Fostering Recursive Thinking in Combinatorics through the
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Current trends in the revision of both mathematicstions without developing any conceptual understanding
curricula and traditional teaching strategies include tlb& combinatorial ideas or using recursive reasoning as a
incorporation of discrete mathematics into the secondangans for approaching these ideas.
school curriculum (Dossey, 1990). Serious consideration Mathematical visualization provided by computing
of thistask has occurred as a result of the publication of teehnology and the use of concrete materials allow for
NCTM 1991 Year BoolKenney, 1991), which accumu-significant improvement in the teaching and learning of
lated perceptions, practical ideas and suggestions of mhagic combinatorial notions. This article describes how
experienced professionals about discrete mathematicefimploying manipulatives for solving simple combinato-
general and combinatorics in particular. Also, Standard fidl problems leads to the discovery of recurrence relations
of theCurriculum and Evaluation Standarfisr Grades 9- for permutations and combinations, so that, in turn, nu-
12 emphasizes the importance of this topic: “instructionerical evidence and visual imagery generated by the
should emphasize combinatorial reasoning as opposeddmputer spreadsheet through modeling these relations
the application of analytic formulas for permutations arwhn enable all students to experience the ease and power of
combinations” (NCTM, 1989, p.179). combinatorial reasoning, recursion, and mathematical in-

Combinatorics is one of the oldest branches of discreligction proof. In addition to these teaching ideas, the
mathematics and goes back to the 16th century whirterplay among geometry, combinatorics, and number
games of chance played an important role in the life ofteeory is discussed.
society (Vilenkin, 1971). The need for the theory of such According to Ahlfors et al. (1962), instruction should
games stimulated the creation of specific counting tede a process of “extracting the appropriate concept from a
nigues and mathematical concepts related to the new reahcrete situation.” Combinatorics is an appropriate con-
life situations. Further efforts of French scholars Pasdakt for accommodating such instructional philosophy.
and Fermat in the pursuit of theoretical studies of comibier instance, what kind of combinatorial reasoning is
natorial problems laid a foundation for the theory dfehind whether one is sorting or selecting books from a
probability and provided approaches to the developmestielf? How does one distinguish between combinatorics
of enumerative combinatorics as the study of methodsadfa bookshelf and combinatorics of a combination lock or
counting various combinations of elements of a finite settouch-tone telephone? While these are real-world situ-

The importance of a recursive approach to enumeeadions with which students are familiar, they need help in
tive combinatorics through using difference equatiomsaking sense of the mathematics that is behind the reality
(recurrence relations) is a common theme (Andersaw, that they can extract from it the appropriate concept.
1974; Kenney & Bezuszka, 1993; Olson, 1989). Many Just as the use of dominoes in classroom activities
counting problems deal with arrangements that involhelps to furnish the conceptual basis of combinatorics
permutations and combinations. While the study of the@®hnson, 1991), colored manipulatives are excellent tools
concepts provides opportunities for using recursive rgaat encourage and support combinatorial reasoning
soning as an effective problem-solving means, studé8pangler, 1991). Because of this, we will formulate real-
learning of combinatorics has often been limited to plugrorld situations in terms of colored disks (discussed in this
ging numbers into formulas for permutations and comhiaper agatterned disks) which were found to be ex-
tremely appropriate for individual or small group explora-
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deal with the concept of permutations—all the possitileree disks, four disks generate twenty-four permutations.
arrangements of a collection of elements, each of whiSgmbolically, this is represented as P(4) = 4 - P(3) = 24.
contains every element once, with two such arrangemedtsse students again look at P(3) and determine whether a
differing only in the order of their elements. Often, theimilar relationship exists. They should note that the
emphasis is on theumberof permutations rather than thenumber of permutations of three disks is equal to that of
permutations, or orderings, themselvesn) Bénotes the two disks multiplied by three, or the number of positions
number of permutations af objects; the number of that the third disk can assume in relation to the other two.
orderings of three disks, then, would be denoted by P(3).

To help students grasp the idea of permutations and
make sense of how objects can be listed, have them
consider a collection of three different patterned disks as
shown in Figure 1.
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Figure 1. Three disks to be placed in different
orders.

