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In this article, I model how a problem-posing framework can be used to enhance our abilities to 
systematically generate mathematical problems by modifying the attributes of a given problem. The 
problem-posing model calls for the application of the following fundamental mathematical processes: 
proving, reversing, specializing, generalizing, and extending. The given problem turned out to be a 
rich source of interesting, worthwhile mathematical problems appropriate for secondary mathematics 
teachers and high school students.   
 

 

As a student and teacher of mathematics, I was 
intrigued about the origin of mathematical problems, 
especially nontrivial problems whose solutions are not 
obtained by a formula or algorithm, problems that 
somehow extend the frontiers of our personal 
mathematical knowledge. When, as a student, I solved 
nonroutine textbook problems, I thought, not only of 
devising a plan or a solution, but also of how the 
textbook authors and mathematicians generated 
mathematical problems. Their origin remained an 
enigma to me until later when, as a teacher, my 
curiosity led me to read The Art of Problem Posing 
(Brown & Walter, 1990). This book provided insights 
into the origin of mathematical problems and 
motivated me to examine more closely the 
relationships among related problems. In their book, 
Brown and Walter propose the “What-if” strategy as a 
generic means to modify a given problem to create 
additional related problems. Because I am a geometry 
lover, I first applied Brown and Walter’s “What-if” 
problem-posing strategy to geometric problems. As a 
result, I developed a problem-posing framework that 
has guided my students and me to pose mathematical 
problems systematically. This problem-posing 
framework calls for the application of the following 
prototypical problem-posing strategies: proof 
problems, converse problems, special problems, 
general problems, and extended problems. I often use 
the Geometer’s Sketchpad (GSP) (Jackiw, 2001) to 
verify the reasonability of the resulting conjectures.  

The main purpose of this article is twofold. First, I 

model how the framework can be used to generate 
nonroutine mathematical problems from a given 
problem and, as a consequence, to discover 
mathematical patterns and relationships. Second, I 
discuss some of the difficulties that my students, 
prospective secondary mathematics teachers, 
experience when generating mathematical problems. 
The approach described below reflects the approach 
that I have followed in class. Because the focus of this 
article is on problem posing, proofs for most of the 
resulting theorems are not provided. 

The Problem-Posing Framework in Action: 
Generating Problems From a Problem Involving 

Isosceles Triangles and Medians 
 Many mathematical problems are rich sources of 

additional related problems. I illustrate the use of the 
problem-posing framework with the following 
problem:  

What special property do the medians 
corresponding to the congruent sides of an isosceles 
triangle have? 

Because problem posing and problem solving go 
hand in hand, it is not only important to pose problems 
but also to solve them. Before engaging ourselves in 
generating problems from this given problem, let us 
solve it. As Figure 1 suggests, the medians 
corresponding to the congruent sides of an isosceles 
triangle seem to be congruent. A straightforward proof 
shows that, indeed, the conjecture is true, and, 
therefore, it is a mathematical theorem. Of course, we 
can derive other conclusions: The medians of the 
congruent sides of an isosceles triangle divide each 
other in the ratio 2:1, they create congruent triangles, 
etc.    
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Figure 1. Medians of an isosceles triangle 
 
How can we generate additional mathematical 

problems from a given problem? Some problems can 
be modified to generate new problems by applying the 
following fundamental mathematical processes: 
proving, reversing, specializing, generalizing, and 
extending. Such processes are fundamental to 
mathematics because they are common means of 
generating or establishing mathematical knowledge. 
By applying these processes, we generate the following 
types of problems: proof problems, converse problems, 
special problems, general problems, and extended 
problems (Figure 2). Every problem that can be 
modified to generate related problems is called a base 
problem.  
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Figure 2. A problem-posing framework 

 
As indicated in Figure 2, in some cases we may 

face a mathematical situation that does not contain a 
mathematical problem, e.g., we could have been asked 
to generate problems based only on the geometric 
diagram displayed in Figure 1. In these cases, our first 
task is to formulate a mathematical problem using 
information contained in the situation. 

