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This paper articulates a perspective on learning to discuss ways in which students develop personal sense and 
negotiate meaning in a middle school algebra context. Building on a sociocultural perspective that incorporates 
mental objects, learning is described as a mutually dependent process involving personal sense making and the 
public negotiation of meaning. Analysis of student problem solving is focused on the development of taken-as-
shared meaning through an individual and collaborative analysis of the properties of various conceptual entities. 
The results suggest that functional properties inherent in linear relationships were more supportive in eliciting 
meaning making exchanges than were algebraic properties associated with generalized arithmetic, although the 
contextual nature of the linear tasks may have also supported the meaning making activity. 

 

What is the difference between sense and 
meaning? Drawing on the philosophies of Vygotsky 
and Leont’ev, Wertsch (1991) distinguishes between 
sense and meaning by focusing on the personal and 
public aspects of activity. Lave, Murtaugh, and de la 
Rocha (1984) concur: “sense designates personal 
intent, as opposed to meaning, which is public, 
explicit, and literal (p. 73).” The personal act of 
reflection and the public act of communication relate in 
a manner that allows one’s personal reflections to 
mediate and be mediated by one’s interactions with the 
environment (Bauersfeld, 1992; Hiebert, 1992).  

From this perspective, sense is based on one’s 
individual reflections, whereas meaning has both a 
personal and public dimension. Throughout the paper, 
we will take the perspective that sense refers to the 
current status of cognitive acts constructed within an 
individual’s mental plane, and that an individual’s 
meaning is the inferred result of the intention or 
process of making one’s sense knowable within a 
social environment. In other words, one’s meaning is 
an intent to articulate one’s sense, but meaning is also a 
public, “taken-as-shared” (Cobb, Yackel, & Wood, 
1992) construct developed in a social context.  

Because this paper focuses on learning and 
knowledge construction, we turn our attention 

explicitly to the differences between sense making and 
meaning making, with the latter explored in a social 
dimension. The philosophical complexities in the 
analysis of collective meaning making, as opposed to 
an individual’s isolated meaning making, are greatly 
expanded due to the interactions between the personal 
and added social dynamics at play.  

For example, a radical constructivist perspective 
emphasizes the interpretations of one’s experiences in 
framing realties, so the distinctions between sense 
making and meaning making become quite complex. 
As Lerman (1996) states: 

Rejecting a picture theory of mind, that mental 
representations of reality are exact replicas of the 
real world, leads, for the radical constructivist, to 
the conclusion that one can only argue that all 
representations are constructed by the individual, 
and hence meanings are ultimately those in the 
individual’s mental plane. (p. 137) 

The cognizing individual constructs her or his own 
world (i.e., makes sense) out of the articulated 
meanings put forth by others in social interactions. But 
the meaning making of others is filtered by the 
organization of an individual’s own experiences and 
sense-making processes, and any attempt to convey 
one’s meaning is, in turn, filtered by the sense-making 
processes of others (von Glaserfeld, 1995). Thus, sense 
and meaning are quite blurred, as the result of attempts 
at collective meaning making are always unknown 
across the individuals’ own mental planes. One’s own 
meaning, as well as the perceived meaning of others, 
must remain in the internal realm of sense making. 

Others, however, draw more separation between 
the notions of sense and meaning. For example, many 
researchers have articulated a view of learning in 
which “mental objects” are constructed through 
reflections on actions and activity. This mental 
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abstraction has been called reification (Sfard and 
Linchevski, 1994), encapsulation (Dubinsky, 2000), 
and verb-noun status (Davis, 1984). For these 
researchers, sense making leads to distinct acts of 
meaning making where individuals construct and 
publicly share clear descriptions of these mental 
objects.  

Positioned perhaps between the above two 
approaches, Cobb et al. (1992) describe a sociocultural 
perspective of learning in which students make use of 
experiences and interactions, mediated by 
developmental interventions of the instructor, in order 
to construct understandings that are either principally 
generated by one’s sense-making activities or that 
approximate and expand on the taken-as-shared 
meanings of a community or society. This approach 
goes beyond the acquisition and participation 
metaphors of learning and includes aspects of 
knowledge creation (Paavola, Lipponen, and 
Hakkarainen, 2004). Here, it is possible that the 
approximation of others’ meaning in an individual’s 
sense-making activity can be thought to be negligible. 

