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Figure 1:  The transformation approach.
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the Geometer’s Sketchpad  [GSP] (Jackiw, 1991) using
a Macintosh computer.  The environments described in
this paper are based on these same considerations.  Users
can operate on the graph of a function in two ways, through
the transformation approach and the formula-graph ap-
proach.  In the transformation approach, variations of the
graph are shown dynamically on the computer screen.  The
function graph and the referencing coordinate system can
vary independently of each other.  By using the mouse to
drag specified points on the screen, the function graph can
be translated, stretched, or shrunk.  The coordinate axes
can be varied by changing either the unit length, the
position of the origin, or the angle of the x and y-axes.  The
function formula displayed on the screen varies dynami-
cally as changes to the graph or referencing coordinate
system are made.  In the formula-graph approach the user
employs a control device to change the coefficients of a
function displayed on the screen in a general form (e.g., y
= ax2 + bx + c).  The user may also alter the referencing
coordinate system.  The variations of the function formula
and the referencing coordinate system can be done inde-

pendently of each other.  Both affect the function graph in
ways that are dynamically displayed on the screen.

The transformation approach and the formula-graph
approach offer valuable improvements over the more
common parameter approach, in which the user specifies
coefficient values for function formulas and the computer
draws the resulting graphs on the same coordinate system.
In both the transformation approach and the formula-
graph approach, the dynamic display capabilities of GSP

The concept of function is one of the most important,
but also one of the most complicated, concepts in the
teaching and learning of mathematics.  Solving linear
equations is another important topic related to functions.
The purposes of this paper are to describe computer
environments which can be used in the exploration of
parameter effects upon functions and their relationship to
linear equation solving, to contrast the graphical represen-
tations of solving one-unknown linear equations and
systems of two-unknown linear equations, and to consider
some interesting questions that can be explored in the
environments.

Multiple Representations of Functions

Many researchers (Janvier, 1987; Kaput, 1987, 1989;
Lesh, Post, & Behr, 1987) have described distinct repre-
sentational systems of functions that occur in mathematics
learning and problem solving.  These systems include
formulas, tables, graphs, and verbal descriptions.  The
function graph is viewed as a key component in under-
standing the relationships among the various representa-
tional forms of a function.  Creating computer environ-
ments which link multiple representations of functions
has also been an attractive endeavor for many educators
(Confrey, 1990; Lesh, 1987; Lin & Olive, 1992; Schwartz,
Yerushalmy, & Harvey, 1990).  Thomas (1975) investi-
gated students’ acquisition of the concept of function and
hypothesized that students acquire the concept in three
stages: a function as a process of assignment, a function as
a translation between different representational settings,
and a function as an object that can be manipulated.

One of the best ways to conceptualize a function as an
object that can be operated on is through the manipulation
of its graph.  The objectification of functions was consid-
ered by Lin and Olive (1992) in their design of dynamic,
linked, multiple representation environments, built on
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Figure 2:  The formula-graph approach.
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to y = f(x) © m, and y = g(x) © m, where © is the operation
and m  is a constant or function.  These functional opera-
tions, which are the valid equation-solving operations
applied to both sides of an equation, preserve the solutions
of the original equation, though extra solutions may be
obtained.  Actually, when considering polynomial func-
tions, these operations can be viewed as combined changes
of the coefficients of the original functions f(x) and g(x).
For example, adding x2 + x + 2 to x + 2 changes the
coefficients of x + 2 from 1 for x and 2 for the constant, to
1 for x2, 2 for x and 4 for the constant (i.e., x2 + 2x + 4).  This
leads to the consideration of the effects of operating on a
single term as a variation of only the coefficient of that
term.  Combinations of these coefficient variations are
equivalent to more complicated functional operations.
We will concentrate on simple operations on polynomial
functions in this paper.

Solving systems of linear equations can also be repre-
sented graphically.  The process of Gaussian elimination
or row operations on a matrix can be illustrated by dy-
namic graphic variations.  These solution processes can
also be thought of as combinations of coefficient varia-
tions.

