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This paper is a reflection on activities designed for

computer-enhanced in-service training of high school

mathematics teachers. The goal of these activities is

two-fold: to promote advanced mathematical thinking,

and to introduce new uses of existing technology tools.

The authors suggest using jointly a computer-based

graphing calculator, a dynamic geometry program, and

a spreadsheet program in exploring linear algebraic

equations to bridge finite and infinite mathematics

structures. A linear algebraic equation may be

introduced in the context of mathematically modeling a

uniform movement. In turn, in the technology-rich

environment, solving a linear algebraic equation can be

introduced through the method of iterations that

ultimately leads to the discussion of infinite processes.

This opens a window on the complexity of infinite

structures, which includes the convergent, divergent and

cyclic behavior of iterative sequences. Computer-

enhanced representations of infinite processes include

bisector-bounded staircases and cobweb diagrams,

animated pencils of straight lines, and iterations of

sequences both in numeric and graphic notations.

Finally, by exploring a piece-wise linear recursion, one

can arrive at the frontiers of mathematical knowledge,

and, in developing mature concepts of convergence,

divergence and cycles, experience how chaos—a

remarkable phenomena of modern mathematics—can

arise in dynamic systems of a surprisingly simple form.

Introduction

Modern technology tools offer a dynamic environment

in which to visualize a complexity of infinite processes.

A first experience with such processes in high school

may emerge from the study of simple iterative

sequences in connection with the concept of limit. This

study can be grounded in using instructional computing

to extend students’ knowledge of properties of functions

and algebraic equations. One computational approach to

the concept of the limit of a sequence is to use jointly a

graphing calculator such as GC2.2 [GC] (Robbins &

Apple Computer, Inc., 1991), a dynamic geometry

program such as Geometer’s Sketchpad [GSP] (Jackiw,

1998), and a spreadsheet such as Microsoft Excel

(Microsoft Excel 98, 1998). Using these computer-

based tools can offer a dynamic way of exploring finite

processes and enhance the development of advanced

mathematical thinking dealing with infinite processes

(Tall, 1992). Such an informal, explorative approach to

the concept of the limit of a sequence, from algebraic,

geometric, graphical and numerical perspectives, is a

method long advocated by the National Council of

Teachers of Mathematics (NCTM, 1989, 1991, 2000).

Solving algebraic equations, particularly linear

equations, is an example of a finite process with which

high school students are familiar. Contemporary

mathematics pedagogy strives to engage learners in

activities conducive to making connections between

new ideas and previous experience. With such a focus

on connections in mind, solving linear equations can be

introduced to high school students through the method

of iterations, something that ultimately involves the

discussion of infinite processes. This paper

demonstrates how the joint use of various technology

tools can promote mature concepts of infinite processes

and, through exploring a word problem on uniform

movement, open a window on limits, cycles, and chaos.

An alternative discussion of the topic and its extension

to non-linear models through a tool kit approach can be
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found elsewhere (Abramovich & Brantlinger, 1998;

Abramovich, Brantlinger, & Norton, 1999).

The Situation: A Car and a Bicyclist

To begin, consider the following problematic situation,

which is relevant to a typical high school algebra

curriculum:

From a specific moment, the driver of a car will
catch up with a bicyclist at rest in 4.5 hours.

However, if the bicyclist is moving at that moment,
at a speed that is one quarter that of the car, when

will the car catch up with the bicyclist?

This is a standard problem on a uniform movement

and its solution can be found using a well-known

relation that links distance, time, and velocity. Let x be

the time sought. There are at least two different ways to

reduce the problem to a linear algebraic equation in

variable x. While each such equation would have the

same solution, the reasoning that leads to the solution is

very important for students developing ideas about

infinite processes.

First, if one concentrates on the original distance

between the vehicles, this distance can be represented as

both V x V x⋅ − ⋅0 25.  and V ⋅ 4 5. , where V denotes the

car’s velocity. Therefore, one may derive the equality,

V x V x V⋅ − ⋅ = ⋅0 25 4 5. . . This yields 3 18x = ,

whence x = 6 . So, it takes the car 6 hours to catch up

with the bicyclist.

