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Learning how to frame research is arguably the 
most important capacity for new researchers to 
develop. This is true both for doctoral students and for 
junior faculty as they establish research programs at 
new institutions and begin to help students conduct 
their own research. I take framing research to mean the 
construction of connections among research questions, 
the literature(s) within which those questions are 
positioned, theoretical perspectives or frameworks, and 
methods that generate warrants sufficient for making 
convincing claims. Making strong connections among 
all of these components is essential for building 
coherent arguments at the center of high quality 
research in mathematics education (Lesh, Lovitts, & 
Kelly, 2000; Simon, 2004). Examples of important 
contributions to our field that have relied on innovative 
combinations of questions, theoretical perspective, and 
methods include Schoenfeld’s (1985) work on problem 
solving and Steffe’s (e.g., Steffe, 2001; Steffe, von 
Glasersfeld, Richards, & Cobb, 1983) work on 
children’s construction of whole and rational numbers.  

Some recent publications have suggested that 
doctoral programs in education may not always be 
producing graduates with the necessary capacities for 
framing research. Boote and Beile (2005) sampled 30 
dissertations from three state-funded colleges of 
education in the United States, found a wide range in 
the quality of the literature reviews, and reported that 
some of the literature reviews were little more than 
“disjointed summaries of a haphazard collection of 
literature” (Boote & Beile, 2005, p. 9). Moreover, 
weak literature reviews may be just part of a larger 
challenge for new researchers: Schoenfeld (1999) 
asserted that beginning researchers often do not learn 
what it means to make and justify claims about 
educational phenomena or how to frame workable 
research problems. Part of the challenge is that framing 
research is a creative process for which there are no 
formulae.  

I struggled in graduate school to understand how 
authors came to pose the questions with which they 

began published articles and wondered if I would ever 
be able to articulate such questions. Perhaps others 
have had similar experiences. The purposes of the 
present article are to help doctoral students construct 
initial images of processes involved in framing 
research and to serve as a catalyst for reflection among 
junior faculty who, like me, are learning to support 
students conducting their own research. I will do this 
by describing how I framed my own dissertation study 
at a level of detail often omitted or left tacit in 
published articles. My dissertation was based on 
detailed analyses of videotaped interviews, but I hope 
my general points will help others to embark on other 
kinds of research projects as well.  

An Example of Framing Research 
For my dissertation, conducted under Alan 

Schoenfeld at the University of California, Berkeley, I 
constructed a theoretical frame for explaining how 
pairs of eighth-grade students constructed knowledge 
structures for modeling with algebra a physical device 
called a winch. The winch (see Figure 1) exemplifies 
situations that can be modeled by pairs of simultaneous 
linear functions, a core topic in introductory algebra 
courses. 
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Figure 1. The winch. From “Inscribing the Winch: 
Mechanisms by Which Students Develop Knowledge 
Structures for Representing the Physical World with 
Algebra,” by A. Izsák, 2000, The Journal of the 
Learning Sciences, 9, p. 33. Copyright 2000 by 
Lawrence Erlbaum Associates, Inc. Reprinted with 
permission.
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The device stands 4 feet tall and at the top has a rod 
with a handle for turning two spools, one 3 and one 5 
inches in circumference. Fishing line attaches one 
weight to each spool. I will refer to these as the 3-inch 
weight and 5-inch weight, respectively. Turning the 
handle moves the weights up and down a yardstick, 
allowing measurements of heights, displacements, and 
distances between the two weights. The theoretical 
frame highlights coordination and reorganization of 
knowledge for generating, using, and evaluating 
algebraic representations (Izsák, 2003, 2004).  

Getting Ideas for Feasible, Significant 
Contributions  

I entered my doctoral program interested in how 
students made sense of external representations of 
functions and began reading relevant literature. I was 
fortunate because by the early 1990s there were a 
handful of excellent recently published literature 
reviews (Kieran, 1992; Leinhardt, Zaslavsky, & Stein, 
1990) and edited books (Janvier, 1987; Romberg, 
Fennema, & Carpenter, 1993) that addressed students’ 
understandings of functions and the roles of external 
representations in mathematical thinking. These 
sources provided an overview of existing findings and 
extensive bibliographies that suggested the main 
researchers whose work related to my emerging 
interests. At the same time, my interests were also 
being shaped by numerous conversations with faculty 
and students, courses, and participation in research 
groups that, among other things, allowed me to observe 
more advanced doctoral students frame their 
dissertation projects. 