Based on the framework for the formula-graph ap-
proach on which Lin and Olive (1992) built their multiple
representation environments, we have constructed several
environments for the exploration of parameter effects on
linear and quadratic functions, and for the use of graphical
representations to illustrate the process of solving linear
equations.  Dynamic, linked, multiple representations of
function formulas, graphs, and tables are the focus of these
environments as well.

offer users a better view of the process of variation.  The
result is an improved visual and intuitive understanding of
the links between a function’s graph, algebraic formula,
and referencing coordinate system.  Also, the transforma-
tion approach gives the user an opportunity to explore how
graphical manipulations can affect a function’s formula.
Manipulating graphical representations of functions helps
to develop a sense of functions as objects that can be
operated on. The relationships of the components in both
the transformation and the formula-graph approaches are
shown in Figure 1 and Figure 2.

The information components in these two figures are
the data related to the environments, such as point coordi-
nates, segment measures, and line slopes.  The relation-
ships are dynamic and linked; that is, as the user acts on
either of the “parent” components of the environments, the
effects on the three “children” compo-
nents are displayed continuously and
immediately.

Solving linear equations and param-
eter effects

Graphical representations of one-
variable polynomial equation-solving
processes are closely related to the ef-
fects of varying parameter values.  When
using graphs to illustrate the process of
solving the equation f(x) = g(x), the graphs
of the two functions y = f(x) and y = g(x)
are drawn first.  The solutions to f(x) =
g(x) are the x-values of any points where
the two graphs intersect.  Adding or
subtracting a function on both sides of
f(x) = g(x), or multiplying or dividing
both sides of the equation by a constant
function will change the two functions

Figure 3:  Dividing a function by m on an oblique coordinate system
in the Parameter effects environment.
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There are basically three different groups of elements
in the environments— the coordinate system, the formu-
las, and the graphs.  Each group has its own control
devices, which can be points, vectors, or buttons.  For
convenience, all of the objects or sets of objects on the
screen can be hidden or moved.

The Coordinate System
All three environments have “variable” coordinate

systems (Figure 3).  The user can drag the unit point on
either axis to rescale it.  A button named EQ. units can
make the y-unit the same as x-unit.  The user can choose to
display grid lines instead of tick marks.  Because the angle
formed by the coordinate axes is controlled by dragging
point Ac on the y-axis, the coordinate system can be
rectangular or oblique.  By dragging the origin, the user
can translate the whole coordinate system.  All related
graphs and information displays are adjusted continually
as changes are made.  For example, the tick marks adjust
themselves according to any changes to the unit lengths.
However, any point constructed independently of the
coordinate system will not move as the coordinate system
is modified.  Only the information about its position will
be adjusted.

The Formulas
The environments contain either one or two sets of

vectors which control the coefficients of the function
equations. The letters (a, b, c...) denote the end points of the
vectors (Figure 3, 4).  In the vector set, vector lengths are
determined by the attached unit segment or by the unit
length of the coordinate system (Figure 4).  Vector signs

are established by the position of the end
points:  those to the right have positive
signs, those to the left have negative
signs.  The user can control the values of
the coefficients a, b, c,.. in the function
formulas by horizontally dragging the
endpoints of the corresponding vectors.
Modifying the vectors causes a simulta-
neous change in the function equations.
The corresponding graphs will also
change immediately in the parameter
effect environment.  In the equation-
solving environments, coefficient modi-
fications are held until the user STARTS

the equation-solving process (Figure 4).

The Graphs
The graphs are drawn according to the
function formula and the coordinate sys-
tem.  In the parameter effects environ-
ment (Figure 3), the function formula

Description of the Environments

The Geometer’s Sketchpad is a dynamic, geometric
construction kit which takes full advantage of the mouse
interface of the Macintosh computer.  By clicking and
dragging tool icons, the user can construct points, lines,
line segments, rays, or circles.  Geometric figures can be
constructed simply by connecting their components or by
using the Construct menu.  These figures can be dynami-
cally transformed by simply dragging one or more of their
component parts.  All geometric relations are preserved
during these changes.  Measurements of segment lengths
and arc lengths, areas, perimeters, and angles can be
obtained and used for calculations.  Measurements and
calculations change as figures are transformed.  Because
GSP software was designed for the purpose of geometric
study, it does not provide coordinate system and function
graphing capabilities.  We developed analytic coordinate
systems and function graphs based on the geometric con-
struction functions GSP (version 2.0) provided.

Three environments will be described:  the parameter
effects environment for linear and quadratic functions, an
equation-solving environment for one-variable linear equa-
tions, and an equation-solving environment for systems of
two-variable linear equations.  The power of these envi-
ronments lies in their manipulatable, dynamic, linked, and
multiple representation properties.  It is difficult to de-
scribe these properties without using the computer.  With
the provided figures and the reader’s imagination, we hope
that the following explanation and the examples can give
readers an overview of the design of these environments
and an appreciation of their power.

