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The Characteristics of Mathematical Creativity
Bharath Sriraman

Mathematical creativity ensures the growth of mathematics as a whole. However, the source of this growth, the
creativity of the mathematician, is a relatively unexplored area in mathematics and mathematics education. In
order to investigate how mathematicians create mathematics, a qualitative study involving five creative
mathematicians was conducted. The mathematicians in this study verbally reflected on the thought processes
involved in creating mathematics. Analytic induction was used to analyze the qualitative data in the interview
transcripts and to verify the theory driven hypotheses. The results indicate that, in general, the mathematicians’
creative processes followed the four-stage Gestalt model of preparation-incubation-illumination-verification. It
was found that social interaction, imagery, heuristics, intuition, and proof were the common characteristics of
mathematical creativity. Additionally, contemporary models of creativity from psychology were reviewed and
used to interpret the characteristics of mathematical creativity
.

Mathematical creativity ensures the growth of the
field of mathematics as a whole. The constant increase
in the number of journals devoted to mathematics
research bears evidence to the growth of mathematics.
Yet what lies at the essence of this growth, the
creativity of the mathematician, has not been the
subject of much research. It is usually the case that
most mathematicians are uninterested in analyzing the
thought processes that result in mathematical creation
(Ervynck, 1991). The earliest known attempt to study
mathematical creativity was an extensive questionnaire
published in the French periodical L'Enseigement
Mathematique (1902). This questionnaire and a lecture
on creativity given by the renowned 20th century
mathematician Henri Poincaré to the Societé de
Psychologie inspired his colleague Jacques Hadamard,
another prominent 20th century mathematician, to
investigate the psychology of mathematical creativity
(Hadamard, 1945). Hadamard (1945) undertook an
informal inquiry among prominent mathematicians and
scientists in America, including George Birkhoff,
George Polya, and Albert Einstein, about the mental
images used in doing mathematics. Hadamard (1945),
influenced by the Gestalt psychology of his time,
theorized that mathematicians’ creative processes
followed the four-stage Gestalt model (Wallas, 1926)
of preparation-incubation-illumination-verification.
As we will see, the four-stage Gestalt model is a
characterization of the mathematician's creative
process, but it does not define creativity per se. How

does one define creativity? In particular what exactly is
mathematical creativity? Is it the discovery of a new
theorem by a research mathematician? Does student
discovery of a hitherto known result also constitute
creativity? These are among the areas of exploration in
this paper.

The Problem Of Defining Creativity
Mathematical creativity has been simply described

as discernment, or choice (Poincaré, 1948). According
to Poincaré (1948), to create consists precisely in not
making useless combinations and in making those
which are useful and which are only a small minority.
Poincaré is referring to the fact that the “proper”
combination of only a small minority of ideas results in
a creative insight whereas a majority of such
combinations does not result in a creative outcome.
This may seem like a vague characterization of
mathematical creativity. One can interpret Poincaré's
"choice" metaphor to mean the ability of the
mathematician to choose carefully between questions
(or problems) that bear fruition, as opposed to those
that lead to nothing new. But this interpretation does
not resolve the fact that Poincaré’s definition of
creativity overlooks the problem of novelty. In other
words, characterizing mathematical creativity as the
ability to choose between useful and useless
combinations is akin to characterizing the art of
sculpting as a process of cutting away the unnecessary!

Poincaré's (1948) definition of creativity was a
result of the circumstances under which he stumbled
upon deep results in Fuchsian functions. The first stage
in creativity consists of working hard to get an insight
into the problem at hand. Poincaré (1948) called this
the preliminary period of conscious work. This period
is also referred to as the preparatory stage (Hadamard,

Bharath Sriraman is an assistant professor of mathematics and
mathematics education at the University of Montana. His
publications and research interests are in the areas of cognition,
foundational issues, mathematical creativity, problem-solving,
proof, and gifted education.



20 Mathematical Creativity

1945). In the second, or incubatory, stage (Hadamard,
1945), the problem is put aside for a period of time and
the mind is occupied with other problems. In the third
stage the solution suddenly appears while the
mathematician is perhaps engaged in other unrelated
activities. "This appearance of sudden illumination is a
manifest sign of long, unconscious prior work"
(Poincaré, 1948). Hadamard (1945) referred to this as
the illuminatory stage. However, the creative process
does not end here. There is a fourth and final stage,
which consists of expressing the results in language or
writing. At this stage, one verifies the result, makes it
precise, and looks for possible extensions through
utilization of the result. The “Gestalt model” has some
shortcomings. First, the model mainly applies to
problems that have been posed a priori by
mathematicians, thereby ignoring the fascinating
process by which the actual questions evolve.
Additionally, the model attributes a large portion of
what “happens” in the incubatory and illuminatory
phases to subconscious drives. The first of these
shortcomings, the problem of how questions are
developed, is partially addressed by Ervynck (1991) in
his three-stage model.

Ervynck (1991) described mathematical creativity
in terms of three stages. The first stage (Stage 0) is
referred to as the preliminary technical stage, which
consists of "some kind of technical or practical
application of mathematical rules and procedures,
without the user having any awareness of the
theoretical foundation" (p. 42). The second stage
(Stage 1) is that of algorithmic activity, which consists
primarily of performing mathematical techniques, such
as explicitly applying an algorithm repeatedly. The
third stage (Stage 2) is referred to as crea t i ve
(conceptual, constructive) activity. This is the stage in
which true mathematical creativity occurs and consists
of non-algorithmic decision making. "The decisions
that have to be taken may be of a widely divergent
nature and always involve a choice" (p. 43). Although
Ervynck (1991) tries to describe the process by which a
mathematician arrives at the questions through his
characterizations of Stage 0 and Stage 1, his
description of mathematical creativity is very similar to
those of Poincaré and Hadamard. In particular his use
of the term “non-algorithmic decision making” is
analogous to Poincaré’s use of the “choice” metaphor.

The mathematics education literature indicates that
very few attempts have been made to explicitly define
mathematical creativity. There are references made to
creativity by the Soviet researcher Krutetskii (1976) in
the context of students’ abilities to abstract and

generalize mathematical content. There is also an
outstanding example of a mathematician (George
Polya) attempting to give heuristics to tackle problems
in a manner akin to the methods used by trained
mathematicians. Polya (1954) observed that in "trying
to solve a problem, we consider different aspects of it
in turn, we roll it over and over in our minds; variation
of the problem is essential to our work." Polya (1954)
emphasized the use of a variety of heuristics for
solving mathematical problems of varying complexity.
In examining the plausibility of a mathematical
conjecture, mathematicians use a variety of strategies.
In looking for conspicuous patterns, mathematicians
use such heuristics as (1) verifying consequences, (2)
successively verifying several consequences, (3)
verifying an improbable consequence, (4) inferring
from analogy, and (5) deepening the analogy.