Slavit (1997) has built on the above perspectives to 
articulate a theory involving the development of 
meaning in the context of algebraic ideas through an 
awareness of the properties of publicly negotiated and 
taken-as-shared mental objects. The ability to make 
sense of the properties that are embedded within and 
help define a situation, activity, symbol system, or idea 
can lead to the development of richer forms of sense- 
and meaning-making activity. These developments 
commonly occur in the cognitive act of formalization 
(Kieren, 1994), which allows an individual to make 
sense of mathematical constructs. For example, 
students over time might recognize that linear 
functions grow at a constant rate (from a numeric or 
graphic perspective), are continuous, and have exactly 
one x- and y-intercept (excepting vertical and 
horizontal lines). These and other properties lead to an 
understanding of linear functions borne from the sense-
making process. Further, these understandings can then 
be weighed against one’s perceptions of the taken-as-
shared meanings of society as a whole, including 
negotiation with one’s peers; these understandings 
could also be initially generated out of interactions 
with one’s peers. In this perspective, the learner 
develops mental constructs associated with established 
mathematical objects and ideas by focusing on his or 
her interpretation and awareness of the properties that 
define these objects and ideas. 

Therefore, constructing sense and meaning in 
algebra can be approached by focusing on the 
properties associated with the objects and ideas that 
help define this specific area of mathematics. Although 
algebra is a multi-faceted mathematical area, this study 
is primarily concerned with the two areas defined as 
“generalizing and formalizing patterns and constraints” 
and “study[ing] of functions, relations, and joint 
variation” (Kaput, 1995). Patterns in arithmetic 
computations can be identified by noting properties 
that these computations share, which can then be 
generalized to formal algebraic rules.1 These 
generalizations form the basis of understanding algebra 
as generalized arithmetic and illustrate the 
development of sense and meaning in this area of 
algebra through a property-noticing process. Similarly, 
one can experience growth relationships between two 
varying quantities in a variety of situations to support 
the development of more abstract notions of functions, 
including the concept of covariation (a patterned 
change in one variable due to a patterned change in 
another; Kieran & Sfard, 1999; Slavit, 1997). 

Method 
The purpose of the study is to examine the sense-

making and meaning-making activities of pairs of 
students engaged in problem-solving episodes related 
to the algebraic topics of generalized arithmetic and 
function. While not attempting to prove that 
collaborative learning environments are more effective 
than individual settings, the study investigates the 
manner in which pairs of students use specific 
cognitive and social processes in algebraic problem-
solving environments. Data consist of 15 videotaped 
interviews involving problem-solving episodes with 
fourteen 7th grade and sixteen 8th grade students from 
two middle school classrooms in a rural, medium-
socioeconomic status school in the northwestern 
United States. The students worked in pairs on two 
tasks (detailed in Figure 1) for approximately 20–30 
minutes. Approximately half of the students in each of 
the two classrooms were randomly selected to 
participate, and all interviews were transcribed. The 
eighth grade students had a limited amount of formal 
exposure to algebra prior to the study, consisting 
mainly of equation solving, whereas the seventh grade 
students had no previous formal algebra instruction. 
Although whole-class discussion of problem solving 
strategies and solutions were common in both 
classrooms, the students had limited prior exposure to 
working in collaborative pairs. 
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Task 1) Two carnivals are coming to town. You and your friend decide to go to different carnivals. The carnival that you 
attend charges $10 to get in and an additional $2 for each ride. The carnival your friend attends charges $6 to get in, but 
each additional ride costs $3. If the two of you spent the same amount of money, how many rides could each of you have 
ridden? 

Task 2) What digit is in the one’s place of the number: 29 . 34 . 56 

Figure 1. Problem-solving tasks used to measure students’ sense of functional algebra and generalized arithmetic, respectively. 
 