Figure 4:  Solving linear equations in the Solve-2d mode.
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Figure 5: Solving a system of linear equations.

Figure 6: The effects of varying b in the equation y = ax2 + bx + c.

formula coefficients, then to initialize the equa-
tion with the START  button.  After this has been
done, sequences of operations on the equation
can be performed.  The resulting matrix of
coefficients is displayed under the original equa-
tion (Figures 4 and 5).  In all the environments,
the user can activate the ORIGINAL -M  button to
keep the current graph before an operation, the
ORIGINAL -S button to show it after the opera-
tion, and the ORIGINAL -H button to hide it.  The
calculated results for any related values have at
most three decimal places of accuracy.

Application of the Environments

Parameter Effects Environment
Two modes are provided in this environ-

ment for studying the effects of varying the
coefficients upon the function graph.  In the

animation mode, the user can determine the a, b, or c
values or use the ANIMATE  buttons to let the computer
continuously change the values of the coefficients.  As the
values of the coefficients are changing, the graph varies
correspondingly.  The basic task for the user is to figure out
what effects variations in the values of a, b, and c have on
the graphs.  How can these effects be explained?  Is the
explanation unique?  With the aid of GSP’s Trace locus
command, the path taken by selected points can be tracked
as they move across the screen, allowing new insights into
how the function graph is changing.  For example, tracing
the whole graph when varying the value of b (Figure 6), we
can see that the vertex point Y seems to trace a parabola.

can have the form y = bx  +  c  or y = ax2 + bx + c.  In the
one-unknown equation solving environments (Figure 4),
the graphs are determined by the functions on each side of
the equation.  They may be constant, linear, or quadratic
functions.  In the two-unknowns equation-solving envi-
ronment (Figure 5), the function formulas must both be
linear.  The graphs are the two lines corresponding to the
two equations, drawn according to the results of the
equation-solving process.

Buttons for the Functional and Equation-solving Opera-
tions

In each environment, the value of the
constant m corresponds to the position of
a segment attached to the x-axis.  This
constant can be changed by dragging the
segment along the axis.  Functional and
single variable equation-solving opera-
tions are controlled by buttons that rep-
resent addition, subtraction, multiplica-
tion, and division by the value of m, as
well as addition and subtraction of mx or
mx2 (see Figures 3 and 4).  In the two-
variable linear equation-solving envi-
ronment (Figure 5), buttons imitate ma-
trix row operations on the coefficients of
the function formulas.  For example,
when the -(2) + (1) button is activated,
the second equation is multiplied by -1
and the product is added to the first
equation.

To use the equation-solving environ-
ments, the user first has to set the desired
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Figure 8: Comparison of  y = ax2 + bx + c and y = a(x + b)2 + c.

What is the equation for that parabola?
How can we explain it visually or alge-
braically?  Similarly, if we take any point
on the parabola and trace its locus as the
formula coefficients vary, what is the
result?  What is the equation for this
graph?  When a equals zero, what is the
locus of a point on this line as b or c
varies?  Can we find its formula?  When
the value of b is allowed to vary, will any
point remain fixed?  Such a fixed point is
called a “screw-eye” (Goldenberg, 1991)
and can be explored easily using this
environment (see Figure 6).

Students can also study the effects of
varying a, b, and c in the formula y' = a(x
+ b)2 + c and contrast the relationships in
this form with those in the formula writ-
ten as y = ax2 + bx + c.  The user can obtain
the graph of y = ax2 + bx + c, or the graph
of y' = a(k+x)2 + c, or both ( Figure 8).  The
dynamic way in which the continuous variation of the a, b,
and c parameters can be explored is unique to our environ-
ments.

The second mode provided in the parameter effects
environment is the operation mode.  Here the user can
operate on the function formula by adding or subtracting a
constant, linear term, or quadratic term, or by multiplying
or dividing by a constant term.  On the screen, the graph is
changed gradually from the original to the graph resulting
from the operations on the function formula.  Kaput (1989)
used terms such as “tilts” (slope changes) and “bends”
(multiplications by linear expressions) to describe the

process of building up a function equation to match a given
function graph.  The operation mode of the parameter
effects environment can be used to describe dynamically
the tilting and bending processes, as well as others de-
scribed by Kaput.  Figure 7 shows the slope changing by
adding to the linear term when a = 0.  Figure 9 shows the
graph changing process of adding a squared term (4x2 in
this case) to a linear function by gradually increasing the
value of the coefficient a to 4.