As is evident in the preceding paragraphs, the
problem of defining creativity is by no means an easy
one. However, psychologists’ renewed interest in the
phenomenon of creativity has resulted in literature that
attempts to define and operationalize the word
“creativity.” Recently psychologists have attempted to
link creativity to measures of intelligence (Sternberg,
1985) and to the ability to abstract, generalize
(Sternberg, 1985), and solve complex problems
(Frensch & Sternberg, 1992). Sternberg and Lubart
(2000) define creativity as the ability to produce
unexpected original work that is useful and adaptive.
Mathematicians would raise several arguments with
this definition, simply because the results of creative
work may not always have implications that are
“useful” in terms of applicability in the contemporary
world. A recent example that comes to mind is Andrew
Wiles’ proof of Fermat’s Last Theorem. The
mathematical community views his work as creative. It
was unexpected and original but had no applicability in
the sense Sternberg and Lubart (2000) suggest. Hence,
I think it is sufficient to define creativity as the ability
to produce novel or original work, which is compatible
with my personal definition of mathematical creativity
as the process that results in unusual and insightful
solutions to a given problem, irrespective of the level
of complexity. In the context of this study involving
professional mathematicians, mathematical creativity is
defined as the publication of original results in
prominent mathematics research journals.

The Motivation For Studying Creativity
The lack of recent mathematics education literature

on the subject of creativity was one of the motivations
for conducting this study. Fifteen years ago Muir
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(1988) invited mathematicians to complete a modified
and updated version of the survey that appeared in
L'Enseigement Mathematique (1902) but the results of
this endeavor are as yet unknown. The purpose of this
study was to gain insight into the nature of
mathematical creativity. I was interested in distilling
common attributes of the creative process to see if
there were any underlying themes that characterized
mathematical creativity. The specific questions of
exploration in this study were:

Is the Gestalt model of mathematical creativity still
applicable today?

What are the characteristics of the creative process
in mathematics?

Does the study of mathematical creativity have any
implications for the classroom?

Literature Review
Any study on the nature of mathematical creativity

begs the question as to whether the mathematician
discovers or invents mathematics. Therefore, this
review begins with a brief description of the four most
popular viewpoints on the nature of mathematics. This
is followed by a comprehensive review of
contemporary models of creativity from psychology.

The Nature of Mathematics
Mathematicians actively involved in research have

certain beliefs about the ontological nature of
mathematics that influence their approach to research
(Davis & Hersh, 1981; Sriraman, 2004a). The Platonist
viewpoint is that mathematical objects exist prior to
their discovery and that “any meaningful question
about a mathematical object has a definite answer,
whether we are able to determine it or not” (Davis &
Hersh, 1981). According to this view, mathematicians
do not invent or create mathematics - they discover
mathematics. Logicists hold that “all concepts of
mathematics can ultimately be reduced to logical
concepts” which implies that “all mathematical truths
can be proved from the axioms and rules of inference
and logic alone” (Ernest, 1991). Formalists do not
believe that mathematics is discovered; they believe
mathematics is simply a game, created by
mathematicians, based on strings of symbols that have
no meaning (Davis & Hersh, 1981).

Constructivism (incorporating Intuitionism) is one
of the major schools of thought (besides Platonism,
Logicism and Formalism) that arose due to the
contradictions that emerged in the development of the
theory of sets and the theory of functions during the
early part of the 20th century. The constructivist

(intuitionist) viewpoint is that “human mathematical
activity is fundamental in the creation of new
knowledge and that both mathematical truths and the
existence of mathematical objects must be established
by constructive methods" (Ernest, 1991, p. 29).
Contradictions like Russell’s Paradox were a major
blow to the absolutist view of mathematical
knowledge, for if mathematics is certain and all its
theorems are certain, how can there be contradictions
among its theorems? The early constructivists in
mathematics were the intuitionists Brouwer and
Heyting. Constructivists claim that both mathematical
truths and the existence of mathematical objects must
be established by constructivist methods.

 The question then is how does a mathematician go
about conducting mathematics research? Do the
questions appear out of the blue, or is there a mode of
thinking or inquiry that leads to meaningful questions
and to the methodology for tackling these questions? I
contend that the types of questions asked are
determined to a large extent by the culture in which the
mathematician lives and works. Simply put, it is
impossible for an individual to acquire knowledge of
the external world without social interaction.
According to Ernest (1994) there is no underlying
metaphor for the wholly isolated individual mind.
Instead, the underlying metaphor is that of persons in
conversation, persons who participate in meaningful
linguistic interaction and dialogue (Ernest, 1994).
Language is the shaper, as well as being the
“summative” product, of individual minds
(Wittgenstein, 1978). The recent literature in
psychology acknowledges these social dimensions of
human activity as being instrumental in the creative
process.
The Notion of Creativity in Psychology

As stated earlier, research on creativity has been on
the fringes of psychology, educational psychology, and
mathematics education. It is only in the last twenty-five
years that there has been a renewed interest in the
phenomenon of creativity in the psychology
community. The Handbook of Creativity (Sternberg,
2000), which contains a comprehensive review of all
research then available in the field of creativity,
suggests that most of the approaches used in the study
of creativity can be subsumed under six categories:
mystical, pragmatic, psychodynamic, psychometric,
cognitive, and social-personality. Each of these
approaches is briefly reviewed.
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The mystical approach
The mystical approach to studying creativity

suggests that creativity is the result of divine
inspiration or is a spiritual process. In the history of
mathematics, Blaise Pascal claimed that many of his
mathematical insights came directly from God. The
renowned 19th century algebraist Leopold Kronecker
said that “God made the integers, all the rest is the
work of man” (Gallian, 1994). Kronecker believed that
all other numbers, being the work of man, were to be
avoided; and although his radical beliefs did not attract
many supporters, the intuitionists advocated his beliefs
about constructive proofs many years after his death.
There have been attempts to explore possible
relationships between mathematicians’ beliefs about
the nature of mathematics and their creativity (Davis
and Hersh, 1981; Hadamard, 1945; Poincaré, 1948;
Sriraman, 2004a). These studies indicate that such a
relationship does exist. It is commonly believed that
the neo-Platonist view is helpful to the research
mathematician because of the innate belief that the
sought after result/relationship already exists.

The pragmatic approach
The pragmatic approach entails “being concerned

primarily with developing creativity” (Sternberg, 2000,
p. 5), as opposed to understanding it. Polya’s (1954)
emphasis on the use of a variety of heuristics for
solving mathematical problems of varying complexity
is an example of a pragmatic approach. Thus,
heuristics can be viewed as a decision-making
mechanism which leads the mathematician down a
certain path, the outcome of which may or may not be
fruitful. The popular technique of brainstorming, often
used in corporate or other business settings, is another
example of inducing creativity by seeking as many
ideas or solutions as possible in a non-critical setting.

The psychodynamic approach
The psychodynamic approach to studying

creativity is based on the idea that creativity arises
from the tension between conscious reality and
unconscious drives (Hadamard, 1945; Poincaré, 1948,
Sternberg, 2000, Wallas, 1926; Wertheimer, 1945).
The four-step Gestalt model (preparation-incubation-
illumination-verification) is an example of the use of a
psychodynamic approach to studying creativity. It
should be noted that the gestalt model has served as
kindling for many contemporary problem-solving
models (Polya, 1945; Schoenfeld, 1985; Lester, 1985).
Early psychodynamic approaches to creativity were
used to construct case studies of eminent creators such

as Albert Einstein, but the behaviorists criticized this
approach because of the difficulty in measuring
proposed theoretical constructs.