Posing Proof and Converse Problems 
As indicated by the framework, an important type 

of problem to generate is a proof problem (i.e., a 
problem asking for a proof). In some cases, a problem 
that is not written in proof form can be reformulated as 
a proof problem. Proving is a critical activity of doing 
mathematics. First, proof is the fundamental 
mathematical process by which mathematicians 
establish the validity of their claims, and, as a 
consequence, the means by which mathematical 

knowledge is enlarged. Second, a proof allows us to 
gain insights into why a mathematical theorem holds. 
Finally, a proof guaranties that our proof problem is 
well posed in the sense that is solvable. That is, 
reformulating a problem as a proof problem involves 
more than changing the syntactic structure of the 
problem: it implies that we either know that a proof 
exists or we can develop a proof. Of course, if this is 
not the case, we can always formulate a problem 
beginning with the phrase “If possible, prove that….” 
Our original problem above can be reformulated as a 
proof problem as follows: Prove that the medians 
corresponding to the congruent sides of an isosceles 
triangle are congruent.  

We can also reverse a known and an unknown of a 
problem to generate a converse problem. In other 
words, we formulate a converse problem when we 
substitute a known attribute of a base problem by an 
unknown attribute and vice versa. Why should we 
consider formulating a converse problem? Generating 
and investigating the converse of a problem is also a 
valuable mathematical activity. The converse of a 
mathematical problem is often a potential avenue for 
discovering new mathematical relationships, thus 
expanding mathematical knowledge. While a direct 
problem allows us to investigate the necessary 
conditions or properties of a mathematical object, a 
converse problem allows us to investigate its sufficient 
conditions or properties. In this way, we gain a more 
complete characterization of the properties of a 
mathematical object. Every problem has the potential 
for generating one or more converse problems. Of 
course, in many situations the resulting converse 
conjecture does not hold. In some of these situations 
we may need to impose additional conditions or 
restrictions for the converse theorem to hold. In any 
event, we often broaden our mathematical knowledge 
by investigating the converse of a problem. 

The converse of our medians problem follows: 
Prove that a triangle with two congruent medians is 
isosceles or, more specifically, prove that, in a triangle 
with two congruent medians, the sides corresponding 
to the medians are congruent. As it is often the case, 
the proof of the corresponding converse theorem is 
more challenging than the proof of the original 
theorem. This case is no exception. A proof follows: 

Let 

! 

AD  and 

! 

BE  be two congruent medians of 
triangle ABC (Figure 3). Since 

! 

AD and 

! 

BE  are 
medians we have that AE = EC and BD = DC. Euclid’s 
fifth postulate allows constructing through B the 
parallel line to 

! 

AD . Let F be the point of intersection 
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of this parallel line to 

! 

AD  and line 

! 

ED . Since D and E 
are the midpoints of two sides of a triangle, we know 
that 

! 

EF  is parallel to 

! 

AB . Therefore, quadrilateral 
ABFD is a parallelogram. As a consequence, BF = AD. 
Since AD = BE, we know that BF = BE. Since the 
opposite angles of a parallelogram are congruent we 
have that 

! 

"BAD #"BFD . On the other hand, 

! 

"BFD #"BEF  by the isosceles triangle theorem. By 
the alternate interior angle theorem, 

! 

"BEF #"ABE . 
Thus, 

! 

"BAD # ABE . Therefore, 

! 

"ABD # "BAE  by 
the SAS congruence criterion. As a consequence, 

! 

AE = BD , and, hence, 

! 

AC = BC . That is, 

! 

"ABC  is 
isosceles.  

 
Figure 3. A triangle with two congruent medians  

Posing Special Problems 
Another potential way to generate mathematical 

problems is through specialization. We accomplish this 
by substituting for a mathematical object or attribute of 
the base problem with a particular example or case of 
the original mathematical object or attribute. In a 
special problem we impose additional restrictions on 
one or more of the attributes. A compelling reason for 
generating special problems is that, in some situations, 
specializing a problem allows us to detect implicit 
relationships among mathematical concepts that are not 
apparent at first sight. In other cases, specializing a 
problem permits us to find stronger relationships 
among the involved problem attributes. By detecting 
implicit relationships or finding stronger relationships 
between or among problem attributes, our 
mathematical knowledge becomes deeper.  

 
Prove that the medians corresponding to the congruent sides of an 
isosceles triangle are congruent. 
Angle bisectors Equilateral Parallelogram 
Altitudes Right Rhombus 
Perpendicular bisectors Scalene  
Figure 4. Potential changes to the original base 
problem 

 
How can we generate a special problem? A useful 

idea is to underline the attributes of the base problem 
that can be changed, list some possible changes, and 
examine which attributes have special cases (Figure 4). 
For this problem, the attribute that has a special case is 
isosceles. Therefore, we can pose a problem involving 

equilateral triangles because an equilateral triangle is a 
special case of an isosceles triangle. Our special 
problem can be formulated as follows: Prove that the 
medians of an equilateral triangle are congruent 
(Figure 5).  