 

The interviews were conducted in a small area of a 
quiet room, and the students were under no time 
constraints to complete the tasks. The students were 
given one copy of the first task and were told to “work 
the problem anyway you wish, but you may wish to 
work together.” Only pencil and paper were provided. 
When it seemed that the students were at the end of 
their solution attempt, they were questioned on the 
manner in which they approached the task, and asked 
to think about other ways to solve the problem. This 
looking back stage was intended to promote critical 
reflection by the students on their solution strategy. 
These procedures were repeated for the second task. 

Analysis was conducted on the videotaped 
segments as well as the students’ written work. The 
analysis centered on the kinds of algebraic 
understandings (Kaput, 1995) the students seemed to 
bring into the problem-solving situation, and the kinds 
of algebraic understandings that the pairs utilized and 
constructed in their solution. Hence, the social, 
external, and mathematical constraints inherent in 
problem solving were present, but the analysis centered 
on the construction of understandings. Particular 
attention was given to the kinds of properties that the 
students attached to the algebraic ideas and mental 
objects that helped support their investigation. 

Numerous researchers have extended a 
sociocultural view of learning to research on teaching, 
grounded in participant’s actions and perspectives 
(Cobb et al., 2003; Simon and Tzur, 1999). Researcher 
participation, and the methodology itself, can be jointly 
negotiated with the participants. Kieren et al. (1995) 
took a similar approach to research on learning, 
describing an enactive learning environment that 
attempts to balance the overall aspects of the learning 
situation with the cognitive and social backgrounds of 
the participants as they engage in mathematical 
activity. Kieren et al. used a group interview format 
where the mathematical activity and research focus are 
mediated by researchers, participants, and setting. 
Kieren and his colleagues prefer to balance the role of 
one’s sense-making activity and one’s ability to 

negotiate and construct meaning. As they state, instead 
of situated cognition or situated cognition, research 
should focus on situated cognition. Hence, analysis of 
student mathematical activity should be concerned 
with understanding the students’ individual cognitive 
processes in the context of the entire setting, including 
the genesis and nature of interactions that lead to 
knowledge construction. Likewise, a discussion of the 
setting should be framed by the activity that occurs 
within. This perspective was the lens through which 
the interviews in this study were both conducted and 
analyzed. Discussion of results will focus on overall 
trends in the data, followed by a microanalysis of 
problem-solving interactions. 

Results 
Task 1 was designed to allow students to approach 

the problem either arithmetically or from a more 
algebraic perspective. Students can solve the problem 
by simply adding the cost of a ride or rides to each 
admission  and  finding  the  amount  of  money  where  
 

Person A Person B
Number

of Rides

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

2 6

2 8

3 0

 6

 9

1 2

1 5

1 8

2 1

2 4

2 7

3 0

3 3

3 6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 0  
 
Figure 2: Amounts of money spent by carnival attendees for a 
given number of rides. 
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these totals are the same (see Figure 2). However, 
students could also extend this strategy and find many 
other combinations where the amount of money spent 
is the same. Specifically, the students could express 
their answer in a manner that describes a variable 
relationship between the amount of rides and money 
spent. Students could discuss the general relationships 
in the numeric solution pairs that were obtained and 
then set the expressions 10 + 2a and 6 + 3b equal to 
each other, or they could draw the graph of this linear 
relationship. These strategies would suggest a more 
formal algebraic approach to the task than the 
computational method described above because of the 
greater degrees of abstraction present in the 
representation and solution process.   

Task 2 could be worked in a purely computational 
way, where the value of 29 ⋅ 34 ⋅ 56 is computed and 
the value of the one’s place identified. However, 
students could also identify a factor of 10 present in the 
product, either through initial computation or by an 
examination of the factors, and recognize that the value 
of the product must end in zero. 

Task 1 
Overall analysis revealed that sense-making and 

property-noticing activities of some students occurred 
in this setting, which may not have been constructed if 
working alone. However, slightly less than half of the 
pairs of students worked almost independently of one 
another, and very little knowledge was shared. 
Students who worked collaboratively constructed 
solution strategies that involved meanings introduced 
by both students, and the congruencies and 
incongruencies in the individual strategies seemed to 
advance the collective approach in most, but not all, 
working pairs (see Table 1). The solution of Tim and 
Molly2, discussed later, provides a clear example of a 
pair of students whose collective solution strategy 
yielded results that may not have evolved if working 
alone. 