Having students actually manipulate patterned disks may
further help to illustrate the concept. In order to determine
the number of ways these three disks can be ordered,
consider first the permutations generated by one and then
two disks. Clearly, one disk has one ordering. Two disks
can be ordered in two ways by fixing one and then placing
the othertoits left or to its right (see Figure 2). To consider
the orderings of three disks, add the third disk to the
possible orderings for two disks. For each ordering of two
disks, the third disk can be placed in any one of three
positions created by the other two disks: it can be placed Figure 3. Permutations of two disks.

to the left of the two, between the two, or to the right of the

two (see Figure 3). Thus, there exist six different orderings Such exploration of the permutations of three and four
for the three disks; that is, P(3) = 6. disks nicely leads to students generalizingnfdisks; that

is, the number of ways in whiehdisks can be ordered is

000000
000000
000000

n multiplied by the number of orderings @f-1) disks.
Formally, this is denoted as

PM) =n- P@-1). (1)

difference equation obtained by applying recursive rea-
soning; that is, the problem of counting permutatiorns of
objects is reduced to an analogous problem involving a
Figure 2. Permutations of two disks. smaller number of objects. Kenney and Bezuszka (1993)
emphasize the power of recursive reasoning in solving
Next, in order to help students generalizefatisks, discrete problems, and they argue that “the most challeng-
have them predict the number of permutations of foimg part of solving problems by recursion is making the
disks, P(4), and explain their reasoning to the class. Asiinection of the solution to the given problem with the
students to describe the relationship between the orderisgkition to the subproblems” (p. 677).
of four disks to that of three. Since the fourth disk can be One may note that relation (1) is incomplete as a
placed in any one of four positions created by the othaefinition of permutations, however, since P(0) is not

Q Point out to students that this is an example of a
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to relation (1), P(1) =1 - P(0). As discussed earlier with
regard to disks, it is apparent that there is only one way
to order one disk. Hence P(1) = 1. However, P(0), the
number of ways in which zero disks can be ordered, is a
more difficult conceptto understand. To define P(0), one
must again consider that

W
i
-
i

P(1) =1 P(0).
Since
P(1)=1
S then
: 1=1-P(0).

* + Hence

P(0) = 1.
Explain to students that this convention for P(0) is the

starting point, or initial value, of BY. This initial value
is necessary for formulating a complete recursive defini-
tion of permutations. Anillustration of the applicability
of the initial value can be found in computing compound
interest where the initial deposit serves as the initial
value. Such an example may help students better grasp
Figure 4. 2-combinations of four disks: the role of the initial value.
CH4,2)=C(3,2)+ C(3,1) Keeping in mind the initial value, the formal recursive
definition of permutations is thus

defined. To explore this with students, ask them to
consider what happens if n = 1 or if n = 0 in the above P0) =n-P@-1),n=12,.. ; P(0) =1. 2)
generalization. Asthey will discover, when 1, then due
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The recursive approach to per-
mutations is described in Olson
(1989), and a BASIC programis
employed to numerically model
the recursive definition given in
(2). We will later suggest using
a spreadsheet as an alternative
to BASIC programming.

§
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Recursive Approach to Combi-
nations

Modeling of many real-
world situations deals with the
concept of combination—the se-
lection of a certain number of
elements from a given set with-
outregardto order. Whereasthe
concept of permutation focuses
on the orderings of a certain
number of objects (sorting books
on a bookshelf), the concept of
combination focuses on the se-

Figure 5. 3-combinations of five disks: C(5,3) = C(4,2) + C(4,3).  lection of a subset of a certain
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number of objects (selecting books from a bookshelf). Alree and this can be done in C(3,1) ways. Therefore,
example of this in terms of the manipulatives is the

following: In how many ways can three disks be selected C(4,2) = C(3,2) + C(3,1) 4)

from five different disks?