The psychometric approach
The psychometric approach to studying creativity

entails quantifying the notion of creativity with the aid
of paper and pencil tasks. An example of this would be
the Torrance Tests of Creative Thinking, developed by
Torrance (1974), that are used by many gifted
programs in middle and high schools to identify
students that are gifted/creative. These tests consist of
several verbal and figural tasks that call for problem-
solving skills and divergent thinking. The test is scored
for fluency, flexibility, originality (the statistical rarity
of a response), and elaboration (Sternberg, 2000).
Sternberg (2000) states that there are positive and
negative sides to the psychometric approach. On the
positive side, these tests allow for research with non-
eminent people, are easy to administer, and objectively
scored. The negative side is that numerical scores fail
to capture the concept of creativity because they are
based on brief paper and pencil tests. Researchers call
for using more significant productions such as writing
samples, drawings, etc., subjectively evaluated by a
panel of experts, instead of simply relying on a
numerical measure.

The cognitive approach
The cognitive approach to the study of creativity

focuses on understanding the “mental representations
and processes underlying human thought” (Sternberg,
2000, p. 7). Weisberg (1993) suggests that creativity
entails the use of ordinary cognitive processes and
results in original and extraordinary products. These
products are the result of cognitive processes acting on
the knowledge already stored in the memory of the
individual. There is a significant amount of literature in
the area of information processing (Birkhoff, 1969;
Minsky, 1985) that attempts to isolate and explain
cognitive processes in terms of machine metaphors.

The social-personality approach
The social-personality approach to studying

creativity focuses on personality and motivational
variables as well as the socio-cultural environment as
sources of creativity. Sternberg (2000) states that
numerous studies conducted at the societal level
indicate that “eminent levels of creativity over large
spans of time are statistically linked to variables such
as cultural diversity, war, availability of role models,
availability of financial support, and competitors in a
domain” (p. 9).
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Most of the recent literature on creativity
(Csikszentmihalyi, 1988, 2000; Gruber & Wallace,
2000; Sternberg & Lubart, 1996) suggests that
creativity is the result of a confluence of one or more
of the factors from these six aforementioned
categories. The “confluence” approach to the study of
creativity has gained credibility, and the research
literature has numerous confluence theories for better
understanding the process of creativity. A review of the
most commonly cited confluence theories of creativity
and a description of the methodology employed for
data collection and data analysis in this study follow.

Confluence Theories of Creativity
The three most commonly cited “confluence”

approaches to the study of creativity are the “systems
approach” (Csikszentmihalyi, 1988, 2000); “the case
study as evolving systems approach” (Gruber &
Wallace, 2000), and the “investment theory approach”
(Sternberg & Lubart, 1996). The case study as an
evolving system has the following components. First, it
views creative work as multi-faceted. So, in
constructing a case study of a creative work, one must
distill the facets that are relevant and construct the case
study based on the chosen facets. Some facets that can
be used to construct an evolving system case study are:
(1) uniqueness of the work; (2) a narrative of what the
creator achieved; (3) systems of belief; (4) multiple
time-scales (construct the time-scales involved in the
production of the creative work); (5) problem solving;
and (6) contextual frame such as family, schooling, and
teacher’s influences (Gruber & Wallace, 2000). In
summary, constructing a case study of a creative work
as an evolving system entails incorporating the many
facets suggested by Gruber & Wallace (2000). One
could also evaluate a case study involving creative
work by looking for the above mentioned facets.

The systems approach
The systems approach takes into account the social

and cultural dimensions of creativity instead of simply
viewing creativity as an individualistic psychological
process. The systems approach studies the interaction
between the individual, domain, and field. The field
consists of people who have influence over a domain.
For example, editors of mathematics research journals
have influence over the domain of mathematics. The
domain is in a sense a cultural organism that preserves
and transmits creative products to individuals in the
field. The systems model suggests that creativity is a
process that is observable at the “intersection where
individuals, domains and fields interact”

(Csikzentmihalyi, 2000). These three components -
individual, domain, and field - are necessary because
the individual operates from a cultural or symbolic
(domain) aspect as well as a social (field) aspect.

“The domain is a necessary component of
creativity because it is impossible to introduce a
variation without reference to an existing pattern. New
is meaningful only in reference to the old”
(Csikzentmihalyi, 2000). Thus, creativity occurs when
an individual proposes a change in a given domain,
which is then transmitted by the field through time.
The personal background of an individual and his
position in a domain naturally influence the likelihood
of his making a contribution. For example, a
mathematician working at a research university is more
likely to produce research papers because of the time
available for “thinking” as well as the creative
influence of being immersed in a culture where ideas
flourish. It is no coincidence that in the history of
science, there are significant contributions from
clergymen such as Pascal and Mendel because they
had the means and the leisure to “think.”
Csikszentmihalyi (2000) argues that novel ideas, which
could result in significant changes, are unlikely to be
adopted unless they are sanctioned by the experts.
These “gatekeepers” (experts) constitute the field. For
example, in mathematics, the opinion of a very small
number of leading researchers was enough to certify
the validity of Andrew Wiles’ proof of Fermat’s Last
Theorem.

There are numerous examples in the history of
mathematics that fall within the systems model. For
instance, the Bourbaki, a group of mostly French
mathematicians who began meeting in the 1930s,
aimed to write a thorough unified account of all
mathematics. The Bourbaki were essentially a group of
expert mathematicians that tried to unify all of
mathematics and become the gatekeepers of the field,
so to speak, by setting the standard for rigor. Although
the Bourbakists failed in their attempt, students of the
Bourbakists, who are editors of certain prominent
journals, to this day demand a very high degree of rigor
in submitted articles, thereby serving as gatekeepers of
the field.

A different example is that of the role of proof.
Proof is the social process through which the
mathematical community validates the mathematician's
creative work (Hanna, 1991). The Russian logician
Manin (1977) said "A proof becomes a proof after the
social act of accepting it as a proof. This is true of
mathematics as it is of physics, linguistics, and
biology."
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In summary, the systems model of creativity
suggests that for creativity to occur, a set of rules and
practices must be transmitted from the domain to the
individual. The individual then must produce a novel
variation in the content of the domain, and this
variation must be selected by the field for inclusion in
the domain.