Every group began the problem by listing dollar 
amounts for a given number of rides, and every group 
but one found either the solution (one ride for Person 
A, two rides for Person B, $12) or the solution (4, 4, 
$18).  Overall, more than half of the student pairs 
attended to covariance properties in regard to the 
number of rides or money spent (see Table 1). This 
analysis either involved the relationship between the 
increase in the number of rides of each carnival 
attendee for every new solution (three additional rides 
for Person A and two additional rides for Person B), or 

an increase in the amount of money spent for every 
new solution (one new solution for every $6 increase).  

A greater number of eighth grade pairs than 
seventh grade pairs performed an analysis of the rate at 
which new solutions were found in regard to money 
spent (see Table 1). This result was due to the fact that 
the seventh grade student pairs were more likely to 
focus only on situations in which both riders went on 
the same number of rides. Finding the amount of 
money each person would spend for the same number 
of rides does not include an analysis of the times when 
each spends the same amount of money but enjoys a 
different number of rides. Students who only focused 
on a uniform increase in the number of rides across 
riders found the solution (4, 4, $18), but failed to find 
solutions such as (1, 2, $12). 

Students investigating Task 1 in ways that did not 
involve a uniform increase in the number of rides had 
to perform a complex analysis of the covariance 
properties present in the situation. The students first 
had to recognize that the two quantities relating to the 
amounts of money spent by each attendee increase at 
different rates as more rides are taken. Then the 
students had to realize that this difference impacts 
another form of covariance—each person’s number of 
rides is different for each solution. The latter difference 
is due to a 3:2 ratio between the number of rides of the 
two attendees from one equal spending value to the 
next (see Figure 2). Therefore, to make these kinds of 
generalizations, the students had to simultaneously 
negotiate two different covariance situations and relate 
them to their analysis. 

The eighth grade students were more likely to 
discuss a general solution to the task by finding a 
pattern in the solutions displayed in a numeric table of 
values they created. An example of this kind of 
analysis is provided below. Many of these groups took 
a more formal approach by making explicit notice of 
the manner of covariation in the number of rides and 
money spent, as just described. These kinds of 
observations are pivotal when attempting to generalize 
a solution for an arbitrary number of rides. 

Two other groups made explicit mention of 
covariation that was inappropriate to the problem 
context, and four groups made no explicit mention of 
any notion of covariance. One pair of students explored 
these notions using algebraic symbols, but the rest of 
the students did not go beyond the numeric table and 
verbal descriptions. 
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Table 1 

Algebraic understandings of covariance and solution possibilities exhibited by students on Task 1 
No. groups 

Group’s algebraic understanding 
7th grade 
(7 groups) 

8th grade 
(8 groups) 

Made explicit notice of the differences in covariation in the number of rides 
and money spent between the two carnival attendees (3:2 increase in number 
of rides per additional solution) 
 

3 3 

Made explicit notice of covariation in regard to amount spent (a new solution 
for every 6 dollar increase) 
 

1 4 

Made no explicit mention of any notion of covariance 
 

3 1 

Stated or suggested that they realized that their were a theoretically infinite 
number of solutions to the task 
 

3 4 

Stated or suggested that they realized that there were “a  
lot” of solutions to the task 
 

2 4 

Found only one solution and did not seem to think others could be found 2 0 
 
 

Analyzing the property of covariance (i.e., slope) 
from multiple situational perspectives eluded many of 
the student pairs, most of whom were in the seventh 
grade (see Table 1). Overall, some general differences 
existed in the level of algebraic reasoning and 
awareness of algebraic properties between the students 
in the two grade levels. This may have been due to the 
eighth grade students’ prior exposure to algebraic 
ideas, including notions of variable and equation 
solving. 

Task 2 
Collaborative problem-solving behaviors by the 

student pairs on Task 2 occurred less frequently than 
on Task 1. All but two of the student pairs either 
worked in isolation, with each student computing the 
value of the product individually, or with no real 
collaborative problem-solving activity. The latter 
involved negotiation of individual computational 
duties, such as one person calculating 29 and the other 
person finding the values of the other two factors. All 
students who worked in isolation compared their 
answers to the calculations of their partner. Overall, 
there was very little interaction between the students 
on this task. 