In general, problems involving the concept of combi- |n much the same way, the original problem can be
nation can be expressed in the following form: solved through recursive reasoning, that is, by splitting
C(5,3) into the sum of two combinations. Figure 5 repre-
Suppose there is a set of n given objects. Anysents the partitioning of C(5,3) into C(4,2) on the left
choice of r objects from the set of nis considered as (compare to Figure 4) and C(4,3) on the right. In other
an r-combination of n elements. Two such combi- words,
nations are different only if they differ in the ele-

ments they contain, not the order in which they are C(5,3) =C(4,2) + C(4,3) (5)
organized. How many different r-combinations
can be selected? Relations (4) and (5) are recursive formulations of

C(4,2) and C(5,3), respectively. It is clear that C(5,3) = 6
Note that the number of ways of choosmg@bjects + 4 = 10.
from among a set af given objects is a function ofand To enhance students’ understanding of recursion for-
r and may be denoted©). Traditionally, the example mulas, the teacher can use a visual imagery for combina-
problem posed above has been solved using the formula

Il
C(n,r) = F(lri(n-r)} 3) r 0 : z 3 4 >

The Standards however, accentuate the importance(of | ooy S0
developing students’ ability to solve problems of this type
through combinatorial reasoning, as opposed to the appli-
cation of formula (3). As with permutations, the concept 1 (0L
of combinations can be introduced through a problem
solving activity involving the use of manipulatives where
recursive reasoning arises naturally. 2 Cl42)
Returning to the earlier example, suppose you hpve
five patterned disks and you want to determine the nurmbeg Cea3 | cesE
of ways three disks can be selected from the five. |As
Freudenthal (1973) noted, simple combinatorial techniques
can be acquired “by having the student disentangle com- Figure 6. A grid chart for combinations.
plex situations in which such combinatorics play an essen-
tial part” (p. 597). In this vein, first ask students to solfons. Indeed, combinations may be organized in a grid
a simpler problem of finding the number of combinationshart and located in cells as shown in Figure 6. Looking
that arise from selecting two disks from four disks. lat the cell of C(5,3) in the chart and using the equality
carrying out this task, the teacher may discover that s@(5,3) = C(4,3) + C(4,2), students can develop an L-
dents act at random in creating the combinations. Hoghaped geometric representation for such a relation. They
ever, when asked to be systematic, students often unassn then check whether C(4,2) and C(4,3) can be shown
sciously apply recursive reasoning. Indeed, as observedsing a similar L-shaped relation. Students can then
an actual mathematics classroom, a student may fix @@ress any combination using such an L-shaped geomet-
disk, say the one with zig-zag pattern, and exhaust allriz-interpretation. That is, if the right cell has coordinates
combinations of four with it (see Figure 4). Then the “zig(n, r) then the two to the left will have coordinatesC(
zag” disk is put aside and not used at all, thus resultingliiy) and Cq-1,r-1) (see Figure 7).
creating 2-combinations of the remaining three disks.  But what happens when you reach the cell containing
Observing Figure 4, one may note that the right-ha@{1,0) in Figure 6? Students will recognize that there is no
side represents C(3,2) because this is a construction ofipper cell to use in determining C(1,0). This brings up an
2-combinations of three elements. Butwhat is on the lgfiiportant concept explored earlier with permutations—
hand side? In order to create all 2-combinations with thkeat of an initial (boundary) condition. All cells along the
zig-zag disk, we in fact should select one element fraap row involve the boundary conditionrat 0, that is,
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which along with relation (6) completes the recursive
o 0 o definition forr-combinations oh elements.