Much of the work on students’ understandings of 
representations of functions documented difficulties 
(often termed misconceptions) that students exhibited 
when solving equations, solving word problems, and 
interpreting graphical representations. Taken together, 
these studies made clear that students struggled with 
standard or normative representations. The literature 
also contained several theoretical accounts of how 
students might learn in this domain. One family of 
closely related, highly visible accounts described 
process understandings of functions being reified or 
encapsulated into object understandings (e.g., Kieran, 
1992; Sfard, 1991, 1992; Dubinsky & Harel, 1992). 
Researchers often relied on cross sectional data as 
evidence for process-object accounts of learning and 
none presented empirical evidence of reification or 
encapsulation processes occurring in actual students. 
Clearly, studies that captured how students might learn 
to represent functions and solve problems would 

contribute to the field, but was capturing such 
phenomena feasible? Perhaps this problem was too 
difficult for a dissertation project.  

A number of faculty and doctoral students at the 
University of California, Berkeley shared my interest 
in the role of external representations in mathematical 
thinking and pointed me to a small number of then 
recent studies (diSessa, Hammer, Sherin, & 
Kolpakowski, 1991; Hall, 1990; Hall, Kibler, Wenger, 
& Truxaw, 1989; Meira, 1995, 1998) that 
demonstrated students’ capacities to construct their 
own perhaps non-standard graphic, algebraic, and 
tabular representations of functions in the course of 
solving problems. These studies suggested both that 
past research had overlooked students’ latent capacities 
for constructing representations and that capturing 
examples of students learning to represent functions 
and solve problems might be feasible. In particular, 
when analyzing interview data in which one pair of 
students worked with a device similar to the winch, 
Meira (1995) found a complex interplay between the 
students’ understanding of the device and of a table 
that they were developing to represent that device. 
These data and the analysis were unlike any I had seen 
in the literature summarized in the previous paragraph. 
Subsequently, I discovered that other researchers 
(Greeno, 1993, 1995; Moore, 1993; Piaget, Grize, 
Szeminska, & Bang, 1968/1977) had also gained 
detailed access to young children's, middle school 
students', and high school students' implicit and 
explicit understandings of linear functions. Something 
about the winch was engaging to students and perhaps, 
with the right combination of tasks and students, I 
could capture data in which students learned to 
represent functions and solve problems. Furthermore, 
examination of previous studies suggested three 
categories of questions that I could pose to students 
with various initial winch set-ups: 

(1)  Predict the distance between the weights after 
an arbitrary number of cranks.  

(2)  Determine whether and, if so, when one 
weight would ever be twice as high as the other.  

(3)  Determine whether and, if so, when the 
weights would meet at the same height. 

Finally, I needed a provisional theoretical lens or 
lenses to help me identify instances of learning. The 
existing literature suggested at least two options. One 
was to look for instances of reification or encapsulation 
as described in the process-object perspective 
mentioned above. Another was to look for the genesis 
of knowledge structures similar to those described in 
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some recent research on representations of functions 
(e.g., Schoenfeld, Smith, & Arcavi, 1993). The latter 
studies documented instances where complex 
coordination of multiple pieces of prior knowledge was 
a dominant feature of learning. I did not adopt any one 
perspective a priori but rather began with a theoretical 
tool kit that might, or might not, suffice to explain any 
captured instances of learning. At this point, I was 
asking how might students learn to represent functions 
and solve problems, and I had some theoretical tools 
and a strategy for gathering data that were good 
enough to get me started.  

Successive Approximations 
I interviewed 14 pairs of students, 6 in spring 1996 

and 8 in spring 1997. In most cases, I conducted four 
or five hour-long interviews with each pair. Because I 
was interested in capturing instances of learning, I 
needed students for whom the winch tasks were neither 
too easy nor too hard. Thus, I began in spring 1996 
with a range of students. I interviewed 2 pairs of 
eighth-grade students from one school taking a pre-
algebra course, 2 more pairs of eighth-grade students 
from the same school taking an Algebra I course, and 2 
pairs of tenth-grade students from a different district 
who had completed an algebra course. At the 
beginning of the first interview with each pair, I read 
instructions that simply pointed out the handle, 
weights, and yard stick on the winch, a set of questions 
about the device, and scratch paper should the students 
need any. I made no mention of linear functions or of 
any representations. As the students worked, I 
intervened on occasion to clarify my instructions, to 
ask for further explanation of some comment, or to 
discuss possible strategies for making progress when 
students seemed stuck. Students could repeat actions 
with the winch as often as they liked and worked on 
problems until they reported satisfaction with their 
answer. Occasionally I moved students on to the next 
question when they appeared bogged down to the point 
of frustration. 

