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Current trends in the revision of both mathematics
curricula and traditional teaching strategies include the
incorporation of discrete mathematics into the secondary
school curriculum (Dossey, 1990).  Serious consideration
of this task has occurred as a result of the publication of the
NCTM 1991 Year Book (Kenney, 1991), which accumu-
lated perceptions, practical ideas and suggestions of many
experienced professionals about  discrete mathematics in
general and combinatorics in particular. Also, Standard 12
of the Curriculum and Evaluation Standards for Grades 9-
12 emphasizes the importance of  this topic: “instruction
should emphasize combinatorial reasoning as opposed to
the  application of analytic formulas for permutations and
combinations” (NCTM, 1989, p.179).

Combinatorics is one of the oldest branches of discrete
mathematics and goes back to the 16th century when
games of chance played an important role in the life of a
society (Vilenkin, 1971). The need for the theory of such
games stimulated the creation of specific counting tech-
niques and mathematical concepts related to the new real-
life situations. Further efforts of French scholars Pascal
and Fermat in the pursuit of theoretical studies of combi-
natorial problems laid a foundation for the theory of
probability and provided approaches to the development
of enumerative combinatorics as the study of methods of
counting various combinations of elements of a finite set.

The importance of a recursive approach to enumera-
tive combinatorics through using difference equations
(recurrence relations) is a common theme (Anderson,
1974; Kenney & Bezuszka, 1993; Olson, 1989).  Many
counting problems deal with arrangements that involve
permutations and combinations.  While the study of these
concepts provides opportunities for using recursive rea-
soning as an effective problem-solving means, student
learning of combinatorics has often been limited to plug-
ging numbers into formulas for permutations and combi-

nations without developing any conceptual understanding
of combinatorial ideas or using recursive reasoning as a
means for approaching these ideas.

Mathematical visualization provided by computing
technology and the use of concrete materials allow for
significant improvement in the teaching and learning of
basic combinatorial notions.  This article describes how
employing manipulatives for solving simple combinato-
rial problems leads to the discovery of recurrence relations
for permutations and combinations, so that, in turn, nu-
merical evidence and visual imagery generated by the
computer spreadsheet through modeling these relations
can enable all students to experience the ease and power of
combinatorial reasoning, recursion, and mathematical in-
duction proof.  In addition to these teaching ideas, the
interplay among geometry, combinatorics, and number
theory is discussed.

According to Ahlfors et al. (1962), instruction should
be a process of “extracting the appropriate concept from a
concrete situation.”  Combinatorics is an appropriate con-
text for accommodating such instructional philosophy.
For instance, what kind of combinatorial reasoning is
behind whether one is sorting or selecting books from a
shelf? How does one distinguish between combinatorics
of a bookshelf and combinatorics of a combination lock or
a touch-tone telephone?  While these are real-world situ-
ations with which students are familiar, they need help in
making sense of the mathematics that is behind the reality
so that they can extract from it the appropriate concept.

Just as the use of dominoes in classroom activities
helps to furnish the conceptual basis of combinatorics
(Johnson, 1991), colored manipulatives are excellent tools
that encourage and support combinatorial reasoning
(Spangler, 1991).  Because of this, we will formulate real-
world situations in terms of colored disks (discussed in this
paper as patterned disks) which were found to be ex-
tremely appropriate for individual or small group explora-
tions and subsequent student demonstrations using an
overhead projector.  The paper reflects work done in a lab
setting with preservice and inservice secondary teachers
enrolled in a contemporary general mathematics course.

Recursive Approach to Permutations

In how many ways can three colored disks be placed in
different orders?  Many real-world situations such as this
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deal with the concept of permutations–all the possible
arrangements of a collection of elements, each of which
contains every element once, with two such arrangements
differing only in the order of their elements.  Often, the
emphasis is on the number of permutations rather than the
permutations, or orderings, themselves.  P(n) denotes the
number of permutations of n objects;  the number of
orderings of three disks, then, would be denoted by P(3).

To help students grasp the idea of permutations and
make sense of how objects can be listed, have them
consider a collection of three different patterned disks as
shown in Figure 1.

Figure 1.  Three disks to be placed in different
                 orders.

Having students actually manipulate patterned disks may
further help to illustrate the concept.  In order to determine
the number of ways these three disks can be ordered,
consider first the permutations generated by one and then
two disks.  Clearly, one disk has one ordering.  Two disks
can be ordered in two ways by fixing one and then placing
the other to its left or to its right (see Figure 2).  To consider
the orderings of three disks, add the third disk to the
possible orderings for two disks.  For each ordering of two
disks, the third disk can be placed in any one of three
positions created by the other two disks:  it can be placed
to the left of the two, between the two, or to the right of the
two (see Figure 3).  Thus, there exist six different orderings
for the three disks; that is, P(3) = 6.

