Baked Beans and Spaghetti

Robert Aldred, Peter Hilton, Derek Holton, and Jean Pedersen

To Andrew, a budding young mathematician

In this paper we show that there is more than one waiymber of towers. This number isj(lsi )= 6, whichwas
to skin arabbit, by giving a couple of approaches to solvigg, 5t he got.

the problem: How many towers of all heights can be made However, more than six towers can be made with two

if you have available a c_ertain specified number of bakﬁgked bean cans and two spaghetti cans if we allow the
bean cans and spaghetti cans, but need not use them gljgnt of the tower to vary. For instance, there are two
any one tower? , towers of height one, four towers of height two, six towers
We show the relevance of this problem, and MOggheight three, and six towers of height four. So altogether
especially the techniques used to solve it, for problefs can make 18 towers using no more than two each of two
solving in the classroom. differentkinds of cans. These 18 towers are givenin Figure

_ 1 using a representation that the student invented.
1. Introduction

This problem arose while one of us was working wit B SB
some children with special needs. The researcher disd SB SBSBEB
ered that they enjoyed stacking cans, one on top of anot SBSSBBSS S
to make reasonably high towers. All the cans were t
same size. For what follows we will assume that cans B SBSSB
a given type (e.g. baked beans) are indistinguishable fr SBSBBSSEB S
each other.

One of the mathematical tasks that the researc BSSSBBBSS
injected into this activity was to find the number g BBBSSSBBEB

different towers that could be built with no more than tw
baked bean cans and two cans of spaghetti. One ofl.-
students made progress toward a solution by recordingigure 1: Possible towers using no more than two
each of two different kinds of cans.

Robert Aldred is currently a lecturer in mathematics at the
U”'Vs_rs'ty of Otff‘f’ with resheamh '?JtefrfeIStS '”ngaph the%r)/ and |n an attempt to generalize, the researcher then asked
combinatorics. A former shearer, buffalo culler, grave digge “
and breeder of deathadders, nowadays he finds excitement%%/Ch of .the other authors, “How many sgch tov;/?rs can be
weeding the garden without his wife’s supervision. made wittk baked bean cans aképaghetti cans?". Well,
that’s not quite true on two counts. First, because the others
Peter Hilton is Distinguished Professor of Mathematics at thare all sophisticated mathematicians, he asked, “How
for his research in algebraic topology, homological algebraZerOS and at mokbnes?”. Second. because he didn’t want
and group theory. L ' .
to be laughed at for asking such an elementary question, he
Derek Holton is Head of the Department of Mathematics arfirst looked up a few books on combinatorics to see ifitwas
Statistics at the University of Otago. His research interestg standard exercise. When he couldn't find it, he plucked
range over graph theory and combinatorics, and mathematiq_;sp the courage to ask his colleagues.

education. He has been Team Leader of the New Zealand ) :
International Mathematical Olympiad Team many times. furtx\érg don’tyou try to solve the problem before reading
Jean Pedersen is an Associate Professor of Mathematics at We all decided that the problem sounded interesting
Santa Clara University in California. Her research interestshut suggested that in addition to the towers which actually

irr‘]C'Ude polyhedral geometry, combinatorics, and numbgiad cans in them, it might be nicer mathematically to
theory.
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include the tower that haso cans. This is the towerthe generalizations answer questions which are quite as
omitted in Figure 1 but included as ‘?’ in Figure 2. natural as their originals, and where the proofs are scarcely,
if at all, more difficult, then those generalizations should
be presented and analyzed.

B S We close with a section in which we explain how, in
2 SB S B our view, this case history of a mathematical adventure
exemplifies the typical strategies, and difficulties, in-
volved in finding and solving promising problems.
Figure 2: The five towers with one can of each type

available. The tower with no cans is denoted ?2. Pascal’s Proof

We agreed, too, that it would save long-winded sen- One would expect that a problem concerning the num-
tences later, if we called a tower lofcans arh-tower  ber of towers that could be made, having available an equal
Figure 1 clearly contains 1-towers, 2-towers, 3-towers andmber of baked bean cans and spaghetti cans, should
4-towers but the O-tower is omitted. In general, if we hayave something to do with the binomial coefficients and,
kcans of each type, then h lies between 0 &n¥du can consequently, that it might be helpful to look at Pascal’s
see that we found the formulation in terms of towers am@angle. Not only is this the case but, surprisingly, this
cans more appealing than the 0-1 sequence formulatietpproach yields the answer to our question almost imme-

