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Mathematics is motivating; at least, it should be. I argue that mathematical activity is an inherently attractive 
enterprise for human beings because as intellectual organisms, we are naturally enticed by the intellectual 
stimulation of mathematizing, and, as social beings, we are drawn to the socializing aspects of mathematical 
activity. These two aspects make mathematics a motivating activity. Unfortunately, the subject that students 
often encounter in school mathematics classes does not resemble authentic mathematical activity. School 
mathematics is characterized by the memorization and regurgitation of rote procedures in isolation from peers. 
It comes as no surprise that many students have little motivation to continue mathematics study because it lacks 
intellectual and social appeal. I suggest several practical changes in school mathematics instruction that are 
drawn from the literature. These changes will lead to instruction that more readily engages students with the 
subject because they are rooted in the intellectually and socially appealing aspects of mathematics. 

 
 

Mathematics is motivating. Or at least, it should 
be. Mathematical activity is an inherently attractive 
enterprise for human beings because of its intellectual 
and social aspects. This may be difficult to believe, 
especially when “so many people find mathematics 
impossibly hard" (Devlin, 2000, p. 1) and many openly 
admit strong dislike for the subject (Paulos, 1988). 
Certainly, critics might argue, a few gifted individuals 
might have a special inclination toward mathematical 
study. But, can mathematics be appealing for 
everyone? I claim that it can be; mathematics has the 
potential to be interesting for everyone because it is an 
intellectual and social endeavor.  In the following 
sections, I detail what is meant by authentic 
mathematical activity, describing both its intellectual 
and social aspects. Comparing authentic mathematical 
activity to typical school mathematical activity, I 
suggest ways that teachers can draw on the intellectual 
and social aspects of mathematical activity to motivate 
and engage students in the study of mathematics.  

Mathematical Activity 
Because “mathematics is a woefully 

misunderstood subject” (Devlin, 2000, p. 3), for the 
purposes of this article I define authentic mathematical 
activity, or mathematical activity, to be what 

mathematicians do when they do mathematics. I use 
examples from the life of Stanislaw Ulam, a Polish 
mathematician, to describe authentic mathematical 
activity.  

Not as well-known as Euler, von Neumann or 
Einstein, Ulam was a rather ordinary mathematician. 
Ulam (1976) humbly stated, “after all these years, I 
still do not feel much like an accomplished 
professional mathematician” (p. 27).  Much of Ulam’s 
descriptions of his work focused on the people he met, 
was inspired by, and worked with. Many of the 
experiences he reported illustrate intellectual and social 
aspects of mathematics. 

Intellectual Aspect of Mathematics 
Mathematical activity is the most intellectual 

endeavor of all the sciences.  
Mathematics is a creation of the brain... 
Mathematicians …work …without any of the 
equipment or props needed by other scientists…. 
mathematicians can work without chalk or pencil 
and paper, and they can continue to think while 
walking, eating, even talking. This may explain 
why so many mathematicians appear turned inward 
[which is] quite pronounced and quantitatively 
different from the behavior of scientists in other 
fields…. I have spent… on the average two to three 
hours a day thinking…. Sometimes… I would 
think about the same problem with incredible 
intensity for several hours without using paper and 
pencil. (Ulam, 1976, p. 53)   

Since mathematics is “a thinking, flexible subject” 
(Boaler, 1999, p. 264), mathematical activity is 
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characterized by a variety of mental methods, such as 
cognitive wrestle and creativity.  

Cognitive Wrestle  
Mathematicians wrestle with cognitively 

demanding problems that have no clear solution path. 
Such wrestle is invigorating, and “most 
mathematicians begin to worry when there are no more 
difficulties or obstacles” (Ulam, 1976, p. 54). 
Mathematicians rarely make progress at steady rates; 
rather, they struggle with little apparent progress, and 
then major strides are made suddenly. The 
mathematician Banach “worked in periods of great 
intensity separated by stretches of apparent inactivity” 
(Ulam, p. 33). Ulam described the importance of 
“‘subconscious brewing’ (or pondering) [which] 
produces better results than forced, systematic 
thinking” (p. 54), being “a discontinuous process. 
Nothing, nothing, at first, and suddenly one gets …it” 
(p. 70). Part of this cognitive wrestle involves 
exploring alternative possibilities through mental 
experimentation. 