Second, if one concentrates on the total distance

traveled, this distance can be combined as the sum of
4 5. V  and 0 25. x V⋅  . This is due to the fact that the car

requires 4.5 hours to reach the starting point of the

bicyclist and the additional riding time, x, of the biker to

cover the remaining distance. Note that the distance is

also given by the product, x V⋅ , of the total time and

the car’s velocity. This yields 0 25 4 5. .xV V xV+ =  or,

factoring out the non-zero velocity,

0 25 4 5 1. . ( )x x+ =
as another model for the problem. Of course, the

solution to equation (1) is x = 6 .

Exploring the Situation with the Graphing
Calculator

One can use equation (1) as more than another algebraic

way of solving the problem. It also allows for a

graphical solution based on the construction of the

graphs of both sides of the equation. A graphical

solution makes it possible to establish links between

one’s experience with functions and graphs and the

development of an infinite mode in mathematical

thinking. The use of the GC makes it possible to

illustrate a graphical approach.

Figure 1. Graphical solutions of equations (1) and (3).

The left-hand side of Figure 1 displays the graphs of

the left and right-sides of equation (1) set equal to y.

The second of these two graphs is the bisector of the

first quadrant angle. The inclusion of this graph is

necessary for a geometric exploration of bisector-

bounded staircases. But, first, consider the implications

and limitations of using graphical and geometric

representations of algebraic solutions.

The straight lines in Figure 1 meet at the point

whose x-value is a root of equation (1). Although the

visual offered by computer graphics (as well as

computer coordinates) indicate that this root is x = 6 ,

the apparent point of concurrency of the straight lines

can only be determined within a certain degree of

accuracy determined by the software’s set up. Indeed,

one could hardly point at x = 6  exactly, for the number

6, like any other number, is an abstraction; its geometric

image (a point) is just a representation of the number

rather than the number itself. Therefore the point that

one recognizes as a common point for the two straight

lines is an approximate geometric representation for the

solution of equation (1). The idea is quite subtle for the

present example which has a whole number solution,

but similar graphical examples with irrational solutions

may be used for emphasis. In any case, the use of the

zoom-in feature of the GC enables one to refine any

point chosen as an approximation to the solution.

Continuing this technique of “zooming-in” on the

refined point allows the user to approach the exact

solution. Though the exact solution can never be
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reached, the potentially infinite process of refinements

sets the tone for further exploration.

In addition, a capability of the GC to graph

functions depending on a varying parameter makes it

possible to visualize dynamically how straight lines with

different slopes, yet described by equivalent equations,
intercept the bisector at the point ( , )6 6 . This can be

done by animating slope m in the pencil of straight lines

described by the equation

y m x= − +( ) ( )6 6 2

in the range from -3 to 3. For example, the right-hand

side of Figure 1 shows a graphic solution to the equation

x x= − − +1 5 6 6 3. ( ) ( )

Once the equivalence of the graphs of (1) and (3) is es-

tablished empirically in a GC environment, the equiva-

lence of their equations can be demonstrated algebrai-

cally. Equation (3) will be used later in this paper.

Constructing a Bisector-Bounded Staircase

The "zooming-in" explorations in the computer graphics

environment can prompt a geometric method of

approaching the exact solution x = 6  no matter how far

the starting point is from the exact solution. Take any
starting point on the x-axis and mark it as x1 . Draw a

vertical line from x1  to ( , . . ) ( , )x x x x1 1 1 20 25 4 5+ = , a

point  which belongs to the straight line

y x= +0 25 4 5 4. . ( )

Draw a horizontal line from the point ( , )x x1 2  to the

point ( , )x x2 2  on the bisector y x= . Draw a vertical

line from the point ( , )x x2 2  to the point

( , . . ) ( , )x x x x2 2 2 30 25 4 5+ =  on straight line (4). Draw

a horizontal line from the point ( , )x x2 3  to the point

( , )x x3 3  on the bisector y x=  and so on. The resulting

construction, made possible with the use of GSP, shows

a kind of a staircase bounded by the bisector of the first

quadrant angle and the graph of equation (4) (Figure 2).

Indeed, this staircase becomes trapped between the
bisector y x=  and straight line (4), so that the point

x = 6  becomes its point of attraction. In other words,
starting from an arbitrary point x1 , the iterations of the

sequence

x xn n= +−0 25 4 5 51. . ( )

approach the root of equation (1).

Figure 2. A GSP depiction of the bisector-bounded

staircase.

The construction of such a bisector-bounded

staircase can be done by playing a specially-created

GSP script on the following five givens: a starting point,

the x-axis, a straight line, the y-axis, and the bisector.