In the following sections we only describe explicitlyiately.
the ‘finished product’. As with so much in mathematics, Since we want to preserve the symmetry between the
the final presentation does not reflect all our work. In ougles of baked beans and spaghetti, in this section we use

case, we first laboriously developed a recurrence relatigmextended notation for the binomial coefficients. Instead
to describe the quantity,, the number of towers which m

could be made witk cans of each kind available. In otheof the usuaIE
words, we obtained a formula expressingn terms of _ . _ _ .
t_. Thisformulainvolved some rather mysterious sums of NOW notice that in the expansion of (B + Sthe
sequences of binomial coefficients, and the summing
these sequences presented some difficulty. Eventually,

found a closed formula faf—and it was unexpectedlygrcs 5 that it simply counts the number of ‘words’ (of

simple. length n) with p B’s andq S’s. Each of these ‘words’

_Now we begin the job of refining our methods 1@, esn0nds in an obvious way toratower. Hence we
eliminate the mystery and to explain why the final formula

took on the form it did. In Section 2 we describe whage that@ " % really counts the number of n-towers built
seems to us the most natural and easily understood argu- P.q

_ _ 2K + 2] with exactly p baked bean cans amg spaghetti cais
ment which yields the formulg = Hesr B L The In Figure 3 we will call f,q) the coordinatesof the

% we will write %pnq% wherep+q=n.

foo. - . -
Q?Uéomlal coefficient %pnqg is the coefficient of the term

argument has a nice geometric flavor, too, involving thgtry gn % and, as in coordinate geometry, identify
summing of the entries in a ‘fundamental rhombus’ of p.q

Pascal’s Triangle (see Figure 3). Then in Section 3 we gslints with their coordinates. Now notice that if you want
ourselves—and answer—the inevitable question, “Whyknow the number of different towers that could be made
should the number of towers, be just one less than awith k baked bean cans aka@paghetti cans available then
certain binomial coefficient?” As was loudly proclaimeall you need to do is add together all the entries contained
in Hilton, Pedersen, and Ross (1987), ‘In mathematiadthin the parallelogram (rhombus), including its bound-
there are no accidents,’ so there must be some way to redaye having vertices (0,0K,0), (0Kk) and k,K) (see Figure
the various towers to selections kf{1) objects from an 3). This might seem a formidable task but, in fact, it can
assembly of (R+ 2) objects. We describe such away ine done in K + 2) straightforward steps, yielding a
Section 3. Actually, the material of Section 3 was devalelightfully simple answer.
oped before that of Section 2, since we already had theFirst apply the Christmas Stocking Theorem,
formula fort,_before we had the best argument for obtain-
ing it. O +j0_ T +k+1g

Then, in Section 4, we show how our approach and our 2 Hr j H™H + 1K H (1.1)
results may be generalized in certain obvious ways. We do =0
not at all favor generalization for its own sake. But where
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, 7.0 N Then (1.2), withs =k, tells us that the sum of all the
\
/ . R k
/ N oro underlined entries in Figureplusthe extra entry@0 k@
7 H 0 ’
P :
/ F+10 N . O 2k+2 O -
\ is as shown in Figure 5.
7 #Hrob \ He+ 1 k+10H g
7 7
7 g b \ Ok O
Ok O 7 : - :
o P Dkﬁ Since, of course, EOkE = 1, this shows that the
/ k . . .
ékl*kl@ 1 ol number of towers (including the O-tower) which can be
"N Hraxd Ve made with k baked bean cans ankl spaghetti cans
\ 4 available is
O +k0O /
Hr,kE // 0 2k+2 []_1
ey y Herrk+ad ™
r +1,kH 4
\ 7
N kg / 3. Zeros and Ones
H, kd
But at this stage, although there was jubilation that we
@ n @is usually writtenmé. now had a really revealing solution of the problem (re-
, p member it was not our first), we nevertheless had the
feeling that the solution was not quite complete. There
constant constant oo
P a /Eo,og‘ N
7/ g N\
n constant
/
7
7/
Figure 3: The entries contained within the paral- Dk/D
lelogram. oo ok O
0,k
(k+10 b,k
1k /
N\ Ve

to the successive rows of the parallelogram in the direct
in which the coordinat@ is constant (that is, far=10, 1,
s, K).