The solution strategies on Task 2 were also more 
uniform. Only one seventh-grade pair and one eighth-
grade pair who successfully answered the question did 
not calculate the value of the expression. These two 
student pairs noted the presence of the factors two and 

five in the product, recalled the property of a factor of 
10 producing a zero in the one’s place, and then 
utilized this property to construct a solution. However, 
unlike Task 1, simple probing questions, such as “Is 
that the only way you could have done it?”, elicited 
generalizations in many of the student pairings who 
had already solved the problem through direct 
calculation. In particular, the realization of the 
presence of a factor of 10 led to the development of 
strategies in three of the seventh grade pairs and three 
of the eighth grade pairs similar to that provided by the 
two pairs of students mentioned above. Therefore, this 
task did not initially elicit algebraic solution strategies, 
but these behaviors did arise when prompted by the 
researcher. 

Enactive Learning: A Closer View 
This section will focus on the problem-solving 

strategies of Tim and Molly, two eighth graders, as 
they worked together on Task 1. It will explore the 
contextual, social, and cognitive factors that may have 
played a role in their problem-solving processes. The 
transcription of the solution strategy developed by Tim 
and Molly illustrates how they initially constructed an 
understanding of the problem based on the properties 
of the two functions that represent the amounts of 
money spent by the two carnival attendees. These 
properties involved the initial amount (admission) and 
rate of increase (cost per ride). Analysis centered on 
their individual sense-making and collective meaning-
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making activities as they engaged in a solution attempt. 
This interview was chosen because of the degree of 
collaboration and collective sense making that 
occurred. Although shared meaning developed 
between Tim and Molly, the previously discussed data 
indicates that such activity was not found in all of the 
interviews.  

After Tim found an initial solution of one ride and 
two rides (1, 2, $12), Molly conjectured that more 
solutions would be possible. They discussed the 
covarying properties of the two dependent variables, 
and this led Tim to the solution (4, 4, $18). At this 
point, the two participants realized that infinitely many 
solutions were possible, but they had no means of 
describing what these solutions would be. Therefore, 
the students approached the problem from a 
computational perspective by making use of the 
functional notion of covariance to find alternate 
solutions, but they were unable to generalize to the 
arbitrary case. Hence, their solution showed aspects of 
algebraic thought, but they failed to develop functional 
properties associated with arbitrary quantities. Instead, 
the idea of covariance was contemplated from an 
arithmetical perspective. Further, the students’ ability 
to articulate their sense-making processes led to 
additional meaning making between the pair, leading to 
the acquisition of higher degrees of understanding of 
the mathematical situation. 

A closer look at specific portions of the interview 
reveals particular instances of sense making and 
instances where the students noticed properties that led 
to their solution. The following segment occurred at 
the onset of their solution attempt on Task 1: 

T & M: (read problem, mumbling) 

Molly: I don’t know. 

Tim:  Wow (exasperated). (pause) Do you have 
a calculator? 

DS:  No. 

Tim:  OK, so right now we know that each 
person paid at least 10 and 6 dollars. 

Molly:  And then they could also go on two times, 
but it depends how many rides he’d want 
to go to. 

Tim:   How many rides can each— 

Molly:  Actually, it depends on how many rides 
he’d want to go on. 

Tim:  No actually, um, actually it’s pretty much 
asking what, like, sort of asking, it’s 
almost like asking lowest common 

multiple, almost, or something like that, 
but anyway. 

Molly:  You actually learned something 
(gibingly). 

Tim:  That wasn’t funny (good-humoredly). 

Molly:  One of my family’s jokes. 

The beginning portion of the interview illustrates 
several important aspects present throughout the 
interview. First, the two students felt comfortable with 
one another and did not appear to be nervous or 
affected by aspects of the interview setting (e.g., the 
video camera, presence of researcher, pressure of 
solving the problem). Second, the students were 
individually engaged in the task and actively sought an 
understanding of the context and solution strategy.  