Gruber and Wallace’s case study as evolving
systems approach
In contrast to Csikszentmihalyi’s (2000) argument

calling for a focus on communities in which creativity
manifests itself, Gruber and Wallace (2000) propose a
model that treats each individual as a unique evolving
system of creativity and ideas; and, therefore, each
individual’s creative work must be studied on its own.
This viewpoint of Gruber and Wallace (2000) is a
belated victory of sorts for the Gestaltists, who
essentially proclaimed the same thing almost a century
ago. Gruber and Wallace’s (2000) use of terminology
that jibes with current trends in psychology seems to
make their ideas more acceptable. They propose a
model that calls for “detailed analytic and sometimes
narrative descriptions of each case and efforts to
understand each case as a unique functioning system
(Gruber & Wallace, 2000, p. 93). It is important to note
that the emphasis of this model is not to explain the
origins of creativity, nor is it the personality of the
creative individual, but on “how creative work works”
(p. 94). The questions of concern to Gruber and
Wallace are: (1) What do creative people do when they
are being creative? and (2) How do creative people
deploy available resources to accomplish something
unique? In this model creative work is defined as that
which is novel and has value. This definition is
consistent with that used by current researchers in
creativity (Csikszentmihalyi, 2000; Sternberg &
Lubart, 2000). Gruber and Wallace (2000) also claim
that creative work is always the result of purposeful
behavior and that creative work is usually a long
undertaking “reckoned in months, years and decades”
(p. 94).

I do not agree with the claim that creative work is
always the result of purposeful behavior. One
counterexample that comes to mind is the discovery of
penicillin. The discovery of penicillin could be
attributed purely to chance. On the other hand, there
are numerous examples that support the claim that
creative work sometimes entails work that spans years,
and in mathematical folklore there are numerous
examples of such creative work. For example, Kepler’s
laws of planetary motion were the result of twenty

years of numerical calculations. Andrew Wiles’ proof
of Fermat’s Last Theorem was a seven-year
undertaking. The Riemann hypothesis states that the
roots of the zeta function (complex numbers z, at
which the zeta function equals zero) lie on the line
parallel to the imaginary axis and half a unit to the
right of it. This is perhaps the most outstanding
unproved conjecture in mathematics with numerous
implications. The analyst Levinson undertook a
determined calculation on his deathbed that increased
the credibility of the Riemann-hypothesis. This is
another example of creative work that falls within
Gruber and Wallace's (2000) model.

The investment theory approach
According to the investment theory model, creative

people are like good investors; that is, they buy low
and sell high (Sternberg & Lubart, 1996). The context
here is naturally in the realm of ideas. Creative people
conjure up ideas that are either unpopular or
disrespected and invest considerable time convincing
other people about the intrinsic worth of these ideas
(Sternberg & Lubart, 1996). They sell high in the sense
that they let other people pursue their ideas while they
move on to the next idea. Investment theory claims that
the convergence of six elements constitutes creativity.
The six elements are intelligence, knowledge, thinking
styles, personality, motivation, and environment. It is
important that the reader not mistake the word
intelligence for an IQ score. On the contrary, Sternberg
(1985) suggests a triarchic theory of intelligence that
consists of synthetic (ability to generate novel, task
appropriate ideas), analytic, and practical abilities.
Knowledge is defined as knowing enough about a
particular field to move it forward. Thinking styles are
defined as a preference for thinking in original ways of
one’s choosing, the ability to think globally as well as
locally, and the ability to distinguish questions of
importance from those that are not important.
Personality attributes that foster creative functioning
are the willingness to take risks, overcome obstacles,
and tolerate ambiguity. Finally, motivation and an
environment that is supportive and rewarding are
essential elements of creativity (Sternberg, 1985).

In investment theory, creativity involves the
interaction between a person, task, and environment.
This is, in a sense, a particular case of the systems
model (Csikszentmihalyi, 2000). The implication of
viewing creativity as the interaction between person,
task, and environment is that what is considered novel
or original may vary from one person, task, and
environment to another. The investment theory model
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suggests that creativity is more than a simple sum of
the attained level of functioning in each of the six
elements. Regardless of the functioning levels in other
elements, a certain level or threshold of knowledge is
required without which creativity is impossible. High
levels of intelligence and motivation can positively
enhance creativity, and compensations can occur to
counteract weaknesses in other elements. For example,
one could be in an environment that is non-supportive
of creative efforts, but a high level of motivation could
possibly overcome this and encourage the pursuit of
creative endeavors.

This concludes the review of three commonly cited
prototypical confluence theories of creativity, namely
the systems approach (Csikszentmihalyi, 2000), which
suggests that creativity is a sociocultural process
involving the interaction between the individual,
domain, and field; Gruber & Wallace’s (2000) model
that treats each individual case study as a unique
evolving system of creativity; and investment theory
(Sternberg & Lubart, 1996), which suggests that
creativity is the result of the convergence of six
elements (intelligence, knowledge, thinking styles,
personality, motivation, and environment).

Having reviewed the research literature on
creativity, the focus is shifted to the methodology
employed for studying mathematical creativity.

Methodology
The Interview Instrument

The purpose of this study was to gain an insight
into the nature of mathematical creativity. In an effort
to determine some of the characteristics of the creative
process, I was interested in distilling common
attributes in the ways mathematicians create
mathematics. Additionally, I was interested in testing
the applicability of the Gestalt model. Because the
main focus of the study was to ascertain qualitative
aspects of creativity, a formal interview methodology
was selected as the primary method of data collection.
The interview instrument (Appendix A) was developed
by modifying questions from questionnaires in
L’Enseigement Mathematique (1902) and Muir (1988).
The rationale behind using this modified questionnaire
was to allow the mathematicians to express themselves
freely while responding to questions of a general
nature and to enable me to test the applicability of the
four-stage Gestalt model of creativity. Therefore, the
existing instruments were modified to operationalize
the Gestalt theory and to encourage the natural flow of
ideas, thereby forming the basis of a thesis that would
emerge from this exploration.

Background of the Subjects
Five mathematicians from the mathematical

sciences faculty at a large Ph.D. granting mid-western
university were selected. These mathematicians were
chosen based on their accomplishments and the
diversity of the mathematical areas in which they
worked, measured by counting the number of
published papers in prominent journals, as well as
noting the variety of mathematical domains in which
they conducted research. Four of the mathematicians
were tenured full professors, each of whom had been
professional mathematicians for more than 30 years.
One of the mathematicians was considerably younger
but was a tenured associate professor. All interviews
were conducted formally, in a closed door setting, in
each mathematician’s office. The interviews were
audiotaped and transcribed verbatim.

Data Analysis
Since creativity is an extremely complex construct

involving a wide range of interacting behaviors, I
believe it should be studied holistically. The principle
of analytic induction (Patton, 2002) was applied to the
interview transcripts to discover dominant themes that
described the behavior under study. According to
Patton (2002), "analytic induction, in contrast to
grounded theory, begins with an analyst's deduced
propositions or theory-derived hypotheses and is a
procedure for verifying theories and propositions based
on qualitative data” (Taylor and Bogdan, 1984, p. 127).
Following the principles of analytic induction, the data
was carefully analyzed in order to extract common
strands. These strands were then compared to
theoretical constructs in the existing literature with the
explicit purpose of verifying whether the Gestalt model
was applicable to this qualitative data as well as to
extract themes that characterized the mathematician’s
creative process. If an emerging theme could not be
classified or named because I was unable to grasp its
properties or significance, then theoretical comparisons
were made. Corbin and Strauss (1998) state that “using
comparisons brings out properties, which in turn can be
used to examine the incident or object in the data. The
specific incidents, objects, or actions that we use when
making theoretical comparisons can be derived from
the literature and experience. It is not that we use
experience or literature as data “but rather that we use
the properties and dimensions derived from the
comparative incidents to examine the data in front of
us” (p. 80). Themes that emerged were social
interaction, preparation, use of heuristics, imagery,
incubation, illumination, verification, intuition, and
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proof. Excerpts from interviews that highlight these
characteristics are reconstructed in the next section
along with commentaries that incorporate the wider
conversation, and a continuous discussion of
connections to the existing literature.