          Figure 2.  Permutations of two disks.

Next, in order to help students generalize for n  disks,
have them predict the number of permutations of four
disks, P(4), and explain their reasoning to the class.  Ask
students to describe the relationship between the orderings
of four disks to that of three.  Since the fourth disk can be
placed in any one of four positions created by the other

three disks, four disks generate twenty-four permutations.
Symbolically, this is represented as P(4) = 4 · P(3) = 24.
Have students again look at P(3) and determine whether a
similar relationship exists.  They should note that the
number of permutations of three disks is equal to that of
two disks multiplied by three, or the number of positions
that the third disk can assume in relation to the other two.

             Figure 3.  Permutations of two disks.

Such exploration of the permutations of three and four
disks nicely leads to students generalizing for n disks;  that
is, the number of ways in which n disks can be ordered is
n multiplied by the number of orderings of (n-1) disks.
Formally, this is denoted as

P(n) =n · P(n-1). (1)

Point out to students that this is an example of a
difference equation obtained by applying recursive rea-
soning; that is, the problem of counting permutations of n
objects is reduced to an analogous problem involving a
smaller number of objects.  Kenney and Bezuszka (1993)
emphasize the power of recursive reasoning in solving
discrete problems, and they argue that “the most challeng-
ing part of solving problems by recursion is making the
connection of the solution to the given problem with the
solution to the subproblems” (p. 677).

One may note that relation (1) is incomplete as a
definition of permutations, however, since P(0) is not
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  Figure 4.  2-combinations of four disks:
           C(4,2) = C(3,2) + C(3,1)

defined.  To explore this with students, ask them to
consider what happens if n = 1 or if n = 0 in the above
generalization.  As they will discover, when n = 1, then due

to relation (1), P(1) = 1 · P(0).  As discussed earlier with
regard to disks, it is apparent that there is only one way
to order one disk.  Hence P(1) = 1. However, P(0), the
number of ways in which zero disks can be ordered, is a
more difficult concept to understand.  To define P(0), one
must again consider that

P(1) = 1 · P(0).
Since
P(1) = 1
then
1 = 1 · P(0).
Hence
P(0) = 1.

Explain to students that this convention for P(0) is the
starting point, or initial value, of P(n).  This initial value
is necessary for formulating a complete recursive defini-
tion of permutations.  An illustration of the applicability
of the initial value can be found in computing compound
interest where the initial deposit serves as the initial
value.  Such an example may help students better grasp

   the role of the initial value.
Keeping in mind the initial value, the formal recursive

definition of permutations is thus

P(n) = n · P(n-1), n = 1,2,...  ;  P(0) = 1. (2)

The recursive approach to per-
mutations is described in Olson
(1989), and a BASIC program is
employed to numerically model
the recursive definition given in
(2). We will later suggest using
a spreadsheet as an alternative
to BASIC programming.

Recursive Approach to Combi-
nations

Modeling of many real-
world situations deals with the
concept of combination–the se-
lection of a certain number of
elements from a given set with-
out regard to order.  Whereas the
concept of permutation focuses
on the orderings of a certain
number of objects (sorting books
on a bookshelf), the concept of
combination focuses on the se-
lection of a subset of a certain       Figure 5.  3-combinations of five disks:  C(5,3) =  C(4,2) + C(4,3).
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number of objects (selecting books from a bookshelf).  An
example of this in terms of the manipulatives is the
following:  In how many ways can three disks be selected
from five different  disks?

In general, problems involving the concept of combi-
nation can be expressed in the following form:

Suppose there is a set of n given objects.  Any
choice of r objects from the set of n is considered as
an r-combination of n elements.  Two such combi-
nations are different only if they differ in the ele-
ments they contain, not the order in which they are
organized.  How many different r-combinations
can be selected?

Note that the number of ways of choosing r  objects
from among a set of n given objects is a function of n and
r and may be denoted C(n,r).  Traditionally, the example
problem posed above has been solved using the formula

C(n,r) = F(n!,r!(n-r)!) (3)

The Standards, however, accentuate the importance of
developing students’ ability to solve problems of this type
through combinatorial reasoning, as opposed to the appli-
cation of formula (3).  As with permutations, the concept
of combinations can be introduced through a problem
solving activity involving the use of manipulatives where
recursive reasoning arises naturally.

