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The concept of function is one of the most importarihe Geometer’'s SketchpafiGSH (Jackiw, 1991) using
but also one of the most complicated, concepts in theMacintosh computer. The environments described in
teaching and learning of mathematics. Solving linetis paper are based on these same considerations. Users
eqguations is another important topic related to functiorsin operate on the graph of a function in two ways, through
The purposes of this paper are to describe computer transformation approach and the formula-graph ap-
environments which can be used in the exploration mroach. In the transformation approach, variations of the
parameter effects upon functions and their relationshipi@ph are shown dynamically on the computer screen. The
linear equation solving, to contrast the graphical repres@imction graph and the referencing coordinate system can
tations of solving one-unknown linear equations amary independently of each other. By using the mouse to
systems of two-unknown linear equations, and to considieag specified points on the screen, the function graph can
some interesting questions that can be explored in beetranslated, stretched, or shrunk. The coordinate axes

environments. can be varied by changing either the unit length, the
position of the origin, or the angle of thandy-axes. The
Multiple Representations of Functions function formula displayed on the screen varies dynami-

cally as changes to the graph or referencing coordinate
Many researchers (Janvier, 1987; Kaput, 1987, 1989stem are made. In the formula-graph approach the user
Lesh, Post, & Behr, 1987) have described distinct repegaploys a control device to change the coefficients of a
sentational systems of functions that occur in mathematigsction displayed on the screen in a general form e.qg.,
learning and problem solving. These systems includex?+ bx + ¢). The user may also alter the referencing
formulas, tables, graphs, and verbal descriptions. Tdwordinate system. The variations of the function formula
function graph is viewed as a key component in undand the referencing coordinate system can be done inde-

standing the relationships among the various representa-
tional forms of a function. Creating computer environ-
ments which link multiple representations of functions
has also been an attractive endeavor for many educators

Coordinate
Algebra
Formula

(Confrey, 1990; Lesh, 1987; Lin & Olive, 1992; Schwartz,
Yerushalmy, & Harvey, 1990). Thomas (1975) investi-
gated students’ acquisition of the concept of function and
hypothesized that students acquire the concept in three
stages: a function as a process of assignment, a function as
a translation between different representational settings,
and a function as an object that can be manipulated.
One of the best ways to conceptualize a function as an
object that can be operated on is through the manipulation
of its graph. The objectification of functions was consid-
ered by Lin and Olive (1992) in their design of dynamic,
linked, multiple representation environments, built on
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Figure 1: The transformation approach.
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_ toy=1f(x) © m, andy =g(x) © m, where © is the operation
User's action andm is a constant or function. These functional opera-
tions, which are the valid equation-solving operations

. applied to both sides of an equation, preserve the solutions
Algebra Coordinate of the original equation, though extra solutions may be
Formula System obtained. Actually, when considering polynomial func-
tions, these operations can be viewed as combined changes
of the coefficients of the original functiof(x) andg(x).
For example, adding? + x + 2 to x + 2 changes the
coefficients ok + 2 from 1 forx and 2 for the constant, to
1forx?, 2 forxand 4 for the constant (i.&+ 2x+ 4). This
leads to the consideration of the effects of operating on a
single term as a variation of only the coefficient of that
term. Combinations of these coefficient variations are
Figure 2: The formula-graph approach. equivalent to more complicated functional operations.
We will concentrate on simple operations on polynomial
offer users a better view of the process of variation. Thumctions in this paper.
resultis an improved visual and intuitive understanding of Solving systems of linear equations can also be repre-
the links between a function’s graph, algebraic formulsented graphically. The process of Gaussian elimination
and referencing coordinate system. Also, the transfornea+ow operations on a matrix can be illustrated by dy-
tion approach gives the user an opportunity to explore hoamic graphic variations. These solution processes can
graphical manipulations can affect a function’s formulalso be thought of as combinations of coefficient varia-
Manipulating graphical representations of functions helpens.
to develop a sense of functions as objects that can beBased on the framework for the formula-graph ap-
operated on. The relationships of the components in bpthach on which Lin and Olive (1992) built their multiple
the transformation and the formula-graph approaches @presentation environments, we have constructed several
shown in Figure 1 and Figure 2. environments for the exploration of parameter effects on
The information components in these two figures aieear and quadratic functions, and for the use of graphical
the data related to the environments, such as point coorepresentations to illustrate the process of solving linear
nates, segment measures, and line slopes. The relagguations. Dynamic, linked, multiple representations of
ships are dynamic and linked; that is, as the user actduwniction formulas, graphs, and tables are the focus of these
either of the “parent” components of the environments, taevironments as well.
effects on the three “children” compo-