Results, Commentaries & Discussion
The mathematicians in this study worked in

academic environments and regularly fulfilled teaching
and committee duties. The mathematicians were free to
choose their areas of research and the problems on
which they focused. Four of the five mathematicians
had worked and published as individuals and as
members of occasional joint ventures with
mathematicians from other universities. Only one of
the mathematicians had done extensive collaborative
work. All but one of the mathematicians were unable
to formally structure their time for research, primarily
due to family commitments and teaching
responsibilities during the regular school year. All the
mathematicians found it easier to concentrate on
research in the summers because of lighter or non-
existent teaching responsibilities during that time. Two
of the mathematicians showed a pre-disposition
towards mathematics at the early secondary school
level. The others became interested in mathematics
later, during their university education. The
mathematicians who participated in this study did not
report any immediate family influence that was of
primary importance in their mathematical
development. Four of the mathematicians recalled
being influenced by particular teachers, and one
reported being influenced by a textbook. The three
mathematicians who worked primarily in analysis
made a conscious effort to obtain a broad overview of
mathematics not necessarily of immediate relevance to
their main interests. The two algebraists expressed
interest in other areas of mathematics but were
primarily active in their chosen field.

Supervision Of Research & Social Interaction
As noted earlier, all the mathematicians in this

study were tenured professors in a research university.
In addition to teaching, conducting research, and
fulfilling committee obligations, many mathematicians
play a big role in mentoring graduate students
interested in their areas of research. Research
supervision is an aspect of creativity because any
interaction between human beings is an ideal setting
for the exchange of ideas. During this interaction the
mathematician is exposed to different perspectives on
the subject, and all of the mathematicians in this study

valued the interaction they had with their graduate
students. Excerpts of individual responses follow.1

Excerpt 1

A. I've had only one graduate student per semester
and she is just finishing up her PhD right now,
and I'd say it has been a very good interaction
to see somebody else get interested in the
subject and come up with new ideas, and
exploring those ideas with her.

B. I have had a couple of students who have sort
of started but who haven't continued on to a
PhD, so I really can't speak to that. But the
interaction was positive.

C. Of course, I have a lot of collaborators, these
are my former students you know…I am
always all the time working with students, this
is normal situation.

D. That is difficult to answer (silence)…it is
positive because it is good to interact with
other people. It is negative because it can take
a lot of time. As you get older your brain
doesn't work as well as it used to
and…younger people by and large their minds
are more open, there is less garbage in there
already. So, it is exciting to work with younger
people who are in their most creative time.
When you are older, you have more
experience, when you are younger your mind
works faster …not as fettered.

E. Oh…it is a positive factor I think, because it
continues to stimulate ideas …talking about
things and it also reviews things for you in the
process, puts things in perspective, and keep
the big picture. It is helpful really in your own
research to supervise students.

Commentary on Excerpt 1
The responses of the mathematicians in the

preceding excerpt are focused on research supervision;
however, all of the mathematicians acknowledged the
role of social interaction in general as an important
aspect that stimulated creative work. Many of the
mathematicians mentioned the advantages of being
able to e-mail colleagues and going to research
conferences and other professional meetings. This is
further explored in the following section, which
focuses on preparation.
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Preparation and the Use of Heuristics
When mathematicians are about to investigate a

new topic, there is usually a body of existing research
in the area of the new topic. One of goals of this study
was to find out how creative mathematicians
approached a new topic or a problem. Did they try their
own approach, or did they first attempt to assimilate
what was already known about that topic? Did the
mathematicians make use of computers to gain insight
into the problem? What were the various modes of
approaching a new topic or problem? The responses
indicate that a variety of approaches were used.

Excerpt 2

A. Talk to people who have been doing this topic.
Learn the types of questions that come up.
Then I do basic research on the main ideas. I
find that talking to people helps a lot more than
reading because you get more of a feel for
what the motivation is beneath everything.

B. What might happen for me, is that I may start
reading something, and, if feel I can do a better
job, then I would strike off on my own. But for
the most part I would like to not have to
reinvent a lot that is already there. So, a lot of
what has motivated my research has been the
desire to understand an area. So, if somebody
has already laid the groundwork then it's
helpful. Still I think a large part of doing
research is to read the work that other people
have done.

C. It is connected with one thing that simply…my
style was that I worked very much and I even
work when I could not work. Simply the
problems that I solve attract me so much, that
the quest ion was who wil l  die
first…mathematics or me? It was never clear
who would die.

D. Try and find out what is known. I won't say
assimilate…try and find out what's known and
get an overview, and try and let the problem
speak…mostly by reading because you don't
have that much immediate contact with other
people in the field. But I find that I get more
from listening to talks that other people are
giving than reading.

E. Well! I have been taught to be a good scholar.
A good scholar attempts to find out what is
first known about something or other before
they spend their time simply going it on their

own. That doesn't mean that I don't
simultaneously try to work on something.

Commentary on Excerpt 2
These responses indicate that the mathematician

spends a considerable amount of time researching the
context of the problem. This is primarily done by
reading the existing literature and by talking to other
mathematicians in the new area. This finding is
consistent with the systems model, which suggests that
creativity is a dynamic process involving the
interaction between the individual, domain, and field
(Csikzentmihalyi, 2000). At this stage, it is reasonable
to ask whether a mathematician works on a single
problem until a breakthrough occurs or does a
mathematician work on several problems concurrently?
It was found that each of the mathematicians worked
on several problems concurrently, using a back and
forth approach.

Excerpt 3

A. I work on several different problems for a
protracted period of time… there have been
times when I have felt, yes, I should be able to
prove this result, then I would concentrate on
that thing for a while but they tend to be
several different things that I was thinking
about a particular stage.

B. I probably tend to work on several problems at
the same time. There are several different
ques t i ons  t ha t  I  am  work ing
on…mm…probably the real question is how
often do you change the focus? Do I work on
two different problems on the same day? And
that is probably up to whatever comes to mind
in that particular time frame. I might start
working on one rather than the other. But I
would tend to focus on one particular problem
for a period of weeks, then you switch to
something else. Probably what happens is that
I work on something and I reach a dead end
then I may shift gears and work on a different
problem for a while, reach a dead end there
and come back to the original problem, so it’s
back and forth.

C .  I must simply think on one thing and not
switch so much.