I always preferred to try to imagine new 
possibilities rather than merely to follow specific 
lines of reasoning or make concrete calculations. 
…Forcing oneself to persist in a logical exploration 
becomes a habit after which it ceases to be forcing 
since it comes automatically. (Ulam, 1976, p. 54)  

 Creativity  
Mathematicians are creative by generating 

mathematical content; they do this by posing and 
solving problems. During this process they create the 
very fabric of mathematics, weaving a thread that 
connects to the work of others.  For example, when 
only 25, Ulam (1976) “established some results in 
measure theory which soon became well known [by 
solving] certain set theoretical problems attacked 
earlier by Hausdorff, Banach, Kuratowski, and others” 
(p. 55). In turn, the Russian Besicovitch solved a 
problem posed many years earlier by Ulam. These 
events also illustrate that problem posing is another 
part of creative mathematical generation.  

Devlin (2000) claimed that all people, everywhere, 
have “a mind for mathematics" (p. 1), that every 
human being with a functioning brain has “an innate 
facility for mathematical thought” (p. xvi). The 
intellectual aspects of mathematics, such as cognitive 
wrestle and creative generation, are fundamental 
attributes of our species: This helps explain why all 
human cultures mathematize the world. The 
predisposition for patterned thinking is even seen in 
newborns (Dehaene, 1997).  

Researchers know that “large parts of the brain are 
active when a person is doing mathematics" (Devlin, 
2000, p. 12). Because we are intellectual beings, the 
intellectual appeal of mathematics makes it naturally 
enjoyable; people’s brains like doing mathematics. 
Mathematics is by far children's favorite subject in 
school, at least well into the fourth grade (National 
Council of Teachers of Mathematics [NCTM], 2000).  

Social Aspect of Mathematics 
Besides its intellectual character, doing 

mathematics is also highly social. Every mathematician 
works within a mathematical community. 
Mathematicians are social on both a local and global 
scale. Ulam, in particular, described communication 
and collaboration.  

Communicating   
Mathematicians are engaged in constant 

communication, in part to help them learn more 
mathematics. This may entail reading about 
mathematics, listening to lectures, or discussing 
mathematical ideas with knowledgeable others. Ulam 
was influenced by mathematicians’ books at an early 
age, such as Sierpinski’s Theory of Sets, Steinhaus’s 
What is and What is Not Mathematics, and Poincaré’s 
La Science et l’Hypothèse, La Science et la Méthode, 
La Valeur de la Science, and Dernières Pensées (1976, 
p. 21). Kuratowski was an early teacher of Ulam who 
made a formidable impression, and, in part, was 
responsible for starting him on a career in mathematics. 
Teachers and mentors play a significant role in 
mathematicians’ development. Many famous 
mathematicians bring to mind their mentors: Euler as a 
student of Bernoulli; Ramanujan as a student of Hardy; 
and Dedekind and Riemann as students of Gauss.  

Mathematicians recognize the benefit that flows 
from sharing and networking (Davis & Simmt, 2003). 
Ulam (1976) described how he would engage in 
mathematical discussions with friends and colleagues. 
During a break while attending an International 
Mathematical Congress, he got lost in the nearby 
woods, and bumped “into Paul Alexandroff and Emmy 
Noether [who were] walking together [among the 
trees] and discussing mathematics” (p. 46).  

The view of an isolated mathematician working 
long hours alone in the office with little interaction is 
almost everywhere false (Wiles’ work on the Fermat 
theorem being a notable exception). 

Much of the … historical development of 
mathematics has taken place in specific centers [or] 
a group in which mathematical activity flourished. 
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Such a group possesses more than just a 
community of interests; it has a definite mood and 
character in both the choice of interests and the 
method of thought. Epistemologically this may 
appear strange, since mathematical achievement, 
whether a new definition or an involved proof of a 
problem, may seem to be an entirely individual 
effort, almost like a musical composition. 
However, the choice of certain areas of interest is 
frequently the result of a community of interests. 
Such choices are often influenced by the interplay 
of questions and answers, which evolves much 
more naturally from the interplay of several minds. 
(p. 38) 

The work of a mathematician incorporates his or 
her surrounding influences. For example, Ulam (1976) 
also wrote that “most of my mathematical work was 
really started in conversations with Mazur and 
Banach” (p. 33, emphasis added). Even gatherings in a 
local café provided opportunities for sharing and 
discussing mathematics. A large notebook was 
permanently kept in the café and brought out by a 
waiter upon demand; it was the central repository of 
the group’s ideas. Ulam later translated the notebook 
and “distributed it to many mathematical friends in the 
United States and abroad” (pp. 49–51). 