Returning to the earlier example, suppose you have
five patterned disks and you want to determine the number
of ways three disks can be selected from the five.  As
Freudenthal (1973) noted, simple combinatorial techniques
can be acquired “by having the student disentangle com-
plex situations in which such combinatorics play an essen-
tial part” (p. 597).  In this vein, first ask students to solve
a simpler problem of finding the number of combinations
that arise from selecting two disks from four disks.  In
carrying out this task, the teacher may discover that stu-
dents act at random in creating the combinations.  How-
ever, when asked to be systematic, students often uncon-
sciously apply recursive reasoning.  Indeed, as observed in
an actual mathematics classroom, a student may fix one
disk, say the one with zig-zag pattern, and exhaust all 2-
combinations of four with it (see Figure 4).  Then the “zig-
zag” disk is put aside and not used at all, thus resulting in
creating 2-combinations of the remaining three disks.

Observing Figure 4, one may note that the right-hand
side represents C(3,2) because this is a construction of all
2-combinations of three elements.  But what is on the left-
hand side?  In order to create all 2-combinations with the
zig-zag disk, we in fact should select one element from

three and this can be done in C(3,1) ways.  Therefore,

C(4,2) = C(3,2) + C(3,1) (4)

In much the same way, the original problem can be
solved through recursive reasoning, that is, by splitting
C(5,3) into the sum of two combinations.  Figure 5 repre-
sents the partitioning of C(5,3) into C(4,2) on the left
(compare to Figure 4) and C(4,3) on the right. In other
words,

C(5,3) = C(4,2) + C(4,3) (5)

Relations (4) and (5) are recursive formulations of
C(4,2) and C(5,3), respectively. It is clear that C(5,3) = 6
+ 4 = 10.

To enhance students’ understanding of recursion for-
mulas, the teacher can use a visual imagery for combina-

       Figure 6.  A grid chart for combinations.

tions.  Indeed, combinations may be organized in a grid
chart and located in cells as shown in Figure 6.   Looking
at the cell of C(5,3) in the chart and using the equality
C(5,3) = C(4,3) + C(4,2), students can develop an L-
shaped geometric representation for such a relation.  They
can then check whether C(4,2) and C(4,3) can be shown
using a similar L-shaped relation.  Students can then
express any combination using such an L-shaped geomet-
ric interpretation.  That is, if the right cell has coordinates
C(n, r) then the two to the left will have coordinates C(n-
1, r) and C(n-1, r-1) (see Figure 7).

But what happens when you reach the cell containing
C(1,0) in Figure 6?  Students will recognize that there is no
upper cell to use in determining C(1,0).  This brings up an
important concept explored earlier with permutations–
that of  an initial (boundary) condition.  All cells along the
top row involve the boundary condition at r = 0, that is,
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Figure 7.  Visual imagery of combinations.

they correspond to combinations of n objects taken zero at
a time.  Using the L-shaped representation, students can
determine that since C(2,1) = C(1,0) + C(1,1), it follows
that C(1,0) = C(2,1) - C (1,1).  Returning to the patterned
disks, recall that C(2,1) refers to the number of ways in
which one disk can be chosen from two disks, namely, two.
Similarly, C(1,1) refers to the number of ways in which
one disk can be chosen from one, and hence C(1,1) = 1.
Thus C(1,0) = C(2,1) - C(1,1) = 2 - 1 = 1.  From similar
reasoning it follows that C(3,0) = C(2,0)... = C(n,0) = 1.
Students should note that this is also the case for C(0,0):
using the L-shaped rule, C(1,1) - C(0,1) = 1 - 0 = 1.

Questions also arise with regard to the cells in the far
left column, namely, where n = 0.  Suppose for instance,
you consider C(0,3), the number of ways to choose three
disks from zero disks.  There are zero ways to carry this out,
as you are choosing more than zero disks.  Students can
experiment with different cells in the far left column to
determine that this is true for any r  > 1.

By exploring the boundaries of the grid, students thus
determine the boundary, or initial, condition for combina-
tions in the following form:

C(0,r) = 0, r > 1;  C(n,0) = 1, n > 0. (6)

The grid enables students to recognize the need for such a
condition and furthermore allows them to specifically
determine what the condition is. Finally, translating the
visual image of Figure 7 into symbolic form results in the
general recursive formula for combinations:

 C(n,r) = C(n-1,r) + C(n-1,r-1). (7)

which along with relation (6) completes the recursive
definition for r-combinations of n  elements.