D. I find that I probably work on one. There
might be a couple of things floating around but
I am working on one and if I am not getting
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anywhere, then I might work on the other and
then go back.

E. I usually have couple of things going. When I
get stale on one, then I will pick up the other,
and bounce back and forth. Usually I have one
that is primarily my focus at a given time, and
I will spend time on it over another; but it is
not uncommon for me to have a couple of
problems going at a given time. Sometimes
when I am looking for an example that is not
coming, instead of spending my time beating
my head against the wall, looking for that
example is not a very good use of time.
Working on another helps to generate ideas
that I can bring back to the other problem.

Commentary on Excerpt 3
The preceding excerpt indicates that

mathematicians tend to work on more than one
problem at a given time. Do mathematicians switch
back and forth between problems in a completely
random manner, or do they employ and exhaust a
systematic train of thought about a problem before
switching to a different problem? Many of the
mathematicians reported using heuristic reasoning,
trying to prove something one day and disprove it the
next day, looking for both examples and
counterexamples, the use of "manipulations" (Polya,
1954) to gain an insight into the problem. This
indicates that mathematicians do employ some of the
heuristics made explicit by Polya. It was unclear
whether the mathematicians made use of computers to
gain an experimental or computational insight into the
problem. I was also interested in knowing the types of
imagery used by mathematicians in their work. The
mathematicians in this study were queried about this,
and the following excerpt gives us an insight into that
aspect of mathematical creativity.

Imagery
The mathematicians in this study were asked about

the kinds of imagery they used to think about
mathematical objects. Their responses are reported
here to give the reader a glimpse of the ways
mathematicians think of mathematical objects. Their
responses also highlight the difficulty of explicitly
describing imagery.

Excerpt 4
Yes I do, yes I do, I tend to draw a lot of pictures

when I am doing research, I tend to manipulate things
in the air, you know to try to figure out how things

work. I have a very geometrically based intuition and
uhh…so very definitely I do a lot of manipulations.

A. That is a problem because of the particular
area I am in. I can't draw any diagrams, things
are infinite, so I would love to be able to get
some kind of a computer diagram to show the
complexity for a particular ring… to have
someth ing  l ike  the  Ju l i a  se t s
or…mmm…fractal images, things which are
infinite but you can focus in closer and closer
to see possible relationships. I have thought
about that with possibilities on the computer.
To think about the most basic ring, you would
have to think of the ring of integers and all of
the relationships for divisibility, so how do you
somehow describe this tree of divisibility for
integers…it is infinite.

B .  Science is language, you think through
language. But it is language simply; you put
together theorems by logic. You first see the
theorem in nature…you must see that
somewhat is reasonable and then you go and
begin and then of course there is big, big, big
work to just come to some theorem in non-
linear elliptic equations…

C. A lot of mathematics, whether we are teaching
or doing, is attaching meaning to what we are
doing and this is going back to the earlier
question when you talked about how do you do
it, what kind of heuristics do you use? What
kind of images do you have that you are using?
A lot of doing mathematics is creating these
abstract images that connect things and then
making sense of them but that doesn't appear
in proofs either.

D. Pictorial, linguistic, kinesthetic...any of them is
the point right! Sometimes you think of one,
sometimes another. It really depends on the
problem you are looking at, they are very
much…often I think of functions as very
kinesthetic, moving things from here to there.
Other approaches you are talking about is
going to vary from problem to problem, or
even day to day. Sometimes when I am
working on research, I try to view things in as
many different ways as possible, to see what is
really happening. So there are a variety of
approaches.
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Commentary on Excerpt 4
Besides revealing the difficulty of describing

mental imagery, all the mathematicians reported that
they did not use computers in their work. This
characteristic of the pure mathematician's work is
echoed in Poincaré's (1948) use of the “choice”
metaphor and Ervynck's (1991) use of the term “non-
algorithmic decision making.” The doubts expressed
by the mathematicians about the incapability of
machines to do their work brings to mind the reported
words of Garrett Birkhoff, one of the great applied
mathematicians of our time. In his retirement
presidential address to the Society for Industrial and
Applied Mathematics, Birkhoff (1969) addressed the
role of machines in human creative endeavors. In
particular, part of this address was devoted to
discussing the psychology of the mathematicians (and
hence of mathematics). Birkhoff (1969) said:

The remarkable recent achievements of computers
have partially fulfilled an old dream. These
achievements have led some people to speculate
that tomorrow's computers will be even more
"intelligent" than humans, especially in their
powers of mathematical reasoning...the ability of
good mathematicians to sense the significant and to
avoid undue repetition seems, however, hard to
computerize; without it, the computer has to pursue
millions of fruitless paths avoided by experienced
human mathematicians. (pp. 430-438)

Incubation and Illumination
Having reported on the role of research supervision

and social interaction, the use of heuristics and
imagery, all of which can be viewed as aspects of the
preparatory stage of mathematical creativity, it is
natural to ask what occurs next. As the literature
suggests, after the mathematician works hard to gain
insight into a problem, there is usually a transition
period (conscious work on the problem ceases and
unconscious work begins), during which the problem is
put aside before the breakthrough occurs. The
mathematicians in this study reported experiences that
are consistent with the existing literature (Hadamard,
1945; Poincaré, 1948).

Excerpt 5
B. One of the problems is first one does some

preparatory work, that has to be the left side
[of the brain], and then you let it sit. I don't
think you get ideas out of nowhere, you have
to do the groundwork first, okay. This is why
people will say, now we have worked on this
problem, so let us sleep on it. So you do the

preparation, so that the sub-conscious or
intuitive side may work on it and the answer
comes back but you can't really tell when. You
have to be open to this, lay the groundwork,
think about it and then these flashes of
intuition come and they represent the other
side of the brain communicating with you at
whatever odd time.

D. I am not sure you can really separate them
because they are somewhat connected. You
spend a lot of time working on something and
you are not getting anywhere with it…with the
deliberate effort, then I think your mind
continues to work and organize. And maybe
when the pressure is off the idea comes…but
the idea comes because of the hard work.

E. Usually they come after I have worked very
hard on something or another, but they may
come at an odd moment. They may come into
my head before I go to bed …What do I do at
that point? Yes I write it down (laughing).
Sometimes when I am walking somewhere, the
mind flows back to it (the problem) and says
what about that, why don't you try that. That
sort of thing happens. One of the best ideas I
had was when I was working on my thesis
…Saturday night, having worked on it quite a
bit, sitting back and saying why don't I think
about it again…and ping! There it was…I
knew what it was, I could do that. Often ideas
are handed to you from the outside, but they
don't come until you have worked on it long
enough.

Commentary on Excerpt 5
As is evident in the preceding excerpt, three out of

the five mathematicians reported experiences
consistent with the Gestalt model. Mathematician C
attributed his breakthroughs on problems to his
unflinching will to never give up and to divine
inspiration, echoing the voice of Pascal in a sense.
However, Mathematician A attributed breakthroughs to
chance. In other words, making the appropriate
(psychological) connections by pure chance which
eventually result in the sought after result.