The "dynamic" attribute of GSP—the possibility of

altering various components of the givens and, by

playing a script, observing a resulting construct-

ion—may also be useful in determining the behavior of

iterations in various situations. Particularly, by replacing

equation  (4) with several equivalent forms with

different slopes, one can examine the effects of altering

the slope of the straight line. A summary of the results

of computer explorations will be provided in the next

section. One case, however, will be examined in detail.

Exploring Sequences Through the Variation of a
Slope

Linear equation (4) gives birth to an iterative sequence

(5) which, in turn, allows one to observe the case of

monotone convergence. Each iteration of this sequence,

or, in other words, each step of the staircase yields a

value that approaches the solution to the original

problem from one direction (depending on an initial
value x1 ). In fact, through explorations in a GSP

environment, it can be determined that for any slope m

such that 0 1< <m  the bisector-bounded staircase

corresponding to equation (2) represents geometrically a

monotone convergence of an iterative sequence. Such

sequences can then be explored by using a spreadsheet.

As described elsewhere (Abramovich & Levin, 1994), a

spreadsheet environment is particularly amenable to the

numerical study of the epsilon-N definition of the limit

of a sequence.

Various other intervals of m in equation (2) reveal

qualitatively different forms of convergence and diver-

gence. These forms include oscillating convergence
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( )− < <1 0m , 2-cycles ( )m = −1 , monotone diver-

gence ( )m > 1  and oscillating divergence ( )m < −1 .

Note the omission of the uninteresting cases of a 1-cycle
( , )m m= =0 1 . Once again, a better understanding of

each of these forms may be attained through examining

numeric and graphic representations of corresponding

sequences offered by a spreadsheet. As an example, the

case of oscillating divergence is examined below in the

multiple-application environment.

This particularly interesting case can be introduced

through constructing a staircase for equation (3), already

known from the GC setting. This can be done by

manually changing a slope of a straight line in a GSP

environment until such alterations create a graph for the

equation (at least approximately). One can then iterate

the sequence

x xn n+ = − +1 1 5 15 6. ( )

by using a spreadsheet. Finally, sequence (6) can be

explored with the GC.

Figure 3. Sequence (6) yields bi-directional growth

(left) and divergent oscillations (right).

Explorations of slope caused by click-and-drag

alterations in a GSP environment suggest that any slope

m < −1 brings the case of oscillating divergence. More

specifically, in building a new staircase, one may plot
two points, say ( , )0 15  and ( , )6 6 , to construct the

straight line described by the equation y x= − +1 5 15. .

One then constructs the bisector, chooses a starting

point, and plays the GSP script mentioned above on five

geometric objects. Figure 3 shows a spiral staircase (a
cobweb) that seems to run away from the point ( , )6 6 .

This diagram demonstrates the bi-directional growth of

iterative sequence (6).

The use of a spreadsheet (Figure 3) allows for a

numeric representation of sequence (6) by first selecting

an initial value x1  and placing it in the top cell of

column A. The entry of the next cell, displayed in the

formula bar, is determined by sequence (6). This is

copied down column A yielding consecutive iterations

of sequence (6). The modeling data exhibits the case of

oscillating divergence. Spreadsheet charts provide a

graphical illustration of this phenomenon.

Cycles: A Special Case of Oscillations

When the slope of a line for a given equation is negative

and less than 1 in absolute value, one should expect a

phenomenon similar to the last case (oscillations). This

time, however, a staircase or, better, a cobweb is being

squeezed in toward the point of intersection of the new

line and the bisector (oscillating convergence). The

question arises, then, as to what kind of a cobweb would

be generated by a straight line with a slope that

separates these two intervals—the intervals m < −1 and

− < <1 0m  (namely, m = −1). A plausible conjecture

is that such a cobweb neither approaches nor escapes the

point of intersection. One can examine such a case with

yet another equivalent form of equation (1),
x x= − +12. In fact, the resulting sequence
x xn n+ = − +1 12  yields a cycle as displayed in Figure 4.

Figure 4. The new sequence, with m = −1, yields a

cycle (left) whose periodic behavior is graphically

illustrated (right).