Using  Spreadsheets

According to the Standards, one way in which math-
ematical connections need to be fostered is by developing
students’ abilities to translate among different representa-
tions. The effective use of spreadsheets to introduce per-
mutations through simple recursion (difference equation)
is generally known (Cornell & Siegfried, 1991; Kenney &
Bezuszka, 1993). What is less known is that a spreadsheet
can handle the modeling of the recursive definition for
combinations; that is, it can generate Pascal’s triangle in
the form of a rectangular array (Abramovich & Levin,
1994). In this way, both for permutations and combina-
tions, the spreadsheet serves as a numerical representation
with which students can make mathematical connections.
Also, it enables students to focus on the patterns that
emerge from the permutations and combinations by de-
creasing the emphasis on hand calculations.  Students can
use the numbers generated by spreadsheets to make con-
jectures, use numerical evidence as a visual interpretation
of inductive proof, and then subsequently develop a proof
by translating visual imagery into a symbolic form.
Microsoft Excel and AppleWorks can be used for produc-
ing spreadsheet templates for classroom use.  The spread-
sheet used in this article is Microsoft Excel 4.0 for the
Macintosh.

Exploring Permutations Using Spreadsheets

As we have noted earlier, spreadsheets can be used
effectively for modeling the recursive definition for per-
mutations.  The  spreadsheet template shown in Figure 8,
which the teacher can help the students construct, repre-
sents the results of modeling.  In column A (beginning with
cell A2) non-negative integral values of n  are listed.  The
initial value P(0), that is, 1, is defined in cell B2.  The
spreadsheet function =B2*A3 is defined in cell B3 and
computes the value of P(1) as P(0)·1.   This function is
copied all the way down to cell B15;  the cells referred to
are updated accordingly.  For example, then, the function
in cell B4 is =B3*A4.

Ask students to compare the spreadsheet’s calcula-
tions with those done in class for the permutations gener-
ated by two, three, and four disks.  Have them investigate,
using the spreadsheet, the relationship between the permu-
tations of n disks and n-1 disks for different values of n.
Have them make conjectures about such a relationship.
Too, students can explore the role of the initial value by
entering different values for P(0) into cell B2 and observ-
ing the change in different cells’ values.

C(n,r)C(n-1,r)

C(n-1,r-1)
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tion of permutations:  the product of two numbers in the
cells shaded light equals the number in the third cell.
Applying this rule to itself several times, i.e. replacing the
top cell in Figure 9 with two diagonally adjacent cells,
results in the picture shown in Figure 10.  The final
aggregation of cells (far right of Figure 10) provides a
geometric interpretation of the closed form formula for
permutations:

P(n) = 1·2·3...n = n! (8)

P(n-1)

P(n)n

Figure 8.  Spreadsheet modeling of permutations

The famous Pólya’s maxim states that most discover-
ies start with recognizing a pattern (Pólya, Tarjan, &
Woods, 1983). In looking at the numbers produced by the
spreadsheet, students may first discover regularities within
each triple of cells shaped as shown in Figure 9.  This
provides a geometric interpretation of the recursive defini-

1

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

A B
n P(n)
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

10 3628800
11 39916800
12 479001600
13 6227020800

P(n)P(n)P(n)P(n)

.

.

.

n

n-1

n-2

n-3

2

1

Figure 10.  Visual discovery of relation (8).

Figure 9.  A geometric interpretation of the
                 recursive definition of permutations.
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2

1

k + 1

k

k-1

k

P(k+1)

P(k)

k-1

2

1

Figure 11.  Visual imagery of induction proof of
                   relation (8):  The basis step.

Mathematical visualization can be further used to
develop a geometric representation of a proof by math-
ematical induction.  As Ralston (1990) pointed out,

Induction is often taught in what I like to call the
“mathematics as magic” mode in which students
are presented with the results ... and then shown
how to prove the result correct by induction. A

much better approach is to use the inductive para-
digm — compute, conjecture, prove — to infer the
result and then prove it  (p.80).

Indeed, the basis step for relation (8) holds true since for n
= 1, P(1) = 1·P(0) = 1 (as Figure 11 shows).  The inductive
step is shown in Figure 12.  By virtue of the rule of
permutations (see Figure 9), the assumption that the prod-
uct of the cells shaded light equals the cell shaded dark
remains true when k is replaced by k + 1.

Now students may better understand the formal proof
of relation (8) through mathematical induction.  Actually,
for n = 1 the basis step has already been established.
Assuming relation (8) to be true for n = k results in the
following transformation of P(k + 1):

P(k + 1) = (k + 1) · P(k) = (k + 1) · k! = (k + 1)!