The animation mode and the operation mode provide
two different routes to the same result.  Varying coeffi-
cients can be seen as a sequence of continuous simple

function operations.  Conversely, opera-
tions on functions can be thought of as a
coefficient varying process, too.  This
environment provides students with a
unique tool for observing the links be-
tween algebraic expressions, graphs, and
coordinate systems.

Solving one-variable linear equations
The linear equation-solving environ-

ment uses three modes to operate on
equations of the form ax + b = cx + d.  In
the trial mode (Figure 10), the value of x
corresponds to the position of the point
X on the number line.  The value of each
side of the equation, referred to as “left”
and “right,” is determined by substitut-
ing the value of x.  The value of x is
dynamic, as are the values of the expres-
sions containing x.  The value of x which

Figure 7: The effect of varying b  in the equation y = ax2 + bx + c with
a = 0.



30   The Mathematics Educator

Figure 10: Solving linear equations in the Trial mode.

causes “left” and “right” to converge to
the same value is the solution to the
equation.

In the 1-D mode (Figure 11), a vector
addition method is used.  This mode is
generalized from representations of equa-
tion-solving processes such as that shown
in Figure 12.  In the 1-D mode, ax, b, cx,
and d are represented by vectors; the left
hand side of the equation is represented
by the sum ax + b, and the right hand side
by the sum cx + d.  The ticks on the ax and
cx vectors correspond to the absolute
value of x.  As buttons are used to trans-
form the equations by adding, subtract-
ing, multiplying, and dividing, the vec-
tors representing ax + b and cx + d are
always equal.  The solution has been
found when the user obtains the coeffi-
cients  a = 1, b = 0, c = 0, d = 1 (or a = 0,
b = 1, c = 1, d = 0).  The FORM1 and
FORM2 buttons can be used to switch between the matrix
or equation representation of the results.

In both the trial and 1-D modes, we can ask students
how the direction of the vectors is determined.  Is the
solution positive or negative?  How can we change the
coefficients to get the same solution, a negative solution,
or a positive solution?  In what direction will the “left” and
“right” vectors move when we change x in the trial mode?
For what values of x will the “left” vector end on 0 or swing
in the negative or positive direction?  When x moves, will
the two vectors always move in the same direction?

In the 2-D mode (Figure 4), the two lines y = ax + b and
y = cx + d are drawn.  The x-value of their intersection is
the solution to the equation ax + b = cx + d.  In both the 1-
D and 2-D modes, the user can study the relationship
between algebraic formulas and their graphical represen-
tations.  These different representations give students
ways to visualize equation transformations and help them
focus on the processes as well as the products of the
equation-solving process.  The environments also allow
students to observe the invariance of solutions under the
equation solving transformations (Lesh 1987).

Solving two-variable linear equations
Two modes are provided for solving

a system of two linear equations in this
environment.  In the Solve1 mode (Fig-
ure 13), the user can manipulate the
graphs of the two equations in order to
study the relationship between the func-
tion graphs and their corresponding equa-
tions.  Dragging point C1 or C2 changes
the slope of the two lines, thereby chang-
ing the coefficients in the function equa-
tions; dragging point S1 or S2 is the
same as multiplying or dividing the equa-
tions by a constant; dragging the inter-
section point translates the two lines at
the same time.  Users can set up and
solve the system of equations by ma-
nipulating the graphs, then contrasting
these operations with the button opera-
tions in Solve2 mode.

Figure 9: Bending a line by adding 4x2 to  y = 1.23x - 2.09.
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line BC, and line AC all represent the
same line in Euclidean geometry.  In
GSP, however, although the lines are
coincident, we can still distinguish be-
tween them and the points on the lines
may behave differently.