In Figure 4, where a typical application of (1.1)
shown enclosed in the classical Christmas Stocking shé

Or+1k 0O

the underlined entries give the row sums ofle# 1) rows N\ ko / d
of the parallelogram in the direction where the coording K
p is constant. Thus itis the sum of the underlined numbj T B2k+10
that provides the answer to our question. With a lit Lk
reflection, we see that we need just one more applicat
of the Christmas Stocking Theorem, this time in its dJ p constant q constant
form, and summing td(+ 1) instead ok,
ktirs+jO gs+k+2Qg n constant

(1.2)

jZ(Ej,sE: E(+1,S+1E
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Figure 4: Application of the Christmas Stocking

Theorem.
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0o g represents =4 andy = 1; 111011 represemts= 3 andy
/Do N = 2; and so on. There is a one-to-one correspondence
/ N\ between the sequences and the solutions. Hence we get the

/s ‘ﬁfgl binomial count(?) for the number of solutions. This

method generalizes for equations with three unknowns.
\ For instance, the sequence 11101011 represents the non-
\ negative solutiom = 3,y=1,z=2 in the equatior+y +

OkO  z=6. The total number of such solution(g)s (For more

/ details and extensions of this, see Bose & Manvel, 1984,
7/ p.47ff.)
y The question that we then asked ourselves was, “How
s can we show, just using 0-1 sequences, that the number of
0-1 sequences withzeros an#t ones available is just one

R’k +20 .
less thanE % that is, the number of 0-1 sequences
k+1

using exactlyK + 1) zeros andk(+ 1) ones?” The answer
we give here did not fall out immediately when we asked
the question. What we hide below is at least a week of on
and off again deliberation.

Actually, our first stab at a solution, which involved a

. Rk +10
recurrence relation, had produdgd ng ‘1 E_l' When

02k +10
Ek+l,kH

O 2k+2 0O
Ei<+1k+1H

p constant q constant

we started looking for 0-1 sequences here we toakl)
ones andt zeros and tried to use the first one that appeared
n constant as amarker. Forinstance, take the 0-1 sequence 011010011
with five ones and four zeros (hete= 4). If you throw
Figure 5: Sum the singly underlined entries to getaway everything up to and includ_ing the first 1, you get
the number of towers that can be made with 101001_1. If we let 1 be a spaghetti can and 0 a baked bean
can, this sequence could stand for the tower SBSBBSS.
There was a problem, though. If we kept everything after
ﬁlae first 1, we had always to hakel’s in the counted

were two worries really. The first and minor one was t Thi valentto hakibaked b
presence of the -1 in the answer. Surely there was soma-cnee. thiswas equivaientio hakingked bean cans

reason for this. However, it was more perplexing th '?, evkeéy Iiov(;/ir' How Co,ljld we count towers with fewer
although the number of towers that could be made hav} 8” aked bean cans:
i i k+2
kbaked bean cans alnspgghettl'cans_avallabile'had turned So we went back = éﬁ @_1 and sequences with
out to be essentially a single binomial coefficient, we had k+1
noexplanatiorof this remarkable fact—only a mathemati¢k+ 1) zeros andk(+ 1) ones. Someone had the bright idea
cal proof! There jushadto be a way of setting up thepf keeping everything past the first one and before the last
problem so that it became clear why a binomial coefficiefdro. So 00101001 would be truncated to 10101 and
i i i i .. [Pk+20 would represent the tower SBSBS. This notation looked
—and, in particular, the binomial coefficien} | 5-Was 504 because it enabled us to have a variable number of
n mathematics the"0S OF ones, up tq a maximumkafach.
Could we establish a one-to-one correspondence be-
S%een these truncated sequences and the towers? If this
was to be possible, somehow we would have to have an

k baked bean cans amkdbspaghetti cans.

involved. Recall our conviction that “i
are no accidents” (Hilton, Pedersen, & Ross, 1984).

The sort of thing we had in mind was the method u
to find the number of solutions of the equationy = 5,
wherex andy are non-negative integers. This number Cali o sequence because of the %I%Fﬁ 2D_1_ To seo
be found by using sequences made up of five 1's and one k+1H

0. All such strings give a solution to the equation, using thgw this comes about, consider the example below (Figure
convention that 111110 represerts 5,y = 0; 111101 6) withk = 2.
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If you check all this carefully you will see that in factdentical argument to that used in Section 2 (see Figure 7,
every tower appears, once and only once. Furthedowewhich should be compared with Figure 5), we conclude
have an extra sequence—the very last one in our list, whicat the sum of the entries in the parallelogram with
has no subsequence (not even an empty one like 001@dsdices at (0,0)k(0), (0]) and k,I) is
has) between the first one and the last zero!