I think it is necessary to comment about the
unusual view of mathematician A. Chance plays an
important role in mathematical creativity. Great ideas
and insights may be the result of chance such as the
discovery of penicillin. Ulam (1976) estimated that
there is a yearly output of 200,000 theorems in
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mathematics. Chance plays a role in what is considered
important in mathematical research since only a
handful of results and techniques survive out of the
volumes of published research. I wish to draw a
distinction between chance in the "Darwinian" sense
(as to what survives), and chance in the psychological
sense (which results in discovery/invention). The role
of chance is addressed by Muir (1988) as follows.

The act of creation of new entities has two aspects:
the generation of new possibilities, for which we
might attempt a stochastic description, and the
selection of what is valuable from among them.
However the importation of biological metaphors
to explain cultural evolution is dubious…both
creation and selection are acts of design within a
social context. (p. 33)

Thus, Muir (1988) rejects the Darwinian
explanation. On the other hand, Nicolle (1932) in
Biologie de L'Invention does not acknowledge the role
of unconsciously present prior work in the creative
process. He attributes breakthroughs to pure chance.

By a streak of lightning, the hitherto obscure
problem, which no ordinary feeble lamp would
have revealed, is at once flooded in light. It is like a
creation. Contrary to progressive acquirements,
such an act owes nothing to logic or to reason. The
act of discovery is an accident. (Hadamard, 1945)

Nicolle's Darwinian explanation was rejected by
Hadamard on the grounds that to claim creation occurs
by pure chance is equivalent to asserting that there are
effects without causes. Hadamard further argued that
although Poincaré attributed his particular
breakthrough in Fuchsian functions to chance, Poincaré
did acknowledge that there was a considerable amount
of previous conscious effort, followed by a period of
unconscious work. Hadamard (1945) further argued
that even if Poincaré's breakthrough was the result of
chance alone, chance alone was insufficient to explain
the considerable body of creative work credited to
Poincaré in almost every area of mathematics. The
question then is how does (psychological) chance
work?

It is my conjecture that the mind throws out
fragments (ideas) that are products of past experience.
Some of these fragments can be juxtaposed and
combined in a meaningful way. For example, if one
reads a complicated proof consisting of a thousand
steps, a thousand random fragments may not be enough
to construct a meaningful proof. However the mind
chooses relevant fragments from these random
fragments and links them into something meaningful.
Wedderburn's Theorem, that a finite division ring is a

field, is one instance of a unification of apparently
random fragments because the proof involves algebra,
complex analysis, and number theory.

Polya (1954) addresses the role of chance in a
probabilistic sense. It often occurs in mathematics that
a series of mathematical trials (involving computation)
generate numbers that are close to a Platonic ideal. The
classic example is Euler's investigation of the infinite
series 1 + 1/4 + 1/9 + 1/16 +…+ 1/n2 +…. Euler
obtained an approximate numerical value for the sum
of the series using various transformations of the
series. The numerical approximation was 1.644934.
Euler confidently guessed the sum of the series to be
π2/6. Although the numerical value obtained by Euler
and the value of π2/6 coincided up to seven decimal
places, such a coincidence could be attributed to
chance. However, a simple calculation shows that the
probability of seven digits coinciding is one in ten
million! Hence, Euler did not attribute this coincidence
to chance but boldly conjectured that the sum of this
series was indeed π2/6 and later proved his conjecture
to be true (Polya, 1954, pp. 95-96).

Intuition, Verification and Proof
Once illumination has occurred, whether through

sheer chance, incubation, or divine intervention,
mathematicians usually try to verify that their
intuitions were correct with the construction of a proof.
The following section discusses how these
mathematicians went about the business of verifying
their intuitions and the role of formal proof in the
creative process. They were asked whether they relied
on repeatedly checking a formal proof, used multiple
converging partial proofs, looked first for coherence
with other results in the area, or looked at applications.
Most of the mathematicians in this study mentioned
that the last thing they looked at was a formal proof.
This is consistent with the literature on the role of
formal proof in mathematics (Polya, 1954; Usiskin,
1987). Most of the mathematicians mentioned the need
for coherence with other results in the area. The
mathematician’s responses to the posed question
follow.

Excerpt 6

B. I think I would go for repeated checking of the
formal proof…but I don't think that that is
really enough. All of the others have to also be
taken into account. I mean, you can believe
that something is true although you may not
fully understand it. This is the point that was
made in the lecture by … of … University on
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Dirichlet series. He was saying that we have
had a formal proof for some time, but that is
not to say that it is really understood, and what
did he mean by that? Not that the proof wasn't
understood, but it was the implications of the
result that are not understood, their
connections with other results, applications
and why things really work. But probably the
first thing that I would really want to do is
check the formal proof to my satisfaction, so
that I believe that it is correct although at that
point I really do not understand its
implications… it is safe to say that it is my
surest guide.

C. First you must see it in the nature, something,
first you must see that this theorem
corresponds to something in nature, then if you
have this impression, it is something relatively
reasonable, then you go to proofs…and of
course I have also several theorems and proofs
that are wrong, but the major amount of proofs
and theorems are right.

D. The last thing that comes is the formal proof. I
look for analogies with other things… How
your results that you think might be true would
illuminate other things and would fit in the
general structure.

E. Since I work in an area of basic research, it is
usually coherence with other things, that is
probably more than anything else. Yes, one
could go back and check the proof and that sort
of thing but usually the applications are yet to
come, they aren't there already. Usually what
guides the choice of the problem is the
potential for application, part of what
represents good problems is their potential for
use. So, you certainly look to see if it makes
sense in the big picture…that is a coherence
phenomenon. Among those you've given me,
that’s probably the most that fits.

Commentary on Excerpt 6
This excerpt indicates that for mathematicians,

valid proofs have varied degrees of rigor. “Among
mathematicians, rigor varies depending on time and
circumstance, and few proofs in mathematics journals
meet the criteria used by secondary school geometry
teachers (each statement of proof is backed by
reasons). Generally one increases rigor only when the
result does not seem to be correct” (Usiskin, 1987).
Proofs are in most cases the final step in this testing

process. “Mathematics in the making resembles any
other human knowledge in the making. The result of
the mathematician’s creative work is demonstrative
reasoning, a proof; but the proof is discovered by
plausible reasoning, by guessing” (Polya, 1954). How
mathematicians approached proof in this study was
very different from the logical approach found in proof
in most textbooks. The logical approach is an artificial
reconstruction of discoveries that are being forced into
a deductive system, and in this process the intuition
that guided the discovery process gets lost.

Conclusions
The goal of this study was to gain an insight into

mathematical creativity. As suggested by the literature
review, the existing literature on mathematical
creativity is relatively sparse. In trying to better
understand the process of creativity, I find that the
Gestalt model proposed by Hadamard (1945) is still
applicable today. This study has attempted to add some
detail to the preparation-incubation-illumination-
verification model of Gestalt by taking into account the
role of imagery, the role of intuition, the role of social
interaction, the use of heuristics, and the necessity of
proof in the creative process.

