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Baked Beans and Spaghetti

In this paper we show that there is more than one way
to skin a rabbit, by giving a couple of approaches to solving
the problem:  How many towers of all heights can be made
if you have available a certain specified number of baked
bean cans and spaghetti cans, but need not use them all in
any one tower?

We show the relevance of this problem, and more
especially the techniques used to solve it, for problem-
solving in the classroom.

1. Introduction

This problem arose while one of us was working with
some children with special needs.  The researcher discov-
ered that they enjoyed stacking cans, one on top of another,
to make reasonably high towers.  All the cans were the
same size.  For what follows we will assume that cans of
a given type (e.g. baked beans) are indistinguishable from
each other.

One of the mathematical tasks that the researcher
injected into this activity was to find the number of
different towers that could be built with no more than two
baked bean cans and two cans of spaghetti. One of the
students made progress toward a solution by recording the
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number of towers.  This number is just  
4
2

 = 6, which was

what he got.
However, more than six towers can be made with two

baked bean cans and two spaghetti cans if we allow the
height of the tower to vary. For instance, there are two
towers of height one, four towers of height two, six towers
of height three, and six towers of height four. So altogether
we can make 18 towers using no more than two each of two
different kinds of cans. These 18 towers are given in Figure
1 using a representation that the student invented.

In an attempt to generalize, the researcher then asked
each of the other authors, “How many such towers can be
made with k baked bean cans and k spaghetti cans?”. Well,
that’s not quite true on two counts. First, because the others
are all sophisticated mathematicians, he asked, “How
many 0-1 sequences can be constructed using at most k
zeros and at most k ones?”. Second, because he didn’t want
to be laughed at for asking such an elementary question, he
first looked up a few books on combinatorics to see if it was
a standard exercise. When he couldn’t find it, he plucked
up the courage to ask his colleagues.

Why don’t you try to solve the problem before reading
further?

We all decided that the problem sounded interesting
but suggested that in addition to the towers which actually
had cans in them, it might be nicer mathematically to
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Figure 1:  Possible towers using no more than two
each of two different kinds of cans.
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include the tower that has no cans. This is the tower
omitted in Figure 1 but included as ‘?’ in Figure 2.

We agreed, too, that it would save long-winded sen-
tences later, if we called a tower of h cans an h-tower.
Figure 1 clearly contains 1-towers, 2-towers, 3-towers and
4-towers but the 0-tower is omitted. In general, if we have
k cans of each type, then h lies between 0 and 2k. (You can
see that we found the formulation in terms of towers and
cans more appealing than the 0-1 sequence formulation.)

In the following sections we only describe explicitly
the ‘finished product’.  As with so much in mathematics,
the final presentation does not reflect all our work.  In our
case, we first laboriously developed a recurrence relation
to describe the quantity  t

k
, the number of towers which

could be made with  k  cans of each kind available.   In other
words, we obtained a formula expressing  t

k
  in  terms  of

t
k-1

.  This formula involved some rather mysterious sums of
sequences of binomial coefficients, and the summing of
these sequences presented some difficulty.  Eventually, we
found a closed formula for t

k
–and it was unexpectedly

simple.
Now we begin the job of refining our methods to

eliminate the mystery and to explain why the final formula
took on the form it did.  In Section 2 we describe what
seems to us the most natural and easily understood argu-

ment which yields the formula t
k
 = 

2k + 2

k + 1






− 1.  The

argument has a nice geometric flavor, too, involving the
summing of the entries in a ‘fundamental rhombus’ of
Pascal’s Triangle (see Figure 3).  Then in Section 3 we ask
ourselves–and answer–the inevitable question, “Why
should the number of towers, t

k
, be just one less than a

certain binomial coefficient?”  As was loudly proclaimed
in Hilton, Pedersen, and Ross (1987), ‘In mathematics
there are no accidents,’ so there must be some way to relate
the various towers to selections of (k + 1) objects from an
assembly of  (2k + 2)  objects.  We describe such a way in
Section 3. Actually, the material of Section 3 was devel-
oped before that of Section 2, since we already had the
formula for t

k
 before we had the best argument for obtain-

ing it.
Then, in Section 4, we show how our approach and our

results may be generalized in certain obvious ways.  We do
not at all favor generalization for its own sake.  But where

the generalizations answer questions which are quite as
natural as their originals, and where the proofs are scarcely,
if at all, more difficult, then those generalizations should
be presented and analyzed.

