
(1964) also used this last approach, but commented
that for an algebrist, the group of angles should be the
quotient of the group of even isometries by the group
of translations. This notion of angle also found its
way into school mathematics curricula, especially
those influenced by the New Math.  Both Dieudonné
and Choquet concluded that by making extensive use
of linear algebra, most contemporary geometric
knowledge could be constructed without the notion of
angle.

These approaches had no influence, however, on
angles of contact.  Although the paradoxes associated
with them were solved by Cantor, he did not propose
a process to measure them.  During the twentieth cen-
tury several ways to compare the angles of contact
have been found.

Kasner was interested in this issue and proposed,
following Newton’s advice, that the measurement of
horned angles should be based on the curvatures of
the curves.  He proposed (Kasner,1945) that the meas-
ure of a horned angle between two curves with curva-
tures g1 and g2 be given by 

Kanser shows that this measure is invariant under the
group of conformal transformations.

An alternative way to measure horned angles was
proposed later by Waismann (1959).  His starting
point was that “intuition suggests that we should fix
our attention on the horn-shaped space between the
two curved lines, and ask whether these spaces cannot
be compared to one another” (p. 221).  As we can di-
vide any two horn-shaped angles by a straight line,
we only need to consider mixed angles between a
straight line and a curve.  Waismann proposed that we
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Elements, was concerned with their everyday space,
and so their concept of angularity was related to the no-
tion of a corner formed by two lines or two surfaces.
The paradoxes that this approach produced lasted until
the seventeenth century, where the invention of the no-
tion of curvature provided a more reliable approach to
the problem of mixed angles. The paradoxes remained
in place but there was a new mathematical concept that
avoided them. Only recently can we approach these an-
gles more confidently using more refined mathematical
devices.

The interesting point is that in spite of the Bourbakist
formal approach that “algebrized” rectilinear angles,
the problems are not over. In fact, the very question of
the nature of an angle was raised by physicists who, in
dimensional analysis, were trying to axiomatize the
measure of angles (Krantz, Luce, Suppes, & Tversky,
1971).

Angle is the bastard quantity in dimensional
analysis, about which everyone seems a bit
uncomfortable (…) It is said to be dimension-
less (because it can be defined as the ratio of
two lengths, namely, the arc subtended to the
radius of the circle) and also to be extensive-
ly measurable (…) and therefore has a unit.
In listing the dimensions of physical quanti-
ties, it has to be included in the units but usu-
ally it is omitted from the dimensions; so, for
example, angular velocity is reported in radi-
ans per second, but supposedly it has only the
dimension T-1. Something is bizarrely wrong
(p. 455).

Although the paradoxes produced by the intermixing
of an Archimedian with a non-Archemedian system
have been solved, new issues are now developing hav-
ing to do with the meaning of measuring angles.  In a
way, the sense that “something is bizarrely wrong” is a
sign that mathematics is a living field, continually
searching for new paradigms (Kuhn, 1970).

From the point of view of a mathematics educator, it
is interesting to note that these several developments of
the concept of angle have their counterparts in contem-
porary school mathematics.  In fact, there are several
kinds of angles currently used in schools:  (1) Euclid’s
and Hilbert’s definitions of angle are included in some
curricula; (2) in some parts of the world, angles are as-
sociated with rotations; and (3) angles as a measure of
periodic events are used in high school mathematics.

An innovative concept of angle, the amount of turn,
has been used in Turtle Geometry. In this geometry, a
line segment is the path of a turtle on a computer
screen, and an angle is the command that tells the turtle
how much it should turn to draw the next line segment.
Interesting new theorems arise from this approach,
namely the "Exterior Angle Theorem", that says that
the sum of the exterior angles of a polygon is always
360 degrees (one degree is the unit of a turtle turn) (Ab-
elson & diSessa, 1980).  It will be interesting to see 

how the concept of angle continues to develop and
challenge existing conceptions.

Note

1.  This is the second part of a two-part  article.  Part one was fea-
tured in the Summer 1990 issue of The Mathematics Educator.
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