Several results from the first round of data 
collection allowed me to refine how I framed my 
research. First, the tasks seemed particularly engaging 
for the Algebra I students. These students often made 
connections between their algebra course and the 
interview activities after recognizing that turning the 
handle generated patterns in heights of weights and 
distances between weights. Especially promising, 
given my research question, were examples in which 
these students constructed apparently novel, yet 
sensible, equations after struggling to generate 

expressions and equations that represented height and 
distance patterns. The pre-algebra students and tenth-
grade students evidenced less potential for learning 
when working on the winch tasks: The pre-algebra 
students tended to approach all the problems by 
making tables, and the tenth-grade students could set 
up and solve equations much more readily. Second, 
one pair of Algebra I students apparently reasoned 
about equations in ways consistent with both the 
process and the object perspective as described in the 
literature, yet struggled to coordinate their 
understandings of their representations and the winch. 
This suggested that the process-object account was 
insufficient for explaining how students might learn to 
represent situations that could be modeled by linear 
functions. Third, detailed analysis of this same pair 
suggested that they had constructed a new knowledge 
structure resembling one described by Sherin (2001).  

Analyzing these data led me to frame my research 
with greater precision: I focused my attention on how 
Algebra I students could construct knowledge 
structures for modeling the winch with algebra and 
took initial steps at creating theory for explaining such 
phenomena. The theory proposed two learning 
mechanisms, notation variation and mapping variation, 
that described processes by which students refined and 
coordinated their algebraic expressions and the 
correspondences they established between parts of 
those expressions and features of the winch (see Izsák, 
2000, for details). At this point, I needed further 
examples of students’ constructions and my committee 
was intimating that I should attempt “deeper” theory 
that explained in greater detail how students drew on 
their existing knowledge. 

In spring 1997 I interviewed 7 more pairs of 
Algebra I students and 1 more pair of pre-algebra 
students using essentially the same set of tasks. The 
students came from the middle school used in the first 
round of data collection. As I had hoped, the second 
round of data collection produced further examples in 
which students constructed apparently novel, yet 
sensible, equations after struggling to represent height 
and distance patterns on the winch with expressions 
and equations (Izsák, 2003, 2004). One of the most 
interesting episodes occurred when one pair of students 
examined the winch set up so that the 3-inch weight 
started by the 14-inch mark and the 5-inch weight 
started by the 0-inch mark. Both weights went up when 
the students turned the handle, and the question was: 
Can you predict how far apart the weights will be as 
you turn the crank? If so, how? The students treated all 
distances as positive and struggled to represent a 
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pattern that first decreased to zero and then increased. 
Eventually, one of the students generated a pair of 
expressions 14 - 2n and 2n where n represented 
number of cranks. She used the first expression to 
calculate distances before the weights met and the 
second to calculate distances after. In so doing, she 
counted n from two different starting points. Her 
partner understood that computations made with these 
expressions matched distances measured on the winch, 
yet rejected the pair of expressions as a legitimate 
representation.  

As the students continued to work, they evidenced 
a range of criteria for evaluating algebraic 
representations. Two of the several examples were 
single equation, the criterion that single equations are 
better than multiple ones, and consistent interpretation, 
the criterion that the number of cranks always be 
counted from the same starting point. The students 
continued to work until they generated |(n – 7) * 2| = d, 
an equation that correctly predicted distances between 
the weights and simultaneously satisfied all the criteria 
they had mentioned (Izsák, 2004). These data made 
clear that the students’ knowledge for evaluating 
algebraic representations fundamentally shaped the 
direction of their work. Furthermore, analysis of 
subsequent interviews with the same pair of students 
suggested that they had constructed a new knowledge 
structure (Izsák, 2004). Thus, criteria apparently played 
a role in learning.  

At this point, I was confident that my data were 
sufficient for making legitimate progress on my 
research question, but how I framed my study 
continued to evolve through further analyses of both 
data and literature. In the end, students appeared to 
draw on a range of knowledge about physical causality 
in the winch, for using algebraic equations (e.g., 
substituting values or solving), and for evaluating 
algebraic representations. This range of knowledge, 
and the ways students used it in the course of solving 
winch tasks, suggested a good match between my data 
and an epistemological perspective known as 
knowledge-in-pieces (diSessa, 1988, 1993). diSessa 
developed this perspective to explain emerging 
expertise in Newtonian mechanics. The perspective 
holds that knowledge elements are more diverse and 
smaller in grain size than those presented in textbooks. 
Growth and change consists of multiple, related 
processes including not only the construction of new 
knowledge elements but also the coordination of 
diverse knowledge elements and the extension or 
constriction of conditions under which particular 
elements may be applied productively. Thus, the final 

framing that has appeared in published reports of my 
dissertation (Izsák, 2000, 2003, 2004) evolved through 
continuous analysis of existing literature and over the 
course of two rounds of data collection and analysis.  