nents are displayed continuously ang
immediately.
i [

Solving linear equations and param-
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Graphical representations of one <
variable polynomial equation-solving]| ¢
processes are closely related to the € ]
fects of varying parameter values. Whe 2| s
using graphs to illustrate the process dfg
solving the equaticifx) =g(x), the graphs
of the two functiony =f(x) andy = g(x)
are drawn first. The solutions tx) =
g(x)are thex-values of any points where A
the two graphs intersect. Adding o L _Animation] [+ sty
subtracting a function on both sides of
f(x) = g(x), or multiplying or dividing | ’
both sides of the equation by a constant Figure 3: Dividing a function bgnon an oblique coordinate system
function will change the two functions in the Parameter effects environment.
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Description of the Environments There are basically three different groups of elements
in the environments— the coordinate system, the formu-
The Geometer’'s Sketchpad a dynamic, geometric las, and the graphs. Each group has its own control
construction kit which takes full advantage of the mouskevices, which can be points, vectors, or buttons. For
interface of the Macintosh computer. By clicking andonvenience, all of the objects or sets of objects on the
dragging tool icons, the user can construct points, linesreen can be hidden or moved.
line segments, rays, or circles. Geometric figures can be
constructed simply by connecting their components or byie Coordinate System
using the Construct menu. These figures can be dynami-All three environments have “variable” coordinate
cally transformed by simply dragging one or more of thesiystems (Figure 3). The user can drag the unit point on
component parts. All geometric relations are preserveither axis to rescale it. A button namg. units can
during these changes. Measurements of segment lengtlake the/-unit the same asunit. The user can choose to
and arc lengths, areas, perimeters, and angles cardisplay grid lines instead of tick marks. Because the angle
obtained and used for calculations. Measurements dadned by the coordinate axes is controlled by dragging
calculations change as figures are transformed. Becapsmt Ac on they-axis, the coordinate system can be
GSPsoftware was designed for the purpose of geometrectangular or oblique. By dragging the origin, the user
study, it does not provide coordinate system and functioan translate the whole coordinate system. All related
graphing capabilities. We developed analytic coordinageaphs and information displays are adjusted continually
systems and function graphs based on the geometric casichanges are made. For example, the tick marks adjust
struction function&sSP(version 2.0) provided. themselves according to any changes to the unit lengths.
Three environments will be described: the parametdowever, any point constructed independently of the
effects environment for linear and quadratic functions, anordinate system will not move as the coordinate system
equation-solving environment for one-variable linear equia-modified. Only the information about its position will
tions, and an equation-solving environment for systemsh adjusted.
two-variable linear equations. The power of these envi-
ronments lies in their manipulatable, dynamic, linked, afithe Formulas
multiple representation properties. It is difficult to de- The environments contain either one or two sets of
scribe these properties without using the computer. Withctors which control the coefficients of the function
the provided figures and the reader’s imagination, we hopguations. The letters,, c...) denote the end points of the
that the following explanation and the examples can givectors (Figure 3, 4). In the vector set, vector lengths are
readers an overview of the design of these environmedé&termined by the attached unit segment or by the unit
and an appreciation of their power. length of the coordinate system (Figure 4). Vector signs
are established by the position of the end
points: those to the right have positive
signs, those to the left have negative
signs. The user can control the values of
the coefficients, b, c,.. in the function
formulas by horizontally dragging the
endpoints of the corresponding vectors.
\ Modifying the vectors causes a simulta-
T T T NN neous change in the function equations.
NN - B The corresponding graphs will also
i change immediately in the parameter
effect environment. In the equation-
..... solving environments, coefficient modi-
fications are held until the us8rarTs
the equation-solving process (Figure 4).

Pos x | 5.534
Pos y| 2.43

The Graphs

The graphs are drawn according to the
function formula and the coordinate sys-
tem. In the parameter effects environ-
Figure 4: Solving linear equations in the Solve-2d mode. ment (Figure 3), the function formula
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Solving Linear Equation(2) FE  formula coefficients, then to initialize the equa-
@ tion with theStarT button. After this has been
done, sequences of operations on the equation
can be performed. The resulting matrix of
coefficientsis displayed under the original equa-
tion (Figures 4 and 5). In all the environments,
the user can activate twicINAL -M button to
keep the current graph before an operation, the
OriGINAL -S button to show it after the opera-
tion, and théricINAL -H button to hide it. The
calculated results for any related values have at
most three decimal places of accuracy.