Using Spreadsheets
C(n-1,r-1) According to theStandardsone way in which math-
ematical connections need to be fostered is by developing
students’ abilities to translate among different representa-
o tions. The effective use of spreadsheets to introduce per-
mutations through simple recursion (difference equation)
is generally known (Cornell & Siegfried, 1991; Kenney &
Bezuszka, 1993). What is less known is that a spreadsheet
can handle the modeling of the recursive definition for
combinations; that is, it can generate Pascal’s triangle in
the form of a rectangular array (Abramovich & Levin,
o 1994). In this way, both for permutations and combina-
tions, the spreadsheet serves as a numerical representation
Figure 7. Visual imagery of combinations. with which students can make mathematical connections.
Also, it enables students to focus on the patterns that
they correspond to combinationsnadbjects taken zero atemerge from the permutations and combinations by de-
atime. Using the L-shaped representation, students gagasing the emphasis on hand calculations. Students can
determine that since C(2,1) = C(1,0) + C(1,1), it followssse the numbers generated by spreadsheets to make con-
that C(1,0) = C(2,1) - C (1,1). Returning to the patterngsttures, use numerical evidence as a visual interpretation
disks, recall that C(2,1) refers to the number of ways dfiinductive proof, and then subsequently develop a proof
which one disk can be chosen from two disks, namely, tws:. translating visual imagery into a symbolic form.
Similarly, C(1,1) refers to the number of ways in whicMicrosoft Excel and AppleWorks can be used for produc-
one disk can be chosen from one, and hence C(1,1) #ng.spreadsheet templates for classroom use. The spread-
Thus C(1,0) = C(2,1) - C(1,1) =2 -1 = 1. From similagheet used in this article is Microsoft Excel 4.0 for the
reasoning it follows that C(3,0) = C(2,0)... =n¢X) = 1. Macintosh.
Students should note that this is also the case for C(0,0):
using the L-shaped rule, C(1,1) - C(0,1) =1-0=1. Exploring Permutations Using Spreadsheets
Questions also arise with regard to the cells in the far
left column, namely, whene= 0. Suppose for instance, As we have noted earlier, spreadsheets can be used
you consider C(0,3), the number of ways to choose thesféectively for modeling the recursive definition for per-
disks from zero disks. There are zero ways to carry this autations. The spreadsheet template shown in Figure 8,
as you are choosing more than zero disks. Students whith the teacher can help the students construct, repre-
experiment with different cells in the far left column tgents the results of modeling. In colufn(beginning with
determine that this is true for any> 1. cell A2) non-negative integral valuesmfare listed. The
By exploring the boundaries of the grid, students thissitial value P(0), that is, 1, is defined in cB2. The
determine the boundary, or initial, condition for combinapreadsheet functionB2*A3 is defined in celB3 and

C(n-1,r)

O O

tions in the following form: computes the value of P(1) as P(0)-1. This function is
copied all the way down to cdl15; the cells referred to
con=0,r>1; CaO)=1,n>0. (6) are updated accordingly. For example, then, the function

in cellB4 is=B3*A4.
The grid enables students to recognize the need for such aAsk students to compare the spreadsheet’s calcula-
condition and furthermore allows them to specificallffons with those done in class for the permutations gener-
determine what the condition is. Finally, translating theied by two, three, and four disks. Have them investigate,
visual image of Figure 7 into symbolic form results in thgsing the spreadsheet, the relationship between the permu-

general recursive formula for combinations: tations ofn disks anch-1 disks for different values af.
Have them make conjectures about such a relationship.
C(nh,r) =C@-1r) + C-1r-1). 7 Too, students can explore the role of the initial value by

entering different values for P(0) into cBR and observ-
ing the change in different cells’ values.
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Figure 9. A geometric interpretation of the
recursive definition of permutations.

each triple of cells shaped as shown in Figure 9. Tipisrmutations:
provides a geometric interpretation of the recursive defini- P(h) = 1.2-3.n=n!

n-3

n-2

n-1

Volume 7 Number 1

tion of permutations: the product of two numbers in the
Figure 8. Spreadsheet modeling of permutations cells shaded light equals the number in the third cell.
Applying this rule to itself several times, i.e. replacing the

The famous Poélya’s maxim states that most discovénp cell in Figure 9 with two diagonally adjacent cells,
ies start with recognizing a pattern (Pdélya, Tarjan, Besults in the picture shown in Figure 10. The final
Woods, 1983). In looking at the numbers produced by thggregation of cells (far right of Figure 10) provides a
spreadsheet, students may first discover regularities withggometric interpretation of the closed form formula for

(8)

Figure 10. Visual discovery of relation (8).



. o o much better approach is to use itmguctive para-
digm— compute, conjecture, prove — to infer the
result and then prove it (p.80).