For a linear function, y = bx + c, we
can define many coincident lines.  In
Figure 15, we define three lines which
are the graphs of y = 0.36x - 2.73 (note
that the correspondence between equa-
tion and lines is not one-to-one).  Line 1
is defined by the slope b and the intercept
c; line 2 is defined by the point (-c⁄b, 0)
and the intercept c; line 3 is defined by
the slope b and the point (-c⁄b, 0).  The
three lines are coincident on the line BC
in Figure 15.  When we add -5x to this
function, the three lines seem to behave

the same way as they move to y = -4.64 and x = -2.73.
However, when we choose points P1, P2, P3 on the lines
L1, L2, L3,

 
respectively, and trace their loci as the lines

move to the new position, we can see that their behavior is
actually very different.  The loci of the three points show
us that the lines either stretch vertically or horizontally, or
“curve” in a hyperbolic route to the new destination.
Actually, the corresponding points in the variation pro-
cesses are determined by the definition given to the lines
and the internal structure of GSP regarding points on a line.
We need to consider first the transformation caused by
adding mx to the function equation.

Generally speaking, when we talk about functional
operations, we obtain new functions as results of the
operations.  For example, adding y = 4x to y = 1.23x - 2.09,
yields  y = 5.23x - 2.09 (Figure 7).  We tend to say that the
variation from y = 1.23x - 2.09 to y = 5.23x - 2.09 is not a
rotation but a vertical stretching.  Since the addition is a
functional operation, we need to consider the mapping of
(x,y

1
) and (x,y

2
) in the original functions to  (x, y

1
 + y

2
)

 
in the

In the Solve2 mode, the user can set up the equations by
dragging the vector endpoints which control the coeffi-
cients of the equations ax + by = c and dx + ey = f.  This
environment provides a graphical illustration for the equa-
tion-solving process and the relationship between function
equations and graphs.  The equation manipulation opera-
tions, controlled by button activation, are actually row
operations on the matrix of system coefficients (Figure
14).  The graphical representation of the final solution of a
system of equations is two lines, parallel to the two axes in
the coordinate system.

Button operations in this environment can help the user
make distinctions between functional operations and equa-
tion solving transformations, which may confuse many
students.  Functional operations change the coefficients of
other terms, but the coefficient of y never changes; that is,
the sum of two functions y = f(x) and y = g(x) is y = f(x) +
g(x).  But in the two-variable equation solving transforma-
tion, the coefficient of y is changed.  The result of adding
the first equation in the system, y = f(x), to the second
equation, y = g(x), is 2y = f(x) + g(x).  This
environment provides an opportunity for
students to compare the operations.

Rotation or Stretching: Pitfalls of Visual
Learning

Every user should know that in a dy-
namic, visual learning environment such
as GSP, the computer definitions of geo-
metric objects may or may not be exactly
the same as those in Euclidean geometry.
For example, if A, B, and C are three
collinear points, we know that line AB,

Figure 11: Solving linear equations in the Solve-1D mode.

Figure 12: Graphic illustration of a linear equation-solving process.
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resulting function.  Since the behavior of the points on a
line is determined by the internal structure of GSP, some-
times the function operation does not give us any clue
about ways to interpret the variation process.  For example,
when solving linear equations 2x + 2y = 1 and 2x - y = 2,
subtracting the first one from the second one, we obtain 2x
+ 2y = 1 and -3y = 1 (Figure 14).  What is the process of the
transformation which maps equation 2x - y = 2 to -3y = 1
and keep the 2x + 2y = 1 unchanged?  Is it a rotation of line
2x - y = 2 to -3y = 1?  Is it a stretching?  Or is it neither a
rotation nor a stretching?  Visually, it is a rotation only if
we consider a line as a whole.  We leave
these questions for the reader to con-
sider.

Summary

In this paper we have described three
manipulatable, dynamic, linked, multiple
representation environments for study-
ing parameter effects of linear and qua-
dratic functions and solving linear equa-
tions.  These environments are related
directly to the mathematical topics cur-
rently taught in the high school.  We have
described the environments, designed to
help students understand parameter ef-
fects through dynamic, graphical move-
ment or change of the equation graph; the
graphical interpretation of equation solv-
ing process; and relationships between
function equations, function graphs and

the coordinate system.  We hope that
these environments can provide new di-
rections for the teaching and learning of
functions.

Notes

1.  Copies of these programs are available from
the authors (105 Aderhold Hall, Athens, GA
30602) for $3 (postage and disk cost).  In order to
run them, the user will need The Geometer’s
Sketchpad Version 2.

2.  These programs were developed for use in
LITMUS (Leadership Infusion of Technology in
Mathematics and its Use in Society), a National
Science Foundation Teacher Enhancement
project.  The principle investigators of LITMUS
are Larry Hatfield (project director), John Olive,
Henry Edwards, and Jim  Schultz.
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