Ac

Pos x | 3.92
Pos y | 1.65

Application of the Environments
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Figure 5: Solving a system of linear equations.

Parameter Effects Environment
Two modes are provided in this environ-

ment for studying the effects of varying the
coefficients upon the function graph. In the
can have the form=bx + ¢ ory=ax +bx+c. Inthe animation mode, the user can determineahb, or c
one-unknown equation solving environments (Figure 4)alues or use thAnimaTE buttons to let the computer
the graphs are determined by the functions on each sideaitinuously change the values of the coefficients. Asthe
the equation. They may be constant, linear, or quadratadues of the coefficients are changing, the graph varies
functions. In the two-unknowns equation-solving enveorrespondingly. The basic task for the user is to figure out
ronment (Figure 5), the function formulas must both lvehat effects variations in the valuesapb, andc have on
linear. The graphs are the two lines corresponding to the graphs. How can these effects be explained? Is the
two equations, drawn according to the results of tlesplanation unique? With the aid GSPs Trace locus
equation-solving process. command, the path taken by selected points can be tracked

as they move across the screen, allowing new insights into
Buttons for the Functional and Equation-solving Opera- how the function graph is changing. For example, tracing
tions the whole graph when varying the valué ¢figure 6), we

can see that the vertex point Y seems to trace a parabola.

In each environment, the valuelog
constanimcorresponds to the position of
a segment attached to tkexis. This
constant can be changed by dragging t
segment along the axis. Functional ar
single variable equation-solving oper
tions are controlled by buttons that rey
resent addition, subtraction, multiplica
tion, and division by the value af, as
well as addition and subtractionrakor
mx (see Figures 3 and 4). In the twg
variable linear equation-solving envis
ronment (Figure 5), buttons imitate m
trix row operations on the coefficients of
the function formulas. For example
when the-(2) + (1) button is activated,
the second equation is multiplied by -
and the product is added to the firg
equation.

To use the equation-solving environ-
ments, the user first has to set the desired Figure 6: The effects of varyirgin the equatioly = ax? + bx + c.
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What is the equation for that parabolgEE=————————— Parameter effect
How can we explain it visually or alge-{j
braically? Similarly, if we take any point|
on the parabola and trace its locus as t
formula coefficients vary, what is the
result? What is the equation for thij
graph? Whera equals zero, what is the
locus of a point on this line dsor c
varies? Can we find its formula? Whe
the value obis allowed to vary, will any
point remain fixed? Such a fixed point i
called a“screw-eye” (Goldenberg, 1991
and can be explored easily using thi
environment (see Figure 6).

Students can also study the effects |
varyinga, b, andcin the formulay’ =a(x
+b)? + c and contrast the relationships i
this form with those in the formula writ-
ten ay =ax2+bx+c. The user can obtain
the graph of =ax? + bx +c, or the graph
ofy' =a(k+x)?+c, or both (Figure 8). The
dynamic way in which the continuous variation ofahle, process of building up a function equation to match a given
andc parameters can be explored is unique to our envirdanction graph. The operation mode of the parameter
ments. effects environment can be used to describe dynamically

The second mode provided in the parameter effetite tilting and bending processes, as well as others de-
environment is the operation mode. Here the user camibed by Kaput. Figure 7 shows the slope changing by
operate on the function formula by adding or subtractingédding to the linear term when= 0. Figure 9 shows the
constant, linear term, or quadratic term, or by multiplyingraph changing process of adding a squared texfin(4
or dividing by a constant term. On the screen, the graplhis case) to a linear function by gradually increasing the
changed gradually from the original to the graph resultinglue of the coefficier to 4.
from the operations on the function formula. Kaput (1989) The animation mode and the operation mode provide
used terms such as “tilts” (slope changes) and “bendab different routes to the same result. Varying coeffi-
(multiplications by linear expressions) to describe tlugents can be seen as a sequence of continuous simple
function operations. Conversely, opera-
tions on functions can be thought of as a
coefficient varying process, too. This
environment provides students with a
unique tool for observing the links be-
tween algebraic expressions, graphs, and
coordinate systems.

[+ Buttons] [£ ButtonH] aol
Paul Lin 3/11/92 I]p_gr_ptiun
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Figure 7: The effect of varyirlg in the equatioy =ax? + bx+ c with
a=0.
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Solving one-variable linear equations
The linear equation-solving environ-
ment uses three modes to operate on
equations of the formx+b=cx+d. In
the trial mode (Figure 10), the valuexof
corresponds to the position of the point
X on the number line. The value of each
side of the equation, referred to as “left”
and “right,” is determined by substitut-
ing the value ofx. The value ofx is

_ _ dynamic, as are the values of the expres-
Figure 8: Comparison oy = ax? + bx + c andy = a(x + b)? + c. sions containing. The value ok which
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causes “left” and “right” to converge togd arameter effect
the same value is the solution to th
equation.