 
Figure 5. The medians of an equilateral triangle 
 
We can also formulate and prove the converse of 

the previous problem but I will leave this task to the 
reader. Of course, other special problems can be 
generated (e.g., prove that the medians corresponding 
to the congruent sides of a right isosceles triangle are 
congruent). The above special problem is exemplary 
because an isosceles triangle is defined as a triangle 
with at least two congruent sides while an equilateral 
triangle is defined as a triangle in which all sides are 
congruent. In addition, the corresponding theorem for 
equilateral triangles reveals additional properties about 
the medians (i.e., the three medians are congruent) 
while the corresponding theorem for right isosceles 
triangles does not reveal any additional or implicit 
properties about the medians of the congruent sides. 

Posing General Problems 
Another potential source of mathematical problems 

is generalization. We create a general problem by 
substituting a mathematical object or attribute of the 
base problem with another for which the original is an 
example. A compelling reason for formulating a 
general problem is that in some general cases the same 
relationship holds while in others a weaker or more 
subtle relationship exists. Of course, in other general 
cases, there is not a relationship at all. In any case, 
mathematicians, as searchers of mathematical patterns, 
want to discover all possible relationships and the 
conditions under which a relationship exists or does 
not exist. As we relax our original conditions, we gain 
a more complete understanding of the properties of 
mathematical objects.  

 
Figure 6. The medians of a triangle 
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Because I proved that a triangle is isosceles if and 
only if two medians are congruent, I will pose the 
general problem in an open-ended format: Is there a 
relationship among the medians of a triangle? As 
Figure 6 shows, there is not an apparent relationship 
among the medians of a scalene triangle. However, by 
measuring the lengths of the sides of the triangle a 
more elusive, subtle relationship may be noticed: In 
any triangle, the longest median corresponds to the 
shortest side and vice versa. Sure, this relationship 
involves more than medians, but it is still a valid 
generalization from the original statement. By 
specializing this new general relationship for isosceles 
triangles, we obtain our former relationship involving 
the congruence of two of the medians of an isosceles 
triangle as the following argument shows.  

Let 

! 

ABC  be an isosceles triangle with 

! 

AC = BC  
and medians 

! 

AD  and 

! 

BE   (Figure 1). If 

! 

AD > BE  
then 

! 

AC > BC , which contradicts our hypothesis. A 
similar contradiction exists if 

! 

AD < BE . Therefore, 

! 

AD = BE .   
I should confess that I did not discover this general 

relationship by myself. I discovered it when I was 
looking for a proof of a related challenging problem 
(presented below) that I generated by modifying other 
attributes of the original problem.  

Posing Extended Problems 
Another potential source of mathematical problems 

is extension. We pose an extended problem when we 
substitute a mathematical object or attribute of a base 
problem by another similar or analogous mathematical 
object or attribute. In this case, none of the 
mathematical objects is a special case of the other. 
Why should we consider generating extended 
problems? After all, at this point we might have 
already formulated a general relationship as well a 
special one. A compelling reason is that, in some 
situations, the same relationship exists for an extended 
case while in others a similar or analogous relationship 
exists. If the extended situation is a special case of the 
general case, we may discover a stronger relationship 
than the general relationship or we may find an implicit 
relationship. If the extended situation is not a special 
case of the general case, we may find that the same or a 
similar relationship exists. In any event, 
mathematicians, as searchers of mathematical patterns 
and relationships, want to discover, examine, or 
characterize all possible relationships that exist 
between specific mathematical objects. Extension is a 
common means of enlarging mathematical knowledge.  

Since a right triangle is not a special case or a 
general case of an isosceles triangle, we may say that a 
right triangle is an extended case of an isosceles 
triangle. As I reflected on how to pose a problem 
involving a right triangle, I remembered that the 
median corresponding to the hypotenuse is half as long 
as the hypotenuse and that the hypotenuse is the 
longest side of a right triangle. As a result of this 
thinking, I generated the following extended problem: 
Prove that the medians of a right triangle are greater 
than or equal to half the length of the hypotenuse. As 
we can notice, the problem takes advantage of 
properties of both scalene and right triangles, resulting 
in a stronger relationship for right triangles than for 
generic scalene triangles.   