P ( O ) Indeed, the basis step for relation (8) holds true sinae for
=1,P(1)=1-P(0) =1 (as Figure 11 shows). The inductive

step is shown in Figure 12. By virtue of the rule of
permutations (see Figure 9), the assumption that the prod-
uct of the cells shaded light equals the cell shaded dark
remains true whekis replaced bk + 1.

Now students may better understand the formal proof
1 P ( 1) of relation (8) through mathematical induction. Actually,
for n = 1 the basis step has already been established.
Assuming relation (8) to be true far= k results in the
following transformation of R(+ 1):

O O

Figure 11. Visual imagery of induction proof of Pk+1)=k+1)-PK=(K+1) -k=(k+1)!
relation (8): The basis step.
Exploring Combinations with Spreadsheets
Mathematical visualization can be further used to
develop a geometric representation of a proof by math- As with permutations, spreadsheets can be used for
ematical induction. As Ralston (1990) pointed out, modeling the recursive definition for combinations. The
earlier activity involving the grid for combinations is
Induction is often taught in what I like to call the aimed at bridging the gap between the traditional educa-
“mathematics as magic” mode in which students tional environment and spreadsheet use for quickly mak-
are presented with the results ... and then showning the necessary replications and calculations. The spread-
how to prove the result correct by induction. A sheet shown in Figure 13 models numbersrCas the

o o o o
1 1
5 .
2 2
5 .
o
k-1 k-1
k k
o — o
P(K) k+1

P(k+1)

Figure 12. Visual imagery of induction proof of relation (8): The induction step.
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Figure 13. The spreadsh&®MB (combinations).

solution to relation (7) through the following programspreadsheet are triangular numbers. At the same time,

ming. In rowl (beginning with celB1) and in colummA

bonacci numbers and combina-
tions be explained inthe language
of combinatorics? Answering
these questions and discovering
new patterns among combinations
can serve as an extension of the
basic activities. For more details
see Abramovich & Levin (1994).

Making Mathematical Connec-
tions

As Olson (1989) pointed out,
combinations can give “an alter-
native perspective from which to
think about a familiar mathemati-
cal topic” (p. 571). For instance,
because students are familiar with
figurate numbers from middle
school (Ben-Chaim, Lappan, &
Houang 1989), they may observe
that numbers in rowd of the

these are 2-combinations. The natural question arises:

(beginning with celA2) non-negative integral valuesrof How can we connect triangular numbers to combinations,
andr are defined respectively. Entering the unity into roar, in more general terms, number theory to combinato-

2 (beginning with celB2) and zero into columB (begin-
ning with cellB3) results in relation (6) on the borders of

aspreadsheettemplate. The spreadsheet furBbrB3

is defined in celC3and computes the sum C(0,0) + C(0,1
This function is replicated across all columns and down
rows to celll20; hence, the template is immediately fille

& File Edit

up with numbers corresponding ton®§. The “screen

'}

=

shapshot” of part of the spreadsheet shown in Figure

EI%I [Mor ral

Formula Format

3] [ =]

displays in celG5 and in the Formula Bar, respectively

53

=F4+F5

the number 10 and the formw&4+F5, which computes

|

this number.
As with permutations, combinations can be viewe

A B[C|D|E[F|G]|H]

geometrically within the spreadsheet. As discussed e

lier, relation (7) can be associated with its visual imagety,

or L-shaped triple of cells (Figure 7), in which the sum ¢
the two left cells equals that on the right. While previous

shown within a grid, this rule can also be easily visualiz
by students in the context of the spreadsheet. Then

much the same way as with permutations, through app
ing this rule to itself students can discover new patterns
regularities among numbers with combinatorial meaninfy. &
Furthermore, students can observe recurring numbers alpn
each column of the spreadsheet (Figure 13). How d
combinatorial reasoning explain this pattern? How cqn g

ar-1 (fm | &7 7 S F S &5 &
c2 | #1111 111
3 | |l o 1 2z 3 4 5 &
iﬂ A o o0 1 3 & 10 15
Y- Al o o o 1 4 10 20
s o o o o 1 5 15

1 5l 0 0o o o o0 1 &

manipulatives be used to support this reasoning? ISt
possible to discover Fibonacci humbers in the spread-
sheet? And if so, how can the connection between Fi-
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