Inthe 1-D mode (Figure 11), avecto
addition method is used. This mode i
generalized from representations of equ
tion-solving processes such as that sho
in Figure 12. In the 1-D moday, b, cx,
andd are represented by vectors; the |
hand side of the equation is represent
by the sunax+b, and the right hand side
by the sunex+d. Theticks on thexand
cx vectors correspond to the absoluf -
value ofx. As buttons are used to trang

form the equations by adding, subtrac o Ammstion] |+ I-P +;~ T T

ing, multiplying, and dividing, the vec- operation] ™ — < = - =
- +e eration] e L = —{mex -m m |j+++ Driginal-H
tors representingx + b andcx + d are L Speration] -2 ] I | |

always equal. The solution has beek
i?g;‘g Zlvrjelr’];rieolf:?ro(?ztiﬂ;?;P;_Cgfefﬂ Figure 9: Bending a line by adding?40 y = 1.2X - 2.09.
b=1,c=1,d=0). TheForml and
Form2 buttons can be used to switch between the matrix Inthe 2-D mode (Figure 4), the two linesax+b and
or equation representation of the results. y =cx+d are drawn. Thg-value of their intersection is

In both the trial and 1-D modes, we can ask studeth® solution to the equati@x+b =cx+d. In both the 1-
how the direction of the vectors is determined. Is tli and 2-D modes, the user can study the relationship
solution positive or negative? How can we change thetween algebraic formulas and their graphical represen-
coefficients to get the same solution, a negative solutidations. These different representations give students
or a positive solution? Inwhat direction will the “left” andvays to visualize equation transformations and help them
“right” vectors move when we changen the trial mode? focus on the processes as well as the products of the
Forwhat values ofwill the “left” vector end on 0 or swing equation-solving process. The environments also allow
in the negative or positive direction? Whemoves, will students to observe the invariance of solutions under the
the two vectors always move in the same direction? equation solving transformations (Lesh 1987).

o o] [ Eqshis]

‘h; Select parabpla

=400
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Solving two-variable linear equations

S=—— Solving Li Equation(l) S==—————" ) ,
= Diving Linear Equationi1) | Two modes are provided for solving
o Trial [+ Button-s] [~ Buttont] . . . :
Poo-Ping Lin 5711792 5 a system of two linear equations in this
o | o0x + 200 - _3500% + 100 X=138 e orz environment. In the Solvel mode (Fig-
@ et ure 13), the user can manipulate the
graphs of the two equations in order to
d study the relationship between the func-
o om tion graphs and their corresponding equa-
’ tions. Dragging point C1 or C2 changes
?L - 3o the slope of the two lines, thereby chang-
=) * ing the coefficients in the function equa-

tions; dragging point S1 or S2 is the

same as multiplying or dividing the equa-

tions by a constant; dragging the inter-

section point translates the two lines at
the same time. Users can set up and
solve the system of equations by ma-
nipulating the graphs, then contrasting

these operations with the button opera-
tions in Solve2 mode.

]

15

[+ Sotve-1D][.. Trial]
++ Sole—2D

Figure 10: Solving linear equations in the Trial mode.
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soluing Linear Equation(1) =—=—=—m15| line BC, and line AC all represent the
il same line in Euclidean geometry. In

GSP, however, although the lines are
coincident, we can still distinguish be-
tween them and the points on the lines
may behave differently.

For a linear functiony = bx + c, we
can define many coincident lines. In
Figure 15, we define three lines which
are the graphs gof= 0.36¢ - 2.73 (note
that the correspondence between equa-
tion and lines is not one-to-one). Line 1
is defined by the slog®and the intercept
c; line 2 is defined by the point?; 0)
and the intercept; line 3 is defined by
the slopeb and the point ¢, 0). The
three lines are coincident on the line BC
in Figure 15. When we addx5%o this
function, the three lines seem to behave

