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Many students and teachers have followed with great
interest the continuing saga of the game show problem
controversy presented in four different issues of Parade
magazine in the “Ask Marilyn” column written by Marilyn
Vos Savant.  The problem was posed to Marilyn by Craig
F. Whitaker of Columbia, Maryland in the following way:

Suppose you’re on a game show, and you’re given
the choice of three doors:  Behind one door is a car;
behind the others, goats.  You pick a door, say No.
1, and the host, who knows what’s behind the doors,
opens another door, say No. 3, which has a goat.  He
then says to you, ‘Do you want to pick door No. 2?’
Is it to your advantage to switch your choice?  (Vos
Savant, September 9, 1990, p. 22; December 2,
1990, p. 28)
Marilyn claims that you should switch because switch-

ing doors will result in a 2⁄3 probability of winning.  Most
people tend to believe that the probability of winning is 1⁄2.
In fact, readers have claimed that the answer is 1⁄2 with
tremendous amounts of emotional energy expended in the
process.  One reader even went so far as to tell Marilyn,
“You are the goat!” (Vos Savant, February 17, 1991, p.12).

The probability of winning given that you switch is in
fact 2⁄3 as indicated by Marilyn.  When those readers who
are students or teachers try computer or classroom simula-
tions of the problem they discover, using the Law of Large
Numbers, that the statistical probability converges to 2⁄3.
One amazed reader said to Marilyn, “You’ll have to help
rewrite the chapters on probability” (Vos Savant, July 7,
1991, p. 28).

Actually, this problem does not require a new chapter
on probability but it does require, as an excellent starting
place, an “old” chapter on probability, which can be found
in any good introductory probability and statistics text-
book.  In such, refer to the sections on conditional probabil-
ity, independent events, and dependent events.  Condi-
tional probability is denoted with symbols like P(A | B)
which represents the probability of A given B and is
defined to be the probability that both A and B happen
divided by the probability that B happens, denoted P(A∩B)/
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P(B).  Events A and B are independent if and only if
P(A∩B) = P(A)P(B); so for the independent events A and
B the probability that both A and B happen is simply the
product of the separate probabilities.  Thus if A and B are
independent, P(A | B) = P(A∩B)/P(B) = P(A)P(B)/P(B) =
P(A).  Hence, intuitively speaking, events are independent
from the perspective of conditional probability if condi-
tioning on one of the events does not affect the probability
of the other event.

Treating independent events as if they are dependent
and vice versa are common “intuitive” errors made by
students.  For example, in three flips of a fair coin, given
that the coin comes up showing heads on the first two flips,
students may feel that surely the third flip will most likely
be tails.  After all, it seems only “fair.”  Actually, the coin
has no memory of being flipped those prior times and
hence the coin will not cooperate with that sort of mistaken
intuition.  In symbols, we see that
P(heads on third flip | first two flips heads) = 1⁄

2
 = P(heads).

The other case, treating dependent events as if they are
independent,  leads to errors like the ones in the game show
problem.

Let us now turn our attention to the subtleties of the
game show problem.  An old Chasidic saying, “the hand,
held before the eye, can hide the tallest mountain,” gives us
a metaphor for the error.  The fact that the contestant will
eventually be staring at exactly two doors, and behind one
of those doors is a car and behind the other is a goat blinds
Marilyn’s readers to the actual probability question.  It is
true that if a person randomly selects one door from two
available doors, then the probability of selecting a particu-
lar door is 1⁄2.   Many of the readers feel that what happened
on the first door selection is independent of what will
happen next.  The rules of the game, however, are cleverly
concealing an initial branching step that changes the prob-
lem subtly but significantly from the simple random selec-
tion of one door from two into a problem where choosing
the car on the second step, the switching step, depends on
what you pick in the first step.  Thus the game show
problem has a “sleight of pen” twist to it.

First, let us try to explain why the probability of
winning given that you switch is 2⁄3.  Instead of focusing on
doors, which gets a bit confusing, focus on randomly
selecting a prize from the following list:

George the goat,  Fred the goat,  and a car.
You could pick George, Fred, or the car with equally

likely probabilities, namely 1⁄
3
 each.  After you pick a prize,

the game show host must reveal, and remove from the list,
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one of the goats, and (a fine detail that is easy to overlook)he
host cannot touch your initial prize.  If you were so
“lucky” as to select a goat on the first stage of the game,
which has a 2⁄

3
 probability of happening since you could

select either George or Fred, you force the host to reveal
and remove the only remaining goat from the list, leaving
the car behind the untouched door.  If you were so
“unlucky” as to pick a car on the first stage, the probability
of which is 1⁄

3
, the host has a choice of revealing and

removing either George or Fred leaving the untouched
door with the other goat.  If you decide to switch, the
problem of winning simply involves choosing a goat at the
first stage of the game which has 2⁄

3
 probability of happen-

ing.  This forces the host to remove the only remaining
goat from the list allowing you to then switch to the door
guaranteed to have a car.  That is, in the switching strategy,
to win you first have to “lose” (i.e., choose a goat) and to
lose you first have to “win” (i.e., choose a car).  Figure 1
is a tree diagram for the problem showing that the condi-
tional probability P(win | switch)  = 2⁄

3
.

Interestingly enough, it is easy to get the answer  1⁄2 as
the solution to a new but related and more probabilistic
problem that allows for a switching probability.  In this
version, the probability of winning will vary from 2⁄3 to

 1⁄3
depending on your likelihood of switching with 2⁄3 being
the answer given that the contestant randomly switches or
not with a 50% probability.