We close with a section in which we explain how, in
our view, this case history of a mathematical adventure
exemplifies the typical strategies, and difficulties, in-
volved in finding and solving promising problems.

2. Pascal’s Proof

One would expect that a problem concerning the num-
ber of towers that could be made, having available an equal
number of baked bean cans and spaghetti cans, should
have something to do with the binomial coefficients and,
consequently, that it might be helpful to look at Pascal’s
Triangle.  Not only is this the case but, surprisingly, this
approach yields the answer to our question almost imme-
diately.

Since we want to preserve the symmetry between the
roles of baked beans and spaghetti, in this section we use
an extended notation for the binomial coefficients.  Instead

of the usual  
n

p






  we will write  
n

p, q






, where  p + q = n.

Now notice that in the expansion of  (B + S)n  the

binomial coefficient  
n

p, q






  is the coefficient of the term

BpSq  so that it simply counts the number of ‘words’ (of
length  n) with  p  B’s  and  q  S’s.  Each of these ‘words’
corresponds in an obvious way to an n-tower.  Hence we

see that  
n

p, q






  really counts the number of n-towers built

with exactly  p  baked bean cans and  q  spaghetti cans1.
In Figure 3 we will call (p,q) the coordinates of the

entry  
n

p, q






 and, as in coordinate geometry, identify

points with their coordinates.  Now notice that if you want
to know the number of different towers that could be made
with  k  baked bean cans and  k  spaghetti cans available then
all you need to do is add together all the entries contained
within the parallelogram (rhombus), including its bound-
ary, having vertices  (0,0) (k,0), (0,k) and (k,k) (see Figure
3).  This might seem a formidable task but, in fact, it can
be done in  (k + 2)  straightforward steps, yielding a
delightfully simple answer.

First apply the Christmas Stocking Theorem,

r + j

r, j






=
r + k + 1

r + 1, k




j =0

k

∑ , (1.1)

B S

? S B S B

Figure 2:  The five towers with one can of each type
available.  The tower with no cans is denoted ?.
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
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


r
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 
 
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r +1

r, 0
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 
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k

0,k
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 
 

k + 1

1,k

 
 
 

 
 
 r +k −1

r −1,k

 
 
 

 
 
 

r +k

r,k

 
 
 

 
 
 

r + k +1

r +1,k

 
 
 

 
 
 

2k

k, k






  
n

p, q






is usually written 
n

p






.

p  constant q  constant

n  constant

Figure 3:  The entries contained within the paral-
lelogram.

to the successive rows of the parallelogram in the direction
in which the coordinate  p  is constant (that is, for  r = 0, 1,
..., k).

In Figure 4, where a typical application of  (1.1)  is
shown enclosed in the classical Christmas Stocking shape,
the underlined entries give the row sums of all  (k + 1)  rows
of the parallelogram in the direction where the coordinate
p  is constant.  Thus it is the sum of the underlined numbers
that provides the answer to our question.  With a little
reflection, we see that we need just one more application
of the Christmas Stocking Theorem, this time in its dual
form, and summing to (k + 1) instead of k,

s + j

j, s






=
s + k + 2

k + 1, s + 1





.

j =0

k +1

∑ (1.2)

Then (1.2), with  s = k, tells us that the sum of all the

underlined entries in Figure 4 plus the extra entry  
k

0, k






is  
2k + 2

k + 1, k + 1





, as shown in Figure 5.

Since, of course,  
k

0, k






 = 1,  this shows that the

number of towers (including the 0-tower) which can be
made with  k  baked bean cans and  k  spaghetti cans
available is

2k + 2

k + 1, k + 1






− 1.