Posing Further Extended Problems 
So far we have posed problems involving special, 

general, and extended cases of an isosceles triangle. 
We can continue generating problems by modifying 
other problem attributes as indicated in Figure 4. To 
distinguish these new problems from the extended 
problem generated previously, I call the new generated 
problems further extended problems. Notice, however, 
that we can distinguish between extended and further 
extended problems only when (a) one of the problem 
attributes has special, general, and extended cases, and 
(b) there is another attribute that can be changed. In the 
present situation, (a) an isosceles triangle has special 
cases (e.g., an equilateral triangle), general cases (i.e., a 
scalene triangle), and extended cases (e.g., a right 
scalene triangle) and (b) other attributes can be 
changed (e.g., medians.)  

Instead of medians, we can consider related 
attributes such as altitudes, angle bisectors, and 
perpendicular bisectors. However, since these 
geometric figures are lines or rays, they do not have a 
finite length. To circumvent this obstacle, and at the 
same time salvage our potential problem, we can 
consider the length of an altitude as the distance from 
the corresponding vertex to the opposite (extended) 
side (e.g., BE in Figure 7) of a triangle. The length of 
an angle bisector can be defined in a similar way (e.g., 
AD in Figure 7). The length of a perpendicular 
bisector, however, is more troublesome because a 
perpendicular bisector intersects both of the other two 
(extended) sides of a non-right triangle. To elude this 
problem, I defined such a length as the distance 
between the midpoint of the segment and the point of 
intersection of the perpendicular bisector with the 
adjacent side or its extension following a clockwise 
direction (e.g., FG in Figure 7). Notice that for right 
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triangles, the length of the perpendicular bisector of 
one leg is still infinite.  

 

 
 

Figure 7. Examples of lengths of altitudes (BE), angle 
bisectors (AD), and perpendicular bisectors (FG) 
associated to a triangle. 

 
Using this definition, I was still not able to find 

any significant relationship between the lengths of the 
perpendicular bisectors of the congruent sides of an 
isosceles triangle. However, as suggested by Figure 8, 
there is, indeed, a relationship involving the 
perpendicular bisectors of the sides of an isosceles 
triangle: EG = DF and EI = DH. This discovery led me 
to redefine the length of the perpendicular bisectors of 
the congruent sides of an isosceles triangle in two ways 
as suggested by Figure 8. One way involves defining 
the length of the perpendicular bisector of a congruent 
side as the distance between the corresponding 
midpoint and the point of intersection with the other 
congruent side or its extension (DF and EG in Figure 
8). Another way involves defining such as length as the 
distance between the corresponding midpoint and the 
point of intersection with the (extended) base of the 
triangle (DH and EI in Figure 8). Notice that in each 
case the length of the perpendicular bisector of one of 
the congruent sides is measured to the adjacent side 
clockwise while the length of the perpendicular 
bisector of the other congruent side in measured to the 
adjacent side counterclockwise.  

 

 
Figure 8. Lengths of the perpendicular bisectors of the 
congruent sides of an isosceles triangle 

 
As a result of defining the lengths of altitudes, 

angle bisectors, and perpendicular bisectors as 
described above, we can pose some further extended 
problems of our original base problem (Figure 9).  

 
 

Prove that the altitudes corresponding to the congruent 
sides of an isosceles triangle are congruent.  

 
If a triangle is isosceles, prove that the lengths of the 
angles bisectors of the congruent angles are equal.  

 
Prove that the perpendicular bisectors of the congruent 
sides of an isosceles triangle are congruent (Figure 8). 
Figure 9. Some further extended problems of the 
original base problem 
 

As suggested by the framework, each of the further 
extended problems displayed in Figure 9 can be taken 
as a base problem to generate additional converse, 
special, general, and extended problems. Figure 10 
displays some resulting theorems related to triangles 
and altitudes. Similar problems can also be posed for 
angle bisectors and perpendicular bisectors. Figure 11 
displays a further extended problem and its solution 
that, with guidance, my students have solved.  
 
A triangle is isosceles if and only if the altitudes 
corresponding to the congruent sides are congruent.  

 
A triangle is equilateral if and only the three altitudes 
are congruent.  