Collaborating  
Beyond communicating about mathematics, active 

collaboration is also a natural part of mathematicians’ 
sociality. Ulam (1976) worked with many 
distinguished mathematicians during his career; 
“Collaboration [with Mazur and Banach] was on a 
scale and with an intensity I have never seen surpassed, 
equaled, or approximated anywhere—except perhaps 
at Los Alamos during the war years” (p. 34). Ulam said 
that upon his arrival in the United States, he and 
Borsuk “started collaborating from the first… my first 
publication in the United States ….was a joint paper 
with Borsuk” (p. 41). Later, he said, “a whole series of 
papers which we [Steinhaus and I] wrote jointly came 
from …collaboration” (p. 43). Ulam also worked with 
John von Neumann.  

The joint work of mathematicians results in 
mutually accepted definitions, terms, strategies, 
methods, and algorithms. From parking lots to offices, 
academic lunchrooms to conference halls, 
mathematicians scribble and get stuck, share questions 
and solution attempts, backtrack and refine, reattempt 
and debate; they question, raise counterexamples, 
reason, argue, collectively justify, and develop 
communal metaphors (Polya, 1945). As such, many 
believe mathematics, as a domain, transcends any 

individual perspective (Boaler, 1999; Davis & Simmt, 
2003; Devlin, 2000). It is not a static knowledge 
domain––an external thing to be internalized by a 
learner––but rather a socially created, culturally 
dependent, fallible domain (Ernest, 1990).  

Mathematics exists due to the collective actions of 
many people over thousands of years. It belongs to no 
one and yet is accessible to all; it is a constant, 
communal, and humanistic creation (Romberg, 1994). 
Great discoveries by many individuals and groups have 
woven the tapestry of current mathematical thought; 
people like the Pythagoreans, the Arab algebraists, 
Cardano’s band, and Newton and Liebniz have all 
contributed their threads. As Leopold Kronecker, a 
nineteenth century mathematician, remarked, “God 
made the integers, all else is the work of man" (quoted 
in Devlin, 2000, p. 15).  All mathematics––
fundamental axioms, appropriate terminology, 
conventional representations, mathematically valid 
propositions––is socially driven, “a cultural product” 
(Ernest, 1990). From this perspective, mathematics is 
much more than numbers or computations; it emerges 
through correspondence, questions, and group 
deliberations.  

Inherent Mathematical Appeal 
I am not alone in believing that mathematics can 

be interesting for everyone. The authors of the NCTM 
Standards (2000) opine that mathematics is a 
meaningful, richly rewarding subject that all can learn 
and enjoy. Additionally, when given the opportunity to 
engage in meaningful mathematical tasks that maintain 
their cognitive integrity, students not only tolerate 
mathematical work, but report satisfaction and 
enjoyment (e.g., Boaler, 1999). These findings are not 
exclusive of any particular personality or culture. In 
addition, I have seen ample evidence to suggest that 
students, either high or low achieving, when allowed to 
engage in mathematics, are drawn to the activity 
(Ricks, 2007). There is something intrinsically 
motivating in the subject. 

School mathematics can share this attraction if 
students are able to engage in authentic mathematical 
activity. Unfortunately, “most people do not know 
what mathematics is” (Devlin, 2000, p. xvii), perhaps 
because they have not experienced authentic 
mathematical activity and are thus dissuaded from 
further mathematics study. School mathematics is 
characterized by the memorization and regurgitation of 
rote procedures in isolation from peers (Burton, 2004; 
Stigler & Hiebert, 1999). Therefore, it comes as no 
surprise that, devoid of its intellectual and social 
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appeal, mathematics is not motivating for many 
students and that many do not continue formal 
mathematics study past high school. A corrective 
possibility is to harness the intellectual and social 
potential of mathematics activity; allowing students to 
engage in mathematical activity in their own 
classrooms affords simple, straightforward options to 
improving mathematics instruction by returning to root 
motivational aspects of the subject. 

 

The Lack of Intellectual and Social Appeal in 
School Mathematics 

School mathematics is characterized by learning 
definitions and practicing procedures (Stigler & 
Hiebert, 1999), activities that lead to intellectual 
boredom. The essential attributes of mathematical 
activity—cognitive struggle and creative generation—
are absent. “The questions people [mathematicians] 
worried about and the struggles they went through 
trying to answer them almost never appear [in school 
mathematics]; instead we see the results of the 
struggles, neatly packaged into pieces of boxed text” 
(Cuoco, 2001, p. 169). School mathematics is, quite 
bluntly, an intellectual wasteland, a pseudo-
mathematics. Richards (1991) describes the 
intellectually stagnating initiation-reply-evaluation 
sequence as the common form of classroom 
interaction. No wonder students are confused; no 
wonder they avoid further mathematics study! 