The next few lines of the interview illustrate that 
the two were beginning to make use of each other’s 
sense-making activities. 

Molly: This actually depends on how many rides 
you went on, to go on, if you wanted to go 
on like two rides, you could spend 

Tim:  It depends, no, OK 

Molly:  for each 

Tim:  OK, if I wanted, if I was here and you 
there, right, if I wanted to go on two rides 
that would be a total of 14 dollars, for me, 
if you wanted to go on two rides then it 
would only be 12 dollars for you, so it 
would end up costing 

Molly:  Oh, I was mixed up, OK (laughs) well, 
one of them, one person didn’t have to 
ride at all to get 10 dollars, no 

Tim:  OK, so what we are trying to figure out is, 
they spent the same amount 

Molly:  Yeah I know, OK, and six dollars, what, 
what adds up to being, lets see, 10, 20, 
(long pause), OK 

Molly began to explore the problem by advancing 
on her initial sense of the situation, which involved an 
understanding of the need to consider “how many 
rides.” She made use of the cost of admission and ride 
price, situational properties that correspond to the 
linear functional properties of y-intercept and slope. 
They were beginning to construct and make use of 
shared meanings of the situation.  

Tim utilized Molly’s remarks regarding the need to 
consider the case of going on two rides to begin his 
numerical analysis. After these computations, Molly 
recognized that this would not be a desired solution 
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and said, “I was mixed up.” In the last two comments, 
they returned to their individual sense-making 
activities. Tim then made the following key insight: 

Tim:  I could go on one and you could go on 
two and then we’d each spend 12 dollars 
(very confidently). That’s the answer 
(chuckles). And 12 dollars is one answer, 
or, ‘cause 

Molly:  Yeah that’s true. 

Tim:  I’d go once,  

Molly:  You’d go once 

Tim:  You’d go twice (writes) 12 

Molly:  So you’d 

Tim:  So 

Molly:  one person would go on two rides and the 
other person would go on one. 

Tim:  No, one person would go. Yeah (put 
pencil down) I get it, there’s that one. 

Using the covariance properties previously 
explored, Tim decided to vary the number of rides for 
each person, changing the (2, 2) case to (1, 2). This 
produced a solution that Molly was able to 
immediately verbalize.  

Tim’s personal solution became a shared and 
meaningful one, although Tim was clearly the initiator 
of nearly all of the public meaning. But this 
immediately changed when I became part of the 
interaction after assuming from Tim’s last comment 
that the problem-solving activity had ended: 

DS:  You spent 12? OK, so the one was two 
and the other was one ride? 

Molly:  Well you could spend more time and 

Tim:  You could spend a lot more money, and 
then 

Molly:  Yeah 

Tim:  You could 

Molly:  One person could go on two rides and the 
other person could go on four rides and 
you’d still get the same thing. 

Molly’s current sense of the solution allowed her 
to expand the situation by linearly increasing their 
solutions, with some minor prompting from me. 
However, Molly’s generalization was inaccurate, as it 
did not include a proper analysis of the rates of 
increase in the number of rides between solutions.  

While Molly was verbalizing the meanings she 
constructed that led to this conjecture, Tim makes 

sense of Molly’s remarks and challenges the meaning 
put forth by Molly after conducting a few 
computations: 

DS:  OK, what would they spend in that case? 

Molly:  Well, if you had 

Tim:  (writes) 6 times 30 

DS:  Or what makes you say that? 

Tim:  and if the other person goes on four, or 
wait a minute, this person goes on two. 

Molly:  It would be the same amount just as the 
first time. 

DS:  By the first time you mean when the one 
person rides one and the other person 
rides two? 

Molly:  OK, one person 

Tim:  No it wouldn’t (confidently). OK, wait, so 
you’re saying, so you’re saying 

Molly:  OK, you go 

Tim:  one person goes four times, goes on four 
rides 

T & M: and the other person goes on two 

Tim:  that’s 12, 14, this one’s 9, 12, 15, 18, so, 
no, that’s not exactly true. 

Molly:  What (contentiously)? 

Tim:  You said one person goes on two and 
another person goes on four. 