It was all downhill from there. We now only had to Ok+1+2
show in general that there was a one-to-one correspon- Ho+1 +1E—1. (4.1)
dence between the set of 0-1 sequences with (k + 1) zeros_ | _ ' _ _
and (k + 1) ones, with the sequence 00...011...1 excluded, S then is the number of towers (including the 0-
and the set of towers made frirbaked bean cans akd ©OWer) which can be made with baked bean cans aid

spaghetti cans. We leave it to you to fill in the details. SPaghetti cans available. _ _
But the argument given in Section 3 also generalizes

immediately to this case. For given any legitimate tower
111000 SSBB (or string)
110100 SBSB some string of zeros and ones (4.2)
110010 SBBS
110001 SBB drawn fromk O's andl 1’s, we may encase (4.2) in a
101100 BSSB longer string, corresponding to a (k + 2)-tower
13133(1) gggs 0... 01 same string of zerosandones 01 ... 1,
4.3
100110 BBSS 43
100101 BBS @OO 0
100011 BB / 'Oi
011100 SSB / N\
011010 SBS / \
011001 SB / \Dr .
010110 BSS / H o
010101 BS olg N
010011 B .16 ot \
001110 SS 0 +10 Er 1 \
001101 S Hii H /" \
001011 ? \ / \
\
................................................. 7 .
000111 1 " o
/
Figure 6: The relationship between truncated se- ﬁ + +1ﬁ /
quences and towers wikhe 2. r+1| /
\ /
\
4. Further Generalizations \ /
k+10
There are two obvious directions for further generali- Hk"
zation. In the first place, why insist that there aregural k41 +10
numberof baked bean and spaghetti cans? In the second Hk+1| E
place, why insist that there are ohlyo types of can? ’
We will be content to discuss the first generalizatiop, Ok+1+2 E
leaving the reader to ponder the second. We claim thatjthe EL +1,1 +10
treatment by means of Pascal’s Triangle (Section 2) gen-
eralizes almost effortlessly._ We suppose ther& daked Figure 7: Parallelogram with vertices at (0,R)),
bean cans andl spaghetti cans available and, by an (), and k).
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consisting of K+ 1) 0’'s and I(+ 1) 1's, where we exhaust

the available 0’s at the beginning and the available 1's at (a b)
the end. Itis again clear that eveky+( + 2)-string made

from (k + 1) zeros and ¢ 1) ones occurs once and once

only in (4.3), with the exception of the string 0....0 1....1,

which does not occur at all. Thus, again, the number of

ok+1+2Q

towers like (4.2) isj | 471 (a b+1)

One further generalization clearly deserves mention.
We found a method (via the Christmas Stocking Theorem)  — (a+k b)
in Section 2 for summing the entries in the parallelogram
with vertices (0, 0),k, 0), (0,1), (k, I). Suppose now we
consideanyparallelogram in Pascal’s Triangle with sides
parallel to the ‘coordinate axes’, i.e. with verticesaab),
(atk,b), (@,b+l), (@+k,b+l). Then, bylooking at Figure
8 and remembering the answer we got above (when the
vertices were at (0, 0k,(0), (0,1), (k 1)), you should see (atkb+l)
that the sum of the entries in the given parallelogram is

Da+b+k+|+ZD_[a+b+k+1D_[a+b+l+1D+[a+bm
Ea+k+1,b+|+1H Ha+k+1,bH Ha,b+|+1H Ha,bH

(4.4)
Figure 8: The coordinates of the four binomial

When you are trying to see how we got this, don't ¢oefficients.
forget that our parallelograms include their boundaries.
Try verifying (4.4) in a particular but not special' case, say, Usually in mathematical research, one hzsrgecture
witha=3,b=2k=2,and =1. Youmay also be intrigueda guess) to work on that comes from early experimenting.
to see just how (4.4) generalizes (4.1). o We certainly did somexperimentatioifwe constructed a

The coordinates of the four binomial coefficients eqg,, examples such as those in Figures 1 and 2), but doing
tering into formula (4.4) are exhibited in Figure 8, Withygre than the casds= 1, 2, and 3 seemed not to be
appropriate signs. The diagram is a useful mnemonic {gg thwhile. It would have taken a great deal of time, and
rememb(_eringthe formula—and should enable you to cre@i€ \would have had no guarantee that we had listed all
a sensation at your next party! possibilities because there are so many towetsat; it
was unlikely that we would have seen a pattern from so few
cases.