3. Zeros and Ones

But at this stage, although there was jubilation that we
now had a really revealing solution of the problem (re-
member it was not our first), we nevertheless had the
feeling that the solution was not quite complete. There

p  constant q  constant

n  constant

Figure 4:  Application of the Christmas Stocking
Theorem.
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represents x = 4 and y = 1; 111011 represents x = 3 and y
= 2; and so on. There is a one-to-one  correspondence
between the sequences and the solutions. Hence we get the

binomial count 61  for the number of solutions. This

method generalizes for equations with three unknowns.
For instance, the sequence 11101011 represents the non-
negative solution x = 3, y = 1, z = 2 in the equation x + y +

z = 6. The total number of such solutions is 8
2 . (For more

details and extensions of this, see Bose & Manvel, 1984,
p.47ff.)

The question that we then asked ourselves was, “How
can we show, just using 0-1 sequences, that the number of
0-1 sequences with k zeros and k ones available is just one

less than 
2k + 2

k + 1





, that is, the number of 0-1 sequences

using exactly (k + 1) zeros and (k + 1) ones?” The answer
we give here did not fall out immediately when we asked
the question. What we hide below is at least a week of on
and off again deliberation.

Actually, our first stab at a solution, which involved a

recurrence relation, had produced t
k
 = 2

2k + 1

k + 1






− 1. When

we started looking for 0-1 sequences here we took (k + 1)
ones and k zeros and tried to use the first one that appeared
as a marker. For instance, take the 0-1 sequence  011010011
with five ones and four zeros (here k = 4). If you throw
away everything up to and including the first 1, you get
1010011. If we let 1 be a spaghetti can and 0 a baked bean
can, this sequence could stand for the tower SBSBBSS.
There was a problem, though. If we kept everything after
the first 1, we had always to have k 1’s in the counted
sequence. This was equivalent to having k baked bean cans
in every tower. How could we count towers with fewer
than k baked bean cans?

So we went back to t
k
 = 

2k + 2

k + 1






− 1 and sequences with

(k + 1) zeros and (k + 1) ones. Someone had the bright idea
of keeping everything past the first one and before the last
zero. So 0011010101 would be truncated to 10101 and
would represent the tower SBSBS. This notation looked
good because it enabled us to have a variable number of
zeros or ones, up to a maximum of k each.

Could we establish a one-to-one correspondence be-
tween these truncated sequences and the towers? If this
was to be possible, somehow we would have to have an

extra sequence because of the -1 in 
2k + 2

k + 1






− 1. To see

how this comes about, consider the example below (Figure
6) with k = 2.

were two worries really. The first and minor one was the
presence of the -1 in the answer. Surely there was some
reason for this. However, it was more perplexing that,
although the number of towers that could be made having
k baked bean cans and k spaghetti cans available had turned
out to be essentially a single binomial coefficient, we had
no explanation of this remarkable fact–only a mathemati-
cal proof! There just had to be a way of setting up the
problem so that it became clear why a binomial coefficient

–and, in particular, the binomial coefficient 
2k + 2

k + 1





–was

involved. Recall our conviction that “in mathematics there
are no accidents” (Hilton, Pedersen, & Ross, 1984).

The sort of thing we had in mind was the method used
to find the number of solutions of the equation x + y = 5,
where x and y are non-negative integers. This number can
be found by using sequences made up of five 1’s and one
0. All such strings give a solution to the equation, using the
convention that 111110 represents x = 5, y = 0; 111101
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Figure 5:  Sum the singly underlined entries to get
the number of towers that can be made with
k baked bean cans and   k spaghetti cans.



Volume 5 Number 2 39

  If you check all this carefully you will see that in fact
every tower appears, once and only once. Further, we do
have an extra sequence–the very last one in our list, which
has no subsequence (not even an empty one like 001011
has) between the first one and the last zero!