 
In any triangle, the longest altitude corresponds to the 
shortest side and vice versa. 
Figure 10. Theorems related to triangles and altitudes 

 
Problem: Let 

! 

DF  and 

! 

EG  be the perpendicular 
bisectors of two sides of a triangle as indicated on the 
figure. If 

! 

DF = EG , prove that 

! 

"ABC  is isosceles.   

 
Since 

! 

ED  is a mid-segment of 

! 

"ABC  we know that 

! 

ED  is parallel to 

! 

AB . Construct 

! 

EI  and 

! 

DH  
perpendicular to 

! 

AB  as indicated on the figure. 

! 

"EGI # "DFH  by the HL congruence criterion. This 
implies that 

! 

"AEG # "BDF  by the ASA congruence 
criterion. Therefore, 

! 

"EAG #"DBF , which implies 
that 

! 

"ABC  is isosceles. 
Figure 11. A problem involving a triangle with 
congruent perpendicular bisectors and its solution 
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A challenging problem that I myself was not able 
to solve is as follows: If a triangle has two congruent 
angle bisectors, prove that it is isosceles. Because all of 
my attempts were futile, I proposed this problem to 
some of my colleagues, one of which is a 
mathematician, but none could solve it. An internet 
search revealed that this problem is a classic and 
challenging problem in Euclidean geometry with an 
interesting history. This problem is known as the 
Steiner-Lehmus problem. A short historical sketch can 
be found in Lewin (1974), and a simple and elegant 
proof is provided by Coxeter (1969). Coxeter’s proof 
uses the theorem stating that if a triangle has two non-
congruent angles, then the greater angle has the shorter 
angle bisector. This theorem inspired me to formulate 
the subtle generalization among the medians and sides 
of a generic triangle mentioned above.  

We can continue generating problems by 
considering the exterior angles of a triangle and 
defining the length of an angle bisector as the distance 
from the vertex of the angle to the point of intersection 
of the exterior angle bisector with the extension of the 
side opposite that vertex (e.g., AD in Figure 12). One 
such problem can be formulated as follows: Prove that 
the angle bisectors of the exterior angles of an isosceles 
triangle are congruent (Figure 12). Again, we can take 
this problem as a base problem to generate additional 
problems. For example, we can formulate its converse 
as follows: Two exterior angle bisectors of triangle are 
congruent. Is the triangle necessarily isosceles? Justify 
your response. I formulated this problem in an open-
ended form because, even though I was “sure” that a 
triangle with two congruent exterior angles is isosceles, 
I was not able to develop a proof in spite of strenuous 
efforts. Again, I proposed this problem to some of my 
colleagues but the solution remained elusive. (I 
challenge the reader to solve this problem before 
continuing reading. Hint: Use interactive geometry 
software!) I was so sure that the triangle is isosceles 
that I did not attempt immediately to find a 
counterexample with GSP. After working frantically 
on this problem for a couple of weeks, I did use GSP 
and I was amazed for what I discovered: The mystery 
of the equal exterior angle bisectors problem was 
revealed before my eyes. As Figure 13 suggests, there 
are some non-isosceles triangles with congruent 
exterior angle bisectors. This discovery inspired me to 
pose the following question that I am still trying to 
investigate: Is there a necessary and sufficient 
condition for a triangle to have two congruent exterior 
angle bisectors? If so, what is it?  

 

 
Figure 12. Diagram for the equal exterior angle 
bisector problem 
 
 

 
Figure 13. A triangle with two congruent exterior 
angle bisectors 

 
To continue generating additional related problems 

we can extend some of the previous ideas to geometric 
figures other than triangles (e.g., parallelograms, 
trapezoids, etc.). We can also challenge our definitions 
for the lengths of medians, altitudes, angle bisectors, 
etc. For medians, we can consider the distance from the 
vertex of a triangle to the centroid or to the 
circumscribed circle along the median (Figure 14). As I 
did this, I was able to generate additional problems 
and, as a consequence, I was able to discover and 
prove more mathematical relationships. Needless to 
say, I am still trying to solve some of these problems. 
Without a doubt, generating problems may become 
interminable when each new problem becomes the 
source of additional problems.   
 