_ However, our initial experimentation did eventually
We want to emphasize here the processes that werg glgest the two approaches to the problem that we have

work in so.Iv.ing this problem. They are all processes tr@(/en in Sections 2 and 3. So we proceeded without a
mathematicians use every day. They are also the procegg@fecture and came up with the answer and (at least) two
that are present in any good problem-solving exercise. W%ofs We were lucky here that the straightforward ap-
list them here because of their relevance to current maét’baches gave us the answer pretty well the first time,
ematics tgaching (see National Council of Teachers&{mething which happens rarely. However, for mathema-
Mathematics, 1989). _ ticians to be satisfied with the answer, it has to be accom-

_ The first step was ttnd a problem This created no panjed by a proof. This is probably the only thing that
difficulty at all. The problem just popped out of Somgeparates mathematicians from physicists and other scien-
innocent work with some elementary school children. §;s. we justify our results by proof. Scientists are often in
you are alert, non-trivial mathematical problems come . position where they can only justify their results by
all over the place. It takes very little thought to inve%peating the experiment and getting the same answer.
worthwhile problems of your own. For example, see |, obtaining our proofs, we kept an eyepast expe-
Holton (1990), where a whole series of problems based/thce The difference method we used in our original but
the simple square are invented. unreported method of finding an expression tfois a

+

5. The Mathematical Process
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technique that is commonly used. Our decision to looksitnpler presentatianThis hides the sweat and tears in-
the 0-1 sequences, reported in Section 3, was the resultaded in producing the result, but makes it easier for the
previous experience with solutions of linear equations. fe@ader to follow. Unfortunately, this style of writing,
become good problem-solvers, students also need taablepted in current books and journals, also serves to make
exposed to a range of mathematical techniques. It is nedthematics appear easy to produce, and their subsequent
possible for them to invent from scratch every method thdisillusionment gives students the impression that they are
they need just when they need it. not able to do mathematics themselves.

When we had the answer, by methods which we have However, all the mathematical steps that we have
not explicitly described in this paper, we still did not feeutlined above are accessible to students in classroom
satisfied, for two reasons. First, the nature of the ansyesblem-solving situations. We would advocate the use of
suggested that there should be other approaches, whipbn-ended problems both to allow students the joy of
weresimplerthan those methods, and explained the simgl&scovery and to encourage them to get a feel for what
binomial coefficient expression. The nose of a mathemaathematics really is.
tician is always trying to smell out a better, nicer, way of
doing things. This sense of smell led us into the more 1. Remember that we have adopted the mathematical
elegant methods via Pascal’s Triangle and 0-1 sequeneg&swpoint that the (empty) O-tower is a tower. Otherwise
Our final method (see Section 3) not only gave us an 0
explanation of the presence of the binomial coefficientime would have had to omit the binomial coeffici(@’to).

the formula fot,, but also, by setting up an explicit one-to- Thi lled the Chri kina Th b
one correspondence, explained the presence of -1 in the™ ISwas calle the Christmas Stocking eorem by
formula. Dave Logothetti. Just look at the enclosed portion of

The second reason for our lack of satisfaction was tlr—‘ﬂ]@ure 4 and fyou;;l segbwgyg gﬁ farh‘?‘hs (\:Nhe I:]n_ovxi,stoh:
basic instinct of the mathematician ¢generalizeand theorem was first described by Chu-Shi ienin '

extendoroblems. We have indicated our progress on thesef
fronts in Section 4. This desire to generalize is couplgcﬁ3 erences
Wlth.anOther instinct and that is get something for Bc%se R. C., & Manvel B. (1984)ntroduction to Combinatorial
nothing Once we hao_l the answer for equal numbers Of Theory New York: Wiley.
cans of the two types, it was easy to produce the answer for
unequa| numbers Exactly the same pI‘OOf worked. All W@ton, P., Pedersen J., & Ross P. (1987). In mathematics there are no
’ . ) identsM i Matematjkd(3), 86-91.
had to do was to change the characters slightly. It often accidentsMenemui Matematio(3)
turns out that a proof, if thought about in the right waiolton D.A. (1990), Creating Problenfoblem Solving Series Book-
yields a proof of something more general. let 15 Dunedin: University of Otago.
Finally, when the result was recorded for otherstoread,

d | d the historical d | tin f 1:NationaICounciIofTeachersofMathematics(198£|lbtriculumand
we aownplayed the nistorical aevelopment In favor Of & gy g1yation Standards for School MathematReston VA: NCTM.
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