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The idea of fractal dimension is based on the idea of

Euclidean dimension. But understanding this connection

is harder than you might think. Children often think of

areas and volumes in a way that we would describe as

“one-dimensional objects” (see Figures 1 and 2). What

is, for example, one-dimensional area? It is a conception

of a measurement of a region as being “how many

squares do you need to lay down to fill a region,” where

the squares are, in the child’s conception, no more than,

say, pieces of paper with sharp corners. That is, they do

not conceive of the unit as a dimensioned object. It is

simply an object.

A "two-dimensional" array
conceived as a one-dimensional
string.

Figure 1. One-dimensional area.

Figure 2. One-dimensional volume.

For example, in one study, I asked 6 fifth-graders to

consider the area of the rectangle in Figure 3. They all

said that they must either convert centimeters to inches

or inches to centimeters before doing anything else. I

asked the question, “Suppose we did the silly thing and

just multiplied 4 and 3. We would get 12. But 12 what?”
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Figure 3. Multiply 4 by 3. You get 12. Twelve what?

The ensuing discussion went on for 35 minutes be-

fore one child asked timidly, “Would it be 12 rectangles

that are 1 cm by 1 inch?” In the next 10 minutes

children worked to understand how it was that (1) it

made sense, in multiplying length by width, they were

somehow generating rectangles, and (2) that the only

thing they needed to know about a “covering collection”
was the unit-length of each side of the basic area unit.

6 in.

17 sq. in.

Figure 4. What is the volume of the box?

In another set of interviews, which followed an

intensive teaching unit which took a standard approach

to developing formulas for area and volume (i.e.,

counting squares in rows and columns, or counting

cubes in rows, columns, and layers), only one student

could answer the question associated with Figure 4. He

said, “Oh, somebody has already done the multiplication

for me!” and went on to multiply 6 by 17. Upon further

probing, he said that he didn’t need to know the other
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side lengths because “if I had them I’d just multiply, and

when I multiply I would just get 17, and I’ve already got

17.” Other children responded that they needed to know

the other side lengths. I asked them what they would do

if they knew the side lengths. They said that they would

multiply the side lengths, and they couldn’t know what

they would get unless they knew the actual numbers.

These examples illustrate my claim that children

often have not made a conceptual connection between

the formulas they use for area and volume and actual

area and volume. It also illustrates my claim that

children need to conceptualize their units of

measurement as dimensionalized objects in order to

understanding the ideas of area and volume as

“dimensionalized attributes” of objects (see Figure 5).

Otherwise, typical encounters with activities to develop

area and volume formulas end up capturing nothing

more than “quick counting” techniques to determine the

number of objects they would otherwise count one-by-

one (see Figures 1 and 2).

Think of “sweeping” one
segment along the other,
thereby generating an
inch-by-inch, sometimes
called a “square inch.”
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Figure 5. A “square inch” generated by two segments

each 1 inch long.

Now, suppose that students have developed

“dimensionalized attributes” conceptions of area and

volume. Then it makes sense to extend their notion of

dimension from “independent directions of sweep” to

dimensionality as an invariant relationship between

replication and similarity.

The idea of replication is to build a similar copy of

the figure you have out of identical copies (Figure 6).

The idea of similarity is that there is a multiplicative

expansion (e.g., a “blow-up” of photograph) so that

each linear component is k times as long in the blow-up

as in the original. If r is the number of copies used to

replicate a figure, and if k is the scale factor (each linear

component of the replicate will be k times as long as its

original), then, in Euclidean space r kd=  for some

whole number d. It is absolutely essential that if

students are going to understand the idea of fractal

dimension as an extension of Euclidean dimension, then

they must internalize this relationship as one they insist

must hold for al l similar figures. That is, they must

come to think of it not as just a generalization, but as a

defining relationship between similarity and dimension.

Figure 6a. Each successive replicate is made with 4

copies of the previous figure. The scale factor between

successive replicates is 2.

Figure 6b. Each successive replicate is made with 8

copies of the previous figure. The scale factor between

successive figures is 2.

Another understanding students will need to have in

order to understand fractal dimension is the idea of self-

similarity. It is a non-trivial leap to believe that the two

figures in Figure 7 are similar in every detail. For

example, students will often think that, since the larger

figure is made from five copies of the smaller figure, the

larger one has five times as many pieces in it, so the two

cannot be similar. To accept that they are identical in

detail, students must have a mental image of how

fractals can be generated, with that image entailing the

fractal itself as being the limit of the generating process.

To continue, you need 5 copies of the smaller curve

to make the larger replicate, and the scale factor is 3 (the

larger curve lies on a segment 3 times as long as the

segment on which the smaller one lies). If we believe

that the curves in Figure 7 are similar, then we can

generalize from the Euclidean case to conclude that
5 = 3d , where d  is the curve’s dimension—but not

necessarily a whole number. The number d which gives

5 = 3d  is d =
log5
log3

, or d = 1.46.
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Figure 7. Are these two curves similar in every detail?

In particular, does the larger curve have 5 times as many

pices in it as the smaller curve?

In summary, I claim that to understand fractal

dimension as a generalization of Euclidean dimension,

students must have interiorized the relationship between

scale and replication stated below to the point it is so

obvious that it cannot be questioned.

If r  is the number of copies used to replicate a

figure, and if k  is the scale factor (each linear

component of the replicate will be k times as long as its

original), then, in Euclidean space, r kd=  for some

whole number d.

That students reach the point that this relationship is

obvious is highly non-trivial. I suspect that interiorizing

this relationship is tantamount to developing a full

scheme for multiplictive reasoning. Sounds like a

promising dissertation topic.
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