 
Figure 14. Congruent segments related to medians of 
an isosceles triangle 
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Some Prospective Secondary Mathematics 
Teachers’ Thinking and Difficulties When Working 

on Problem-Posing Tasks 
The problem-posing tasks described in this article 

have been implemented with prospective secondary 
mathematics teachers enrolled in a college geometry 
course designed for them. I have implemented the 
problem-posing tasks using two formats: a student-
centered approach and an instructor-centered approach. 
I use the student-centered approach after the students 
have had some experience with at least one problem-
posing task. In this approach students pose most of the 
problems using the problem-posing framework as a 
guide. Performing the problem-posing tasks described 
in this article usually lasts more than two class periods 
(about 3 hours). I use the instructor-centered approach 
when students have not had any experience posing 
problems. In this case I model how to pose problems 
using the problem-posing framework as a guide. 

Prospective secondary mathematics teachers’ 
abilities to generate problems are underdeveloped 
(Contreras & Martínez-Cruz, 1999). Their approaches 
to generate problems tend to be unsystematic, ad-hoc, 
and nongeneralizable. In addition, their generated 
problems tend to be trivial and unproductive to pursue 
(Knuth, 2002).  For example, I asked my students to 
modify the following problem to pose different but 
related mathematical problems or questions: Prove that 
the medians corresponding to the congruent sides of an 
isosceles triangle are congruent. Among the problems 
posed were: What is a median? How many congruent 
sides does an isosceles triangle have? How difficult is 
it to prove?  

The problem-posing strategies described in this 
article are prototypical strategies that can be used 
systematically in a variety of problem situations to 
generate worthwhile mathematical problems. Yet, as I 
have noticed with my students, without adequate 
experiences, students rarely use these prototypical 
strategies to generate problems. Therefore, there seems 
to be a need to provide students with experiences in 
generating proof problems, converse problems, special 
problems, general problems, and extended problems. 
Prospective secondary mathematics teachers’ thinking 
and difficulties with each of these problem types are 
elaborated below. 

Proof Problems  
As stated above, proving is a fundamental 

mathematical process that permeates mathematical 
thinking and research. In fact, a proposition for which a 
proof has not been developed is called a conjecture and 

not a theorem. Even though proof is a vital part of 
mathematics, my students are often reluctant to pose 
proof problems. For example, Contreras and Martínez-
Cruz (1999) asked 17 prospective secondary 
mathematics teachers to pose problems related to each 
of four given geometric situations. The researchers 
found that only one student out of 17 generated a proof 
problem for one geometric situation. Even after 
instruction, students avoid developing a proof 
corresponding to a proof problem. In addition, many of 
them do not use the full power of a proof when adapted 
to a special case. In other words, they do not establish 
the truth of special theorems as corollaries of more 
general theorems.  

To illustrate, after my students proved that the 
medians corresponding to the congruent sides of an 
isosceles triangle are congruent, most of them did not 
use this theorem to prove that the three medians of an 
equilateral triangle are congruent. Instead, they 
provided a proof from scratch. Only a couple of 
students used an argument along the following lines:  

Since AC = BC (Figure 5) we know that AD = BE 
because the medians corresponding to the congruent 
sides of an isosceles triangle are congruent. Applying 
the same theorem again, we conclude that BE = CF 
because AB = AC. In conclusion, AD = BE = CF. 

This research and personal experience suggest that 
students should have extensive experiences posing and 
solving proof problems. 

Converse Problems  
From a problem-posing perspective, the critical 

mathematical process of reversing involves generating 
a converse problem. Whereas converse problems 
permeate mathematical thinking and research, it is not 
natural for students to generate them. For example, 
Contreras and Martínez-Cruz (1999) found that 
students generated only one converse problem out of 
more than 68 potential converse problems. Ideally, 
each of the 17 students could have generated a 
converse problem for each of the four geometric 
situations. 

In addition, formulating the converse of a problem 
is challenging for some students. Some of my students 
have formulated the converse of the problem “the 
medians corresponding to the congruent sides of an 
isosceles triangle are congruent” as follows “If the 
medians corresponding to the congruent sides of a 
triangle are congruent, prove that the triangle is 
isosceles.” Notice that these students are assuming that 
the triangle is already isosceles. Examples like this 
emphasize how critical it is that students have a wide 
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range of experiences posing converse problems of 
varying difficulty. 

Special Problems  
Specializing a mathematical problem allows us to 

investigate implicit or stronger relationships between 
or among the corresponding problem attributes. Yet, 
my experience has shown that students rarely consider 
specializing as a problem-posing strategy. In addition, 
the way a problem is formulated affects the quality of 
the generated special problem.  