A cycle is a pattern that occurs with repetitions. The

period (duration) of a cycle is the length of time

(measured in iterations) between repetitions. The cycle

in question has a period of 2, and it is worth noting that

no cycles of duration greater than 2 occur through the

iteration of linear functions. In fact, in exploring the

cases for various slopes, one finds that cycles of any

non-trivial kind (cycles with period greater than 1)

occur only for m = −1. Since all cases of bisector-
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bounded staircases with m = −1 are geometrically

equivalent to one another, the claim about 2-cycles

follows from a single case. In a general setting, cycles

become more interesting and more important because of

the patterns and predictability they offer. Cyclic

sequences exhibit predictable behavior in that their

values form a fixed and bounded pattern. In contrast, the

case that follows deals with the bounded yet

unpredictable behavior of a simple iterative sequence.

Moving Toward Mathematical Frontiers

The use of graphs of linear functions as a vehicle for

generating knowledge about infinite processes also

prompts the consideration of a piece-wise linear

function whose graph resembles a tent. Through

exploring such a function in GSP and spreadsheet

settings, one comes across an extremely interesting type

of sequential behavior called chaos. The existence of

chaos in dynamic systems was already known to

Poincaré in the 19th century; however, the systematic

study of chaos began only about three decades ago.

Mathematically, chaos is defined as an aperiodic

bounded dynamic in a deterministic system with

sensitive dependence on initial conditions (Bruce,

Giblin, & Rippon, 1990).

Figure 5. Sequence (7) yields a cobweb of chaos (left)

and aperiodic bounded dynamic (right).

To understand this definition, consider the

following iterative sequence, commonly referred to by

professional mathematicians as the tent map:

x xn n+ = − −1 1 2 1 7( )

Equation (7), considered simultaneously as a formula

and sequence, can be used to exemplify each aspect of

the definition of chaos. GSP and a spreadsheet can be

used jointly to illustrate the point (Figure 5).

First, a deterministic system is one that allows for a

definitive (rather than random) rule, like formula (7),

that governs the behavior of a system. An aperiodic

dynamic, which is exhibited by sequence (7), means that

no value is ever repeated. In turn, bounded dynamic

means that a staircase (or the “orbit” of any initial point)

remains in a definite bounded region for arbitrarily large

numbers of iterations, as implied by an inspection of

Figure 5. Finally, as the spreadsheet template of Figure

6 shows, sensitive dependence on initial conditions

means that two starting points, that are initially close to

each other, will gradually drift apart as the number of

iterations of sequence (7) grows large.

Figure 6. Sensitive dependence of sequence (7) on

initial conditions.

Conclusion

Mathematics education research has shown that

teaching the concept of the limit of a sequence through a

limited set of examples could cause misconceptions

(Tall, 1992). For example, students who have only seen

sequences which converge monotonously, are likely to

dismiss the convergence of a dampening sine function.

Technology-enabled pedagogy, as suggested in this

paper, makes it possible to demonstrate sequences with

different behaviors using visualization and multiple

representation of infinite processes. Sequences with

qualitatively different behaviors can be generated,

examined, and compared to each other using a multiple-

application environment. Mathematical visualization

provided by newer tools of technology can enhance the

development of concepts of convergence/divergence

and allow for clearer understanding of more advanced

ideas in calculus and analysis.

The approach taken in this paper is consistent with

an informal and explorative discourse on infinitesimal

aspects of mathematics, as advocated by the NCTM

Standards (NCTM 1989). In addition, the prescribed

investigations offer mathematics teachers a means by

which to introduce high school students to chaos–a



Vol. 10 No. 2, Summer 2000 41

mathematical science which is at the frontier of

knowledge about processes occurring in nature. The

authors have demonstrated that the phenomenon of

chaos could follow in a natural progression from the

discussion of bisector-bounded staircases. Throughout

such a discussion, there are occasions for students to

gain insight on the complexity of the concept of infinity.

Perhaps the most notable feature of this approach is that,

through appropriate use of tools of technology, one can

generate the entire spectrum of qualitatively different

convergence/divergence behaviors for simple infinite

processes, all proceeding from a linear algebraic

problem on a uniform movement.
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From the Archives…

A spider has woven a web beginning with segment CA and then zigzagging between rays BA and BC as shown in the

diagram below. Suppose that BC = 1 and that m ABC∠ = °45 . Calculate the length of the zigzag path from C to B.

Possible variation: Vary the measure of ∠ABC .

This problem first appeared in the first issue of  TME (Summer 1990). It was provided by Dr. Jim Wilson and was part

of an ongoing feature called From Dr. Wilson’s Notebook…

...
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