Molly:  So, but wait. 

Tim:  ‘cause this person has to pay six just to get 
in and three for each ride 

Molly:  yeah 

Tim:  that’s four rides, that’s a total of 12 right 
there, plus another six is 18, so that’s not 
necessarily true. 

Molly:  Well, um, if you take, it’s 10 and six, and 
then the first time, one person goes on one 
once 

Tim:  that’s two dollars right there 

Molly:  yes, that’s two dollars, and then another 
person goes on another time, that’s two 
times, and then you go on it again, six, 
and another two, I guess that doesn’t 
work. It’s worked in the past for me. 

Using the meanings put forth by Tim, Molly 
recognized the faults in her sense of the situation and 
altered her belief in her own solution of (2, 4). The pair 
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constructed a collective sense of the precise nature of 
the covariation in the situation and used this to further 
their understanding and solution of the problem, 
including a greater awareness of the property of 
covariance. Eventually, their meaning making 
exchanges collectively led to the (4, 4) solution, but 
either participant made no further generalizations. 
However, Tim does suggest that he believes more 
solutions are possible: 

Tim:  You could find other answers if you’d 
keep going but, if you had all the time in 
the world I’m sure you could find a lot 
more answers. 

Molly:  If you were an old fogey I bet you could, 
because you’d have a lot of time. 

Despite failing to advance the solution, the above 
dialogue illustrates how the articulation of sense and 
joint construction of meaning are interdependent 
processes that can lead to knowledge acquisition. 

Molly and Tim successfully completed Task 2, but 
their analysis was not as thorough and did not employ 
any algebraic methods. Their solution strategy 
involved performing the entire multiplicative 
computation stated in the problem, and then examining 
the digit in the one’s place in their final answer. The 
pair shared the computation and writing duties 
throughout, but did not construct a solution in a truly 
collaborative manner. 

Molly: It’s two to the ninth, so one more 
(multiplication of two). 

Tim: OK, that’s 512. Here, you do this for a 
while. (hands Molly the paper) 

Molly: OK. 

After the pair completed the computation, I 
initiated a discussion that did not generate a more 
algebraic approach, with Tim concluding by stating, “I 
think there’s a shorter way but we don’t know.” The 
use of the term “we” suggests that Tim was viewing 
the pair as a fully functioning team throughout this task 
as well, even though no real collaboration occurred. 
However, unlike Task 1, the pair was unable to utilize 
algebraic methods in this solution because the ability to 
identify and make use of the effect of multiplication by 
10 was not apparent. As discussed before, this result 
was typical across all but two of the groups without 
prompting from the researcher. 

Analysis of the work of another eighth-grade pair 
provided a different perspective on the nature of 
collaboration and the use of algebraic properties. Like 
Tim and Molly, Bill and Gloria collaboratively 

explored Task 1 and arrived at multiple solutions and a 
detailed analysis of the 3:2 ratio that existed between 
the increase in rides. On Task 2, both students initially 
asked for calculators, and then divided up the 
computation. 

Bill:  I’ll do two to the ninth and you do three to 
the fourth. 

Gloria:  OK. 

The pair continued computing silently for a very 
long time, with both eventually working on 56 together. 
However, before this computation was completed, 
Gloria stated, “Wouldn’t we get zero?” Bill either 
ignored or dismissed this comment and continued his 
computation. After several more minutes, the pair 
arrived at an answer of zero. 

Gloria:  Zero will be there, and if you multiply 
anything by zero you get zero. 

DS:  Can you look at the problem and see why? 

Bill:  (long pause) Not really. 

Gloria:  We got zero here (at one point in the 
computation) and it stayed zero after that. 

Although Bill and Gloria began working 
collaboratively on the computational aspect of the 
problem, they did not share in any meaning-making 
activity regarding the conceptual aspects embedded in 
this task. Gloria began to explore this, but did not 
progress either individually or collaboratively with 
Bill. As stated above, this lack of group meaning 
making was true of the majority of paired groupings on 
this task. 