Intellectual Lack in School Mathematics  
Mathematics teachers often view their job as 

showing “a few standard facts and algorithms” to 
students, and, later, “supervis[ing] some drill and 
practice” (Romberg, 1994, p. 314).  Students are 
expected only to memorize the various rules and 
procedures the teacher demonstrates (Boaler, 1999; 
Davis, 1994): Independent thought is not an 
expectation. The intellectual possibilities for 
“relatively sophisticated levels of mathematical 
reasoning, well beyond what is typically thought of as 
appropriate for primary school mathematics" (Yackel, 
2000, p. 20) are rarely met. The current level of 
intellectual engagement in learning school mathematics 
pales in comparison to what could happen if children 
were allowed to think things through for themselves 
(Davis, 1994). 

School mathematics is also not viewed as a 
creative endeavor. The curriculum is set, the teacher 
and textbook are the authorities in classrooms. There is 
no room for questioning, no room for exploration, no 

room for experimentation. “In many schools, 
mathematics is perceived as an established body of 
knowledge that is passed on from one generation to the 
next. Instead of seeing [theorems, formulas, and 
methods of mathematics] as the products of doing 
mathematics, these artifacts are seen as the 
mathematics” (Cuoco, 2001, p. 169). Said Burton 
(2004):  

 
It has long been my opinion that the mathematics 
experienced by students in formal education, and 
the ways in which it is encountered, offer 
explanations for [the] decline in interest. Public 
interest books about mathematics are readily 
bought so it cannot be that people have no wish to 
engage with mathematics…. once students make a 
choice to study mathematics, many of them report 
experiences that are not conducive to holding them 
in the discipline. The same pattern holds whether 
they are studying mathematics at school, as a pre-
university choice, at university as undergraduates 
or even at doctoral level. (p. 4, emphasis added) 

Contrasting this intellectually diluted school 
mathematics with the work of mathematicians is 
enlightening: “as a result of such limited experiences, 
many students are prejudiced against the broader, more 
interesting aspects of mathematics” (Romberg, 1994, p. 
290). 

Social Lack in School Mathematics  
Similarly, school mathematics deprives students of 

the natural socializing appeal of mathematical activity. 
Students are expected to sit quietly and listen to the 
teacher with little to no interaction with others (Davis, 
1994). The necessary mathematical interactions needed 
for full mathematical activity are absent. This severely 
curtails children’s abilities to make “judgments about 
what is acceptable mathematically, for example, with 
respect to mathematical difference, mathematical 
sophistication, mathematical inefficiency, 
mathematical elegance, and mathematical explanation 
and justification,” and it deprives them of autonomous 
“mathematical power” (Yackel, 2000, p. 21).   

In school mathematics, students usually do 
problem sets alone, do homework alone, and take 
quizzes and tests in isolation. When do they have a 
chance to engage in social mathematical work?  School 
mathematics perpetuates beliefs that heterogeneous 
class makeup is an “obstacle to effective teaching” and 
that “the tutoring situation is best, academically, 
because instruction can be tailored specifically for each 
student” (Stigler & Hiebert, 1999, p. 9). When they do 
work in groups, students usually do only superficial 
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computational exercises, even though the group could 
enable individual students to overcome personal 
barriers in the problem-solving process. Rarely is 
mathematical understanding created by the group as a 
whole. 

School mathematics neglects the social aspects that 
make mathematics so appealing—the ability to 
participate in larger mathematizing collectives working 
toward shared meanings and common objectives. 
Classroom dialogue is characterized by univocal 
“number talk” rather than socially intertwined, 
mutually specified, dialogic functioning (Davis & 
Simmt, 2003; Richards, 1990, Wertsch & Toma, 
1995). Such absences of mathematical activity in 
school mathematics classrooms led one researcher 
studying U.S. mathematics lessons to bemoan, “I have 
trouble finding the mathematics [in these lessons]” 
(quoted in Stigler & Hiebert, 1999, p. 26).  

The great ironic tragedy is that most students who 
claim to have little motivation to study mathematics 
have never really experienced authentic mathematics. 
To deal with a lack of motivation, non-mathematical 
strategies are often employed to maintain students’ 
attention in mathematics classes. However, such 
strategies do not work. Some examples are: (i) 
interrupting mathematics instruction to talk about a 
more interesting subject, (ii) using candy or prizes to 
excite students, (iii) presenting the lesson in the context 
of competitive games, or (iv) letting students work 
together on projects where the focus often shifts from 
mathematical ideas to creating attractive displays 
(Stigler & Hiebert, 1999).  