It was all downhill from there. We now only had to
show in general that there was a one-to-one correspon-
dence between the set of 0-1 sequences with (k + 1) zeros
and (k + 1) ones, with the sequence 00...011...1 excluded,
and the set of towers made from k baked bean cans and k
spaghetti cans. We leave it to you to fill in the details.

4. Further Generalizations

There are two obvious directions for further generali-
zation.  In the first place, why insist that there are an equal
number of baked bean and spaghetti cans?  In the second
place, why insist that there are only two types of can?

We will be content to discuss the first generalization,
leaving the reader to ponder the second.  We claim that the
treatment by means of Pascal’s Triangle (Section 2) gen-
eralizes almost effortlessly.  We suppose there are  k  baked
bean cans and  l spaghetti cans available and, by an

identical argument to that used in Section 2 (see Figure 7,
which should be compared with Figure 5), we conclude
that the sum of the entries in the parallelogram with
vertices at  (0,0), (k,0), (0,l)  and (k,l) is

k + l + 2

k + 1, l + 1






− 1. (4.1)

This then is the number of towers (including the  0-
tower) which can be made with  k  baked bean cans and  l
spaghetti cans available.

But the argument given in Section 3 also generalizes
immediately to this case.  For given any legitimate tower
(or string)

some string of zeros and ones (4.2)

drawn from  k  0’s  and  l  1’s, we may encase (4.2) in a
longer string, corresponding to a (k + l + 2)-tower

0 ..... 0 1    same string of zeros and ones    0 1 ..... 1,
(4.3)

Figure 7:  Parallelogram with vertices at (0,0), (k,0),
(0,l), and (k,l).
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111000 SSBB
110100 SBSB
110010 SBBS
110001 SBB
101100 BSSB
101010 BSBS
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001011 ?

.................................................

000111 !!

Figure 6:  The relationship between truncated se-
quences and towers with k = 2.
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Usually in mathematical research, one has a conjecture
(a guess) to work on that comes from early experimenting.
We certainly did some experimentation (we constructed a
few examples such as those in Figures 1 and 2), but doing
more than the cases k = 1, 2, and 3 seemed not to be
worthwhile. It would have taken a great deal of time, and
we would have had no guarantee that we had listed all
possibilities because there are so many towers for k ≥ 4; it
was unlikely that we would have seen a pattern from so few
cases.

However, our initial experimentation did eventually
suggest the two approaches to the problem that we have
given in Sections 2 and 3. So we proceeded without a
conjecture and came up with the answer and (at least) two
proofs. We were lucky here that the straightforward ap-
proaches gave us the answer pretty well the first time,
something which happens rarely. However, for mathema-
ticians to be satisfied with the answer, it has to be accom-
panied by a proof. This is probably the only thing that
separates mathematicians from physicists and other scien-
tists. We justify our results by proof. Scientists are often in
the position where they can only justify their results by
repeating the experiment and getting the same answer.

In obtaining our proofs, we kept an eye on past expe-
rience. The difference method we used in our original but
unreported method of finding an expression for t

k
 is a

Figure 8:  The coordinates of the four binomial
coefficients.

+

+

(a + k, b + l)

(a + k, b)

(a, b + l)

(a, b)
consisting of  (k + 1) 0’s  and  (l + 1) 1’s, where we exhaust
the available  0’s  at the beginning and the available  1’s  at
the end.  It is again clear that every  (k + l + 2)-string made
from  (k + 1) zeros and (l + 1) ones  occurs once and once
only in  (4.3), with the exception of the string  0 ....0 1....1,
which does not occur at all.  Thus, again, the number of

towers like (4.2) is  
k + l + 2

k + 1, l + 1






− 1.