Discussion 
What from this example might be of use to 

doctoral students and junior faculty who are beginning 
to help students conduct their own research? First, in 
my view the term literature review is misleading and 
might be better described as an analysis of prior work. 
This means much more than summarizing the results of 
a set or sets of studies. It means identifying and 
summarizing main questions that bodies of research 
have addressed, theoretical perspectives and methods 
used in different bodies of research, and main results 
that have emerged across studies. It also means 
analyzing the possibly tacit assumptions underlying 
bodies of research and possible limitations that cut 
across related studies. Various handbooks (e.g., 
Berliner & Calfee, 1996; Grouws, 1992; Richardson, 
2001) contain reviews by acknowledged experts in a 
wide variety of areas and are good places to start.  

As my example illustrates, analyzing prior work 
can help identify problems for which you have a 
reasonable chance of making progress. Some 
problems, though important, may simply be too hard 
for a new researcher working individually. For 
instance, studies that have come the closest to 
constructing links between professional development 
for teachers and the learning of their students have 
been ambitious collaborative efforts among several 
seasoned researchers. High quality studies in a given 
area based on data that an individual researcher might 
reasonably collect and analyze can suggest an 
“approximate size” for a dissertation study. I stress the 
word approximate because published articles often 
report only a portion of a larger study, even a 
dissertation study.  

Second, figuring out how to get data that contain 
warrants sufficient for making convincing claims is 
hard work. Pilot studies can help gauge the promise of 
a particular research design and can suggest 
refinements. I interviewed a wider range of students in 
the first year and narrowed in on Algebra I students the 
second as I searched for a good match between 
students and winch tasks. If I had not found a good 
match between students and winch tasks during the 
pilot, I would have needed different students, different 
tasks, or both. Pilot studies also provide an opportunity 
to work out kinks in data collection before the data 
really count. For instance, technically strong 
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videotaped data often requires experimentation with 
placements of cameras and configurations of 
microphones, especially in classrooms. Other aspects 
of research design can arise in studies using qualitative 
methods and the larger point applies to quantitative 
studies as well. For instance, a questionnaire or other 
instrument might need piloting and refinement. 

Third, framing research is often a dynamic process 
that unfolds over the course of a study. This point is 
important because the process of framing research 
often differs from the logic authors present in 
published articles—the questions for the study, 
literature review, methods, analysis and results, and 
concluding discussion. By way of analogy, the final 
presentation of a proof in mathematics that works 
forward from givens does not necessarily reflect how 
the proof was constructed through initial efforts that 
led to dead ends, processes where the person worked 
forward from the givens and backwards from the 
conclusions hoping to connect the two strands of logic 
in the middle, and so on. The final elements in a 
coherent argument are often assembled through cycles 
of successive approximations that lead to increasingly 
refined and coordinated questions, theory, methods, 
and results. Thus, questions posed at the beginning of 
articles are not necessarily those with which studies 
were launched.  

Finally, theoretical perspectives shape research 
questions, data collection, and analysis in ways that 
emphasize some aspects of phenomena under study 
while suppressing others. One way to understand more 
deeply how theories shape which aspects get 
emphasized and which get suppressed is to consider 
how the same phenomena might be investigated and 
explained using different theoretical perspectives. In 
my view, there are strong advantages to beginning 
studies with sets of alternative theoretical perspectives 
and to examining the extent to which each alternative 
does, or does not, help explain data. In my case, I 
started with two cognitive perspectives and then moved 
away from the process-object account when it clearly 
did not fit my data. Instead, the knowledge-in-pieces 
perspective was a good match because it allowed the 
forms and types of knowledge at play to be part of 
what was under investigation. To illustrate how a 
theoretical perspective can suppress some aspects of a 
phenomenon, had I begun my study committed to 
finding schemes and operations (e.g., Steffe, 2001), I 
might have overlooked comments that evidenced 
students’ criteria for algebraic representations. 
Furthermore, all of the perspectives I have discussed 
leave social aspects of learning in the background. 

Because we are not always aware of ways in which 
theoretical perspectives shape what we attend to and 
“see” in data, considering different perspectives can 
help make the rationale for theoretical decisions more 
explicit and, in turn, facilitate stronger connections 
among all of the components essential to high quality 
research. Moments where all the components start to 
come together are exciting and make all the hard work 
very rewarding.  
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