The following problem was posed to a group of 
secondary mathematics majors enrolled in a geometry 
class: “If 

! 

AD  and 

! 

BE  are the medians corresponding 
to the congruent sides of an isosceles triangle 

! 

ABC , 
prove that 

! 

AD " BE .” When asked to generate a 
special problem, all students formulated a problem like 
this: “If 

! 

AD  and 

! 

BE are the medians corresponding to 
the congruent sides of an equilateral triangle 

! 

ABC , 
prove that 

! 

AD " BE .” While this may be a well-posed 
problem, it does not prompt us to investigate whether a 
stronger relationship holds for the special case, which 
is one of the assets of generating a special problem. 
Such evidence suggests that students should be given a 
broad variety of experiences in generating special 
problems. 

General Problems  
Despite the importance of generalizing, Contreras 

and Martínez-Cruz (1999) found that the 17 students 
only generated 38 general problems out of more than 
100 possible general problems. That is, each student 
had the opportunity to generate at least 6 general 
problems for the four geometric situations.  

In addition, generating well-posed general 
problems is challenging for some students. While 
students generating ill-posed problems provides 
pedagogical opportunities, these problems often reveal 
that students do not fully understand the connections 
among the discovered relationships or the structural 
aspects of the problem. For example, some of my 
students formulated the following general problem 
related to the previous problem: Prove that the medians 
of a triangle are congruent. This ill-posed problem was 
generated after my students and I established that a 
triangle with two congruent medians is isosceles. Of 
course, we can reformulate the ill-posed problem as a 
well-posed problem as follows: “Does a (generic) 
triangle have congruent medians? Prove your answer” 
or “Is there a relationship among the medians of a 
(generic) triangle? Justify your response.” If our 
students have adequate experiences in posing general 

problems, they may gain the expertise necessary to 
overcome their difficulties and, as a result, more 
frequently pose general problems.  

Extended Problems  
My experience suggests that students do not often 

extend mathematical problems. When they do, they 
sometimes generate ill-posed extended problems. For 
example, some students have generated the following 
extended problem: prove that the medians of a right 
triangle are congruent. Thus, providing students with 
opportunities to pose extended problems is essential. 

Reflection and Conclusion 
Mathematicians (e.g., Halmos, 1980; Polya, 1954), 

mathematics educators (e.g., Brown & Walter, 1990; 
Freudenthal, 1973), the National Council of Teachers 
of Mathematics (NCTM, 1989, 2000) and the National 
Research Council (Kilpatrick, Swafford, & Findell, 
2001) consider problem posing as a core element of 
mathematical proficiency. The Principles and 
Standards for School Mathematics (NCTM, 2000), for 
example, calls for teachers to regularly ask students to 
pose interesting problems based on a wide variety of 
situations. From this, a pedagogical problem arises: 
How can we teach our prospective secondary 
mathematics teachers to pose mathematical problems 
so that they, in turn, can teach their students to pose 
problems?  

As a student of mathematics, I was never given the 
opportunity to pose problems, let alone interesting 
problems. Most of the problems that I solved came 
from the textbook and, on rare occasions, from the 
teacher. I was certainly content with this situation 
because I considered posing problems as a creative 
endeavor beyond my reach.  

Calls for teachers to ask students to pose problems 
(e.g., NCTM, 1989) challenged me to find ways of 
teaching my students how to pose mathematical 
problems. Brown and Walter’s (1990) The Art of 
Problem Posing motivated me to engage in creating 
problems and, as a result, I developed the problem-
posing framework described here. This problem-posing 
framework calls for the systematic generation of 
problems using the following mathematical processes: 
proving, reversing, specializing, generalizing, and 
extending. These processes are essential means for 
discovering new mathematical patterns or 
relationships.  

Posing and solving mathematical problems are 
worthwhile but challenging activities for prospective 
teachers. As with any other worthwhile mathematical 
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activity, prospective teachers need to be engaged 
actively and reflectively in the problem-posing process 
so they can generate non-trivial, productive, and well-
posed mathematical problems. I truly believe that all of 
us—mathematics educators, teachers, and students—
should experience the joy of generating problems and 
discovering mathematical relationships, even if they 
are new only to us. In this process, we develop a better 
appreciation and understanding of the origin of 
mathematical problems.  
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