Conclusion 
In many situations, learning is a collective process 

of privately constructed personal sense and publicly 
negotiated meaning. The ability to utilize one’s sense 
to articulate meaning, as well as make sense of other’s 
stated meanings, enriches the taken-as-shared network 
being constructed. Learning is a dynamic interplay 
between one’s sense, one’s stated meanings, and the 
sense one makes out of other’s stated meanings. This 
study provides evidence where these three aspects of 
learning can combine to form a collective, rich 
understanding of a problem-solving situation, or a 
situation where sense- and meaning-making do not 
fully develop.  

This study does not intend to make the case that 
students are more successful working together. Rather, 
it tries to articulate how specific conceptual processes 
are utilized when working on algebraic tasks in both an 
individual and collaborative environment, and what 
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kinds of algebraic tasks might elicit individual and 
collaborative problem-solving behavior. The main 
mathematical object of analysis in Task 1 was the 
linear growth relationship that contained the property 
of constant rate of change and a covariance property 
between the two variables. In the case of Tim and 
Molly, the taken-as-shared meanings that developed 
were certainly a product of the two individual’s sense-
making activities, but the development of these 
meanings also effected future sense-making and 
meaning-making activities in the task. These students 
were both willing and able to participate in this 
personal and shared process, and their collective sense- 
and meaning-making activities were at the heart of 
their learning experiences.  

Overall, the tasks and learning environment were 
able to elicit sense-making activities based upon the 
individual students’ understandings that were then 
transferred into meaning-making activities shared by 
the student pairs. These activities led to solution 
strategies that involved the generalization of arithmetic 
constructs into more algebraic realms. This occurred in 
the context of interactions between students in Task 1, 
but interactions with the researcher also led to these 
occurrences in Task 2 for several student pairs. The 
most significant advancements made by the student 
pairs appeared to have occurred in Task 1, where the 
students explored aspects of the covariance to advance 
their understandings of the task, the number of 
solutions found, and their ability to articulate a 
generalized solution. The fact that there was more 
interaction on Task 1 may have been due to the fact 
that the linear growth properties inherent in this task 
were more apparent to the students than the 
multiplicative or number theory properties inherent in 
Task 2. The use of a context involving two people may 
have also made Task 1 easier to model than Task 2. As 
a result, the students were able to participate in richer 
meaning making exchanges about Task 1, and develop 
more advanced solutions. 

It appears that, for these middle school students, 
algebraic understandings of the property of covariance 
on Task 1 were readily available. These understandings 
allowed many of the student pairs to approach the task 
in algebraic realms, making use of the properties of 
covariance, correspondence, and slope to identify 
multiple solutions to the task. Understandings of 
appropriate arithmetic properties which may have led 
to a more generalized approach to Task 2 were not as 
apparent. Hence, in this study, the students were better 
able to utilize their sense-making activities to uncover 
properties related to aspects of functional algebra than 

with properties associated with algebra as generalized 
arithmetic. But the limited scope of this study does not 
begin to allow for generalizations of this result. Further 
research is needed to discuss differences in students’ 
facility with various algebraic properties and the ability 
to work with these properties at various levels of 
generality (Kaput, 1995).  

Moreover, students with procedural problem-
solving tendencies (which many of the students 
appeared to possess) would not be expected to utilize 
algebraic understandings on Task 2 because a solution 
strategy requiring direct computation is immediately 
recognized. But, in Task 1, a student who begins to 
compute the number of rides associated with various 
amounts of money spent by the carnival attendees is 
generating information that can lead to a discovery of 
notions of slope and covariance, which happened 
frequently in these student pairs. Therefore, the 
problem-solving behaviors of the students may have 
led to differences in their ability to recognize 
properties of the mathematical situations and to solve 
problems with various degrees of generality across the 
two tasks. These data illustrate the complexities 
inherent in the personal and public interplay of 
students’ knowledge construction processes that often 
go unnoticed in an interactive, problem-solving 
environment. 
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1 For example, a2 - b2 = (a + b)(a - b) expresses the 
relationship between the difference of the squares of any two 
numbers and the product of their sum and difference. An 
additional example involves the discovery that the result of 
any product that contains a factor of 10 must have a zero in 
the one’s place.. 

2 All participant names are pseudonyms. 
 