The mathematicians worked in a setting that was
conducive to prolonged research. There was a
convergence of intelligence, knowledge, thinking
styles, personality, motivation and environment that
enabled them to work creatively (Sternberg, 2000;
Sternberg & Lubart, 1996, 2000). The preparatory
stage of mathematical creativity consists of various
approaches used by the mathematician to lay the
groundwork. These include reading the existing
literature, talking to other mathematicians in the
particular mathematical domain (Csikzentmihalyi,
1988; 2000), trying a variety of heuristics (Polya,
1954), and using a back-and-forth approach of
plausible guessing. One of the mathematicians said that
he first looked to see if the sought after relationships
corresponded to natural phenomenon.

All of the mathematicians in this study worked on
more than one problem at a given moment. This is
consistent with the investment theory view of creativity
(Sternberg & Lubart, 1996). The mathematicians
invested an optimal amount of time on a given
problem, but switched to a different problem if no
breakthrough was forthcoming. All the mathematicians
in this study considered this as the most important and
difficult stage of creativity. The prolonged hard work
was followed by a period of incubation where the
problem was put aside, often while the preparatory
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stage is repeated for a different problem; and thus,
there is a transition in the mind from conscious to
unconscious work on the problem. One mathematician
cited this as the stage at which the "problem begins to
talk to you." Another offered that the intuitive side of
the brain begins communicating with the logical side at
this stage and conjectured that this communication was
not possible at a conscious level.

The transition from incubation to illumination
often occurred when least expected. Many reported the
breakthrough occurring as they were going to bed, or
walking, or sometimes as a result of speaking to
someone else about the problem. One mathematician
illustrated this transition with the following: "You talk
to somebody and they say just something that might
have been very ordinary a month before but if they say
it when you are ready for it, and Oh yeah, I can do it
that way, can’t I! But you have to be ready for it.
Opportunity knocks but you have to be able to answer
the door."

Illumination is followed by the mathematician’s
verifying the result. In this study, most of the
mathematicians looked for coherence of the result with
other existing results in the area of research. If the
result cohered with other results and fit the general
structure of the area, only then did the mathematician
try to construct a formal proof. In terms of the
mathematician’s beliefs about the nature of
mathematics and its influence on their research, the
study revealed that four of the mathematicians leaned
towards Platonism, in contrast to the popular notion
that Platonism is an exception today. A detailed
discussion of this aspect of the research is beyond the
scope of this paper; however, I have found that beliefs
regarding the nature of mathematics not only
influenced how these mathematicians conducted
research but also were deeply connected to their
theological beliefs (Sriraman, 2004a).

The mathematicians hoped that the results of their
creative work would be sanctioned by a group of
experts in order to get the work included in the domain
(Csikzentmihalyi, 1988, 2000), primarily in the form of
publication in a prominent journal. However, the
acceptance of a mathematical result, the end product of
creation, does not ensure its survival in the Darwinian
sense (Muir, 1988). The mathematical result may or
may not be picked up by other mathematicians. If the
mathematical community picks it up as a viable result,
then it is likely to undergo mutations and lead to new
mathematics. This, however, is determined by chance!

Implications
It is in the best interest of the field of mathematics

education that we identify and nurture creative talent in
the mathematics classroom. "Between the work of a
student who tries to solve a difficult problem in
mathematics and a work of invention (creation)…there
is only a difference of degree" (Polya, 1954).
Creativity as a feature of mathematical thinking is not a
patent of the mathematician! (Krutetskii, 1976); and
although most studies on creativity have focused on
eminent individuals (Arnheim, 1962; Gardner, 1993,
1997; Gruber, 1981), I suggest that contemporary
models from creativity research can be adapted for
studying samples of creativity such as are produced by
high school students. Such studies would reveal more
about creativity in the classroom to the mathematics
education research community. Educators could
consider how often mathematical creativity is
manifested in the school classroom and how teachers
might identify creative work. One plausible way to
approach these concerns is to reconstruct and evaluate
student work as a unique evolving system of creativity
(Gruber & Wallace, 2000) or to incorporate some of
the facets suggested by Gruber & Wallace (2000). This
necessitates the need to find suitable problems at the
appropriate levels to stimulate student creativity.

A common trait among mathematicians is the
reliance on particular cases, isomorphic reformulations,
or analogous problems that simulate the original
problem situations in their search for a solution (Polya,
1954; Skemp, 1986). Creating original mathematics
requires a very high level of motivation, persistence,
and reflection, all of which are considered indicators of
creativity (Amabile, 1983; Policastro & Gardner, 2000;
Gardner, 1993). The literature suggests that most
creative individuals tend to be attracted to complexity,
of which most school mathematics curricula has very
little to offer. Classroom practices and math curricula
rarely use problems with the sort of underlying
mathematical structure that would necessitate students’
having a prolonged period of engagement and the
independence to formulate solutions. It is my
conjecture that in order for mathematical creativity to
manifest itself in the classroom, students should be
given the opportunity to tackle non-routine problems
with complexity and structure - problems which
require not only motivation and persistence but also
considerable reflection. This implies that educators
should recognize the value of allowing students to
reflect on previously solved problems to draw
comparisons between various isomorphic problems
(English, 1991, 1993; Hung, 2000; Maher & Kiczek,
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2000; Maher & Martino, 1997; Maher & Speiser,
1996; Sriraman, 2003; Sriraman, 2004b). In addition,
encouraging students to look for similarities in a class
of problems fosters "mathematical" behavior (Polya,
1954), leading some students to discover sophisticated
mathematical structures and principles in a manner
akin to the creative processes of professional
mathematicians.
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APPENDIX A: Interview Protocol
The interview instrument was developed by modifying questions
from questionnaires in L’Enseigement Mathematique (1902) and
Muir (1988).
1. Describe your place of work and your role within it.
2. Are you free to choose the mathematical problems you tackle

or are they determined by your work place?
3. Do you work and publish mainly as an individual or as part of

a group?
4. Is supervision of research a positive or negative factor in your

work?
5. Do you structure your time for mathematics?
6. What are your favorite leisure activities apart from

mathematics?
7. Do you recall any immediate family influences, teachers,

colleagues or texts, of primary importance in your
mathematical development?

8. In which areas were you initially self-educated? In which
areas do you work now? If different, what have been the
reasons for changing?

9. Do you strive to obtain a broad overview of mathematics not
of immediate relevance to your area of research?

10. Do you make a distinction between thought processes in
learning and research?

11. When you are about to begin a new topic, do you prefer to
assimilate what is known first or do you try your own
approach?

12. Do you concentrate on one problem for a protracted period of
time or on several problems at the same time?

13. Have your best ideas been the result of prolonged deliberate
effort or have they occurred when you were engaged in other
unrelated tasks?

14. How do you form an intuition about the truth of a proposition?
15. Do computers play a role in your creative work (mathematical

thinking)?
16. What types of mental imagery do you use when thinking about

mathematical objects?

Note: Questions regarding foundational and theological
issues have been omitted in this protocol. The discussion
resulting from these questions are reported in Sriraman
(2004a).