One further generalization clearly deserves mention.
We found a method (via the Christmas Stocking Theorem)
in Section 2 for summing the entries in the parallelogram
with vertices  (0, 0), (k, 0), (0, l), (k, l).  Suppose now we
consider any parallelogram in Pascal’s Triangle with sides
parallel to the ‘coordinate axes’, i.e. with vertices at  (a, b),
(a + k, b), (a, b + l ), (a + k, b + l ).  Then, by looking at Figure
8  and  remembering the answer we got above (when the
vertices were at  (0, 0), (k, 0), (0, l), (k, l)), you should see
that the sum of the entries in the given parallelogram is

(4.4)

When you are trying to see how we got this, don’t
forget that our parallelograms include their boundaries.
Try verifying (4.4) in a particular but not special case, say,
with a = 3, b = 2, k = 2, and l = 1.  You may also be intrigued
to see just how (4.4) generalizes (4.1).

The coordinates of the four binomial coefficients en-
tering into formula (4.4) are exhibited in Figure 8, with
appropriate signs. The diagram is a useful mnemonic for
remembering the formula–and should enable you to create
a sensation at your next party!

5. The Mathematical Process

We want to emphasize here the processes that were at
work in solving this problem. They are all processes that
mathematicians use every day. They are also the processes
that are present in any good problem-solving exercise. We
list them here because of their relevance to current math-
ematics teaching (see National Council of Teachers of
Mathematics, 1989).

The first step was to find a problem. This created no
difficulty at all. The problem just popped out of some
innocent work with some elementary school children. If
you are alert, non-trivial mathematical problems come up
all over the place. It takes very little thought to invent
worthwhile problems of your own. For example, see
Holton (1990), where a whole series of problems based on
the simple square are invented.

a + b + k + l + 2

a + k + 1, b + l + 1






−
a + b + k + 1

a + k + 1, b






−
a + b + l + 1

a, b + l + 1






+
a + b

a, b





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technique that is commonly used. Our decision to look at
the 0-1 sequences, reported in Section 3, was the result of
previous experience with solutions of linear equations. To
become good problem-solvers, students also need to be
exposed to a range of mathematical techniques. It is not
possible for them to invent from scratch every method that
they need just when they need it.

When we had the answer, by methods which we have
not explicitly described in this paper, we still did not feel
satisfied, for two reasons.  First, the nature of the answer
suggested that there should be other approaches, which
were simpler than those methods, and explained the simple
binomial coefficient expression. The nose of a mathema-
tician is always trying to smell out a better, nicer, way of
doing things. This sense of smell led us into the more
elegant methods via Pascal’s Triangle and 0-1 sequences.
Our final method (see Section 3) not only gave us an
explanation of the presence of the binomial coefficient in
the formula for t

k
, but also, by setting up an explicit one-to-

one correspondence, explained the presence of -1 in the
formula.

The second reason for our lack of satisfaction was the
basic instinct of the mathematician to generalize and
extend problems. We have indicated our progress on these
fronts in Section 4. This desire to generalize is coupled
with another instinct and that is to get something for
nothing. Once we had the answer for equal numbers of
cans of the two types, it was easy to produce the answer for
unequal numbers. Exactly the same proof worked. All we
had to do was to change the characters slightly. It often
turns out that a proof, if thought about in the right way,
yields a proof of something more general.

Finally, when the result was recorded for others to read,
we downplayed the historical development in favor of a

simpler presentation. This hides the sweat and tears in-
volved in producing the result, but makes it easier for the
reader to follow. Unfortunately, this style of writing,
adopted in current books and journals, also serves to make
mathematics appear easy to produce, and their subsequent
disillusionment gives students the impression that they are
not able to do mathematics themselves.

However, all the mathematical steps that we have
outlined above are accessible to students in classroom
problem-solving situations. We would advocate the use of
open-ended problems both to allow students the joy of
discovery and to encourage them to get a feel for what
mathematics really is.

1. Remember that we have adopted the mathematical
viewpoint that the (empty) 0-tower is a tower.  Otherwise

we would have had to omit the binomial coefficient  
0

0,0 .

2. This was called the Christmas Stocking Theorem by
Dave Logothetti.  Just look at the enclosed portion of
Figure 4 and you’ll see why.  So far as we know, the
theorem was first described by Chu-Shih Chieh in 1303.
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