Inthe Solve2 mode, the user can set up the equationtiieysame way as they moveyte -4.64 andk = -2.73.
dragging the vector endpoints which control the coeffdowever, when we choose points P1, P2, P3 on the lines
cients of the equatiorex + by = c anddx + ey=f. This L1, L2, L3,respectively, and trace their loci as the lines
environment provides a graphical illustration for the equarove to the new position, we can see that their behavior is
tion-solving process and the relationship between functiactually very different. The loci of the three points show
equations and graphs. The equation manipulation operathat the lines either stretch vertically or horizontally, or
tions, controlled by button activation, are actually rofcurve” in a hyperbolic route to the new destination.
operations on the matrix of system coefficients (Figufetually, the corresponding points in the variation pro-
14). The graphical representation of the final solution otasses are determined by the definition given to the lines
system of equations is two lines, parallel to the two axesand the internal structure@SPregarding pointson aline.
the coordinate system. We need to consider first the transformation caused by

Button operations in this environment can help the usatdingmxto the function equation.
make distinctions between functional operations and equa-Generally speaking, when we talk about functional
tion solving transformations, which may confuse margperations, we obtain new functions as results of the
students. Functional operations change the coefficient®pérations. For example, adding 4xtoy=1.2%- 2.09,
other terms, but the coefficientyphever changes; that is,yields y =5.23%- 2.09 (Figure 7). We tend to say that the
the sum of two functiong=1f(x) andy =g(x)isy =f(x) + variation fromy = 1.23% - 2.09 toy = 5.2%-2.09 is not a
g(x). Butin the two-variable equation solving transformaetation but a vertical stretching. Since the addition is a
tion, the coefficient oy is changed. The result of addindgunctional operation, we need to consider the mapping of
the first equation in the system= f(x), to the second (x,y,) and &,y,) in the original functions tax(y, +y,)in the
equationy =g(x), is &y =f(x) + g(x). This

SDI%E—ID |uo Bill‘h)n—SI |.f'_'\. BIIHJDI'I—HI

Pao-Ping Lin 5711792
Left=Right = -2 3%

-200X + -5.00 m = 3.00
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400x% + 3.00
400X + 300

|m Sotve-1D ... Tr-ialll-l- +m||-l- .."m|-l- +mx| [

=

Solve-20|+ start][+ -m][* xm

Figure 11: Solving linear equations in the Solve-1D mode.

environment provides an opportunity for o X X Xy 15 o
students to compare the operations. (1) 3% +15 = 5x +f X, X, X X, x, 9 ‘O
[ [ [ [ [
Rotation or Stretching: Pitfalls of Visual 15 o
Learning Lo = X x 9 ‘
T T O
Every user should know that in a dy- 6
namic, visual learning environment such (3) 6 = 2x X x
asGSRP the computer definitions of geo-
metric objects may or may not be exactly( )3 = x L
the same as those in Euclidean geometry. = X
—

For example, if A, B, and C are three
collinear points, we know that line AB,  Figure 12: Graphic illustration of a linear equation-solving process.

Volume 4 Number 1 31



solving Linear Equation(2) =——--oop1s] the coordinate system. We hope that

[ Buttonrs] [£ Buttont] [+ orignatH|[A ormars| [& sremars] (2] these environments can provide new di-
Pao—Ping Lin & Che-.Jen Hsieh Ta rections for the teaching and learning of
i 5711792 sotvel functions.
@ -1.01 x+-070 y=-270 T
126 x+-101 y=147
f T 52
000 x+100 y=100 Notes
Gt o<+ o-00—y—197 gy
a |, . . . . . . . . . . 1. Copies of these programs are available from
ual ' ' ' ' "o ) ' ' ' the authors (105 Aderhold Hall, Athens, GA
Ely cz2 30602) for $3 (postage and disk cost). In order to
T run them, the user will neetihe Geometer’'s
Sketchpad Version 2.
-
+ Satvel] [ Sotvez| [ro 1 2. These programs were developed for use in
LITMUS (Leadership Infusion of Technology in
Mathematics and its Use in Society), a National
Science Foundation Teacher Enhancement

project. The principle investigators of LITMUS
are Larry Hatfield (project director), John Olive,
Henry Edwards, and Jim Schultz.

Figure 13: Solving system of linear equations by dragging the two
lines to horizontal and vertical and moving points S1, S2 to unitize
the coefficients in the Solvel mode.
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In this paper we have described thre
manipulatable, dynamic, linked, multiple
representation environments for study
ing parameter effects of linear and que
dratic functions and solving linear equa
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rently taughtin the high school. We hav
described the environments, designed
help students understand parameter ¢
fects through dynamic, graphical move
ment or change of the equation graph; tt
graphical interpretation of equation solv
ing process; and relationships between Figure 14: Solving the system of linear equations 2y =1 and &
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