Suppose the novice contestant has a fixed probability
of switching doors which is known to be p.  That is, given
a choice of switching, P(contestant will switch) = p and
P(contestant will not switch) = 1 _ p.  What is the
probability that the contestant wins the car?  In this
problem, the contestant can win in one of two ways.  The
contestant can switch and win, or the contestant can decide
not to switch and win:

P(wins car) = P(switches and wins)
 + P(does not switch and wins).

Now for the "and" probabilities, we use the conditional

equation after having solved for P(A∩B), namely P(A∩B)
= P(A|B)P(B).  So P(wins) = P(wins |  switches)P(switches)
+ P(wins | does not switch)P(does not switch).

We have just seen that P(wins | switches) = 2⁄3.    Since
winning the car without switching would simply involve
selecting the car at the first stage, P(wins | does not switch)
= 1⁄3.  Hence, P(wins car) = 2⁄3 p + 1⁄3 

(1 _ p).
We claim that the solution of this version of the

problem should make everyone happy.  When the prob-
ability of switching is 1, the probability of winning be-
comes 2⁄3, which was Marilyn’s solution since she said the
contestant should definitely switch.  By adding a random
switching probability of 0.5, P(wins) = 2⁄6 + 1⁄6 = 1⁄2, which
was Marilyn’s readers’ favorite solution.  This pleases the
intuition of the reader who is more focused on the random
selection of one of the two doors at the end.  Finally, for the
worst possible game strategy, if the probability of switch-
ing is 0, the probability of winning becomes 1⁄3.

The game show problem is very similar to the famous
“Lady or the Tiger?” problem.  In the “Lady or the Tiger?”
problem, the reader will once again be faced with decisions
that seem to have equal probabilities associated with them.
Once again, because of an initial selection step, the depen-
dent events may seem to be independent.  Instead of
“Should you switch or not?” the question becomes “Should
the princess wait in Room A or not?"  One version of the
problem is illustrated by Figure 2.

Room A

Room B

Figure 2:  Possible paths for the "Lady or the
Tiger?" problem.

Imagine that Figure 2 shows paths through the garden

Figure 1:  A tree diagram of possible outcomes given that an individual always switches doors.

Given that you will switch:

pick George (p = 1⁄3 );
host throws out Fred, and you switch to the car and win.

pick Fred (p = 1⁄3 );
host throws out George, and you switch to the car and win.

pick the car (p = 1⁄3 );
host throws out George or Fred, and you switch to the other goat and lose.
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middle path is selected, it would not be possible to find
Room B.  These facts make the selection of Room A more
likely.  As in the game show problem, the initial selection
cannot be disregarded to form a new problem involving
simple random selection of one door from six, illustrated
in Figure 4.
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Figure 4:  Paths disregarding initial branching.

One wonders whether the young man actually found
the room with the princess.  Perhaps he found a car.

Ideas for the Classroom

For explaining the difference between dependent events
and independent events and for experiencing the idea of
conditional probabilities in the classroom, draw branching
tree diagrams for probability experiments with multiple
steps.  For some of these experiments, make the second
step dependent upon the outcome of the first step.  For
example,

Roll a fair die.  If the outcome is more than 3, you
lose.  If the outcome is 3 or less, then flip a fair coin.
If you get heads, then you win; otherwise, you lose.
Follow these activities with other experiments where

the steps are independent of each other.  For example,
Flip a fair coin a first, second, and then a third time.
If you get heads on the third flip, you win.
First consider probabilities like P(lose) for each game.

Then consider conditional probabilities by conditioning
on the first step like P(lose | odd on die) and P(lose  | heads
on first flip).  Observe what happens to P(lose) for the
different experiments when conditioning is added.  Such
classroom projects are fun and may help students apply the
concept of independence appropriately in the future.
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of an exotic castle.  Each path leads to a door which opens
into one of two rooms in the castle.  The rooms are labeled
in the diagram as Room A and Room B.  As legend has it,
there was a princess in the castle who fell madly in love with
a young man.  Unfortunately, the king, father of said
princess, despised the young man.  In fact, the king decided
to try to do away with the young man.  The king told the
princess that she should wait in one of the rooms shown
above.  In the other room, the king would place tigers.  The
young man would then be forced to pick a path through the
garden and open one of the doors into one of the two rooms.
If the young man found the room with the princess, he
would get to keep the princess.  If, however, he found the
room with the tigers, then the tigers would get to keep him.
The princess is now supposed to choose which room she
wants to use for herself and which room is to be used for the
tigers.  Which room should she choose for herself to
maximize the probability of being found?

Once again we see a problem for which there seems to
be a 50% probability for randomly selecting a “prize.”
There are, after all, three paths to doors into Room A and
three paths to doors into Room B and at any decision step
we assume the random selection of a branch of one of those
paths.  It is, however, once again the initial branching
process that changes the probability of finding each room
so that one is more likely than the other.  By numbering the
doors from top to bottom and placing the values of the
conditional probabilities of selecting each branch (Figure
3), we see that

P(Room A)
 = P(door 2) + P(door 3) + P(door 4)
 = P(I and b) + P(II) + P(III and c)
 =P(b | I)P(I) + P(II) + P(c | III)*P(III)
 = (1⁄2)(

1⁄3) + (1⁄3) + (1⁄3)(
1⁄3)

 = 11⁄18 which is > 1⁄2.
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Figure 3:  Labeled paths representing the condi-
tional probabilities for the "Lady or the Tiger?"
problem.

 Clearly, the princess should choose to wait in Room A.
The initial branching makes selecting Room A more likely.
At the first branching, regardless of the path selected, it is
possible to choose a door into Room A; however, if the