Exploring Combinations with Spreadsheets

As with permutations, spreadsheets can be used for
modeling the recursive definition for combinations.  The
earlier activity involving the grid for combinations is
aimed at bridging the gap between the traditional educa-
tional environment and spreadsheet use for quickly mak-
ing the necessary replications and calculations.  The spread-
sheet shown in Figure 13 models numbers C(n,r) as the

1 P(1)

P(0)

Figure 12.  Visual imagery of induction proof of relation (8):  The induction step.
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solution to relation (7) through the following program-
ming. In row 1 (beginning with cell B1) and in column A
(beginning with cell A2) non-negative integral values of n
and r  are defined respectively. Entering the unity into row
2 (beginning with cell B2) and zero into column B (begin-
ning with cell B3) results in relation (6) on the borders of
a spreadsheet template. The spreadsheet function =B2+B3
is defined in cell C3 and computes the sum C(0,0) + C(0,1).
This function is replicated across all columns and down all
rows to cell T20;  hence, the template is immediately filled
up with numbers corresponding to C(n,r).  The “screen
snapshot” of part of the spreadsheet shown in Figure 14
displays in cell G5 and in the Formula Bar, respectively,
the number 10 and the formula =F4+F5, which computes
this number.

As with permutations, combinations can be viewed
geometrically within the spreadsheet.  As discussed ear-
lier, relation (7) can be associated with its visual imagery,
or L-shaped triple of cells (Figure 7), in which the sum of
the two left cells equals that on the right.   While previously
shown within a grid, this rule can also be easily visualized
by students in the context of the spreadsheet.  Then, in
much the same way as with permutations, through apply-
ing this rule to itself students can discover new patterns and
regularities among numbers with combinatorial meaning.
Furthermore, students can observe recurring numbers along
each column of the spreadsheet (Figure 13).  How does
combinatorial reasoning explain this pattern?  How can
manipulatives be used to support this reasoning?  Is it
possible to discover Fibonacci numbers in the spread-
sheet? And if so, how can the connection between Fi-

bonacci numbers and combina-
tions be explained in the language
of combinatorics?  Answering
these questions and discovering
new patterns among combinations
can serve as an extension of the
basic activities.  For more details
see Abramovich & Levin (1994).

Making Mathematical Connec-
tions

As Olson (1989) pointed out,
combinations can give “an alter-
native perspective from which to
think about a familiar mathemati-
cal topic” (p. 571).  For instance,
because students are familiar with
figurate numbers from middle
school (Ben-Chaim, Lappan, &
Houang 1989), they may observe
that numbers in row 4 of the

spreadsheet are triangular numbers.  At the same time,
these are 2-combinations.  The natural question arises:
How can we connect triangular numbers to combinations,
or, in more general terms, number theory to combinato-

Figure 14.  Screen-snap of the spreadsheet  COMB

Figure 13.  The spreadsheet COMB  (combinations).
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rics?  One way to respond to this question is to use a
geometric situation from which triangular numbers can be
generated.  Let us take two straight lines — they can
intersect at one point only.  This corresponds to the first
triangular number, namely, 1.  Add a third line — it can be
concurrent with the previous two lines at two new points.
Thus the total number of points is represented by the sum
1 + 2, which is the second triangular number, namely, 3.
Then add a fourth line — 3 new points of intersection are
obtained.  In this instance the sum 1 + 2 + 3  occurs, which
is the third triangular number, namely, 6.  Continuing in
this vein, when the (n + 1)th line is added, n new points are
obtained, yielding the sum 1 + 2 + 3+ ... + n  which is the
nth triangular number.

Indeed, two lines can intersect at only one point, and
this situation can be represented by C(2,2) = 1.  Each time
a new line is added, it is possible to intersect each of the old
lines once.  Thus, for three lines, there are C(3,2) = 1 + 2
= 3 points of intersection.  This generalizes to  C(n+1,2) =
1 + 2 + 3 + ... +n.  An alternative discussion on the interplay
between triangular numbers and combinations is provided
by Abramovich (1995).

Making connections among geometry, number theory,
and combinatorics in this way, students can experience
mathematics as a whole.  Similarly, by making connec-
tions among different representations — namely spread-
sheets, manipulatives and visual imagery — students can
develop a richer understanding of permutations and com-
binations.  Research shows that “mathematics becomes
difficult for students when it concerns topics for which
there do not exist simple physical or visual representa-
tions”  (Dubinsky, 1991, p. 201).  Thus, teachers must
strive to provide students with a variety of visual represen-
tations when teaching combinatorics.
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