Making School Mathematics Authentic 
Mathematics learning does not require games, 

dramatic teacher presentations, external motivators, or 
even connections to real world activities, all common 
suggestions to motivate students in traditional 
mathematics classrooms. It requires instead a return to 
the core components of mathematics. The reason 
motivation is an issue at all is that current school 
mathematics is neither intellectual nor social; by 
focusing on “habitual, unreflective, arithmetic 
problems” (Richards, 1991, p. 16), school mathematics 
strips from the subject the very constituents that 
provide for meaningful mathematical experiences. 
Slight, subtle changes in the way mathematics is taught 
can significantly increase students’ motivation to learn 
mathematics.  

For example, teachers can engage students in (1) 
cognitively challenging (Stein, Smith, Henningsen, & 
Silver, 2000) and (2) socially oriented activities in 

mathematics classrooms (Stein & Brown, 1990). 
Students can then be involved in the genesis of 
mathematical ideas in a group setting. These two 
components make mathematics a motivating activity: 

When a class follows an inquiry tradition of 
instruction, many of the ‘tasks’ that children 
engage in are tasks that they set for themselves as 
they attempt to reason about the dynamic 
interactions that occurs in small group interactions 
and in whole class discussions.  In a real sense, by 
choosing what they reflect on, students 
individualize instruction for themselves in ways 
that only they can do. (Yackel, 2000, p. 20) 

We can see how this understanding of what makes 
mathematics motivating is reflected in current trends in 
mathematics education. For example, the common 
recommendation to structure lessons around central 
challenging tasks (Stigler & Hiebert, 1999) would 
support the intellectual and social requirements of 
mathematical activity. A teacher’s ability to recognize, 
modify, or develop a central activity that is cognitively 
demanding, while, at the same time, maintaining the 
intellectual integrity of the task as students struggle, 
allows the mathematics to retain its intellectual vitality. 
Students’ mathematical experience would be less likely 
to degrade into mimicry, repetition, and boredom. 
Jointly working on a central task also provides for 
more robust whole-class discussions; the class shares 
the common foundations necessary to truly collaborate 
on mathematical work. The class can begin to emerge 
as a mathematical community through developing a 
common vocabulary and engaging in collective sense 
making. Ball & Bass (2003) write:  

Making mathematics reasonable is more than 
individual sense making. Making sense refers to 
making mathematical ideas sensible [and] 
comprises a set of practices and norms that are 
collective, not merely individual or idiosyncratic… 
That an idea makes sense to me is not the same as 
reasoning toward understandings that are shared by 
others with whom I discuss and critically examine 
that idea toward a shared conviction. (p. 29) 

A second trend in mathematics education—
relinquishing ‘mathematical authority’ (Cobb, Yackel, 
& Wood, 1992; Smith, 1996)—also respects the 
intellectual and social dimensions of mathematical 
activity. By purposely removing herself or himself as 
the source of mathematical truth, the teacher enables 
students to collectively develop mathematical 
knowledge.  

In fact, most current trends in mathematics 
education respect and enable the intellectual or social 
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dimension of mathematics. For instance, establishing 
sociomathematical norms—establishing an 
environment for shared ways of mathematical sense-
making and making explicit appropriate means of 
questioning, justifying, and reasoning—enables the 
social aspect of professional mathematicians’ work in 
the classwork (Cobb, 1994; Cobb, Wood, & Yackel, 
1990;Yackel, 2000; Yackel, Cobb, & Wood, 1999). 
The trend toward whole-class discussions, where the 
teacher orchestrates a respectful space for students to 
discuss and question each others’ thinking, (Cobb, 
Wood, & Yackel, 1990; Yackel, Cobb, & Wood, 
1999); joint mathematizing or encouraging 
collaboration, where students combine their 
mathematical efforts (Grossman, et al., 2001; Ricks, 
2007); and equalizing participation of students so 
particular students do not dominate class discussions 
(Noddings, 1989; Webb, 1995) are recommendations 
that attempt to catalyze the types of social interactions 
characteristic of mathematicians’ work. Eliciting 
students’ mathematical diversity, the teacher selection 
of different manners of student approaches and 
solutions to mathematical problems (Bennie, Olivier, 
& Linchevski, 1999; Borba, 1992; Linchevski, 
Kutscher, & Olivier, 1999; Linchevski, Kutscher, 
Olivier, & Bennie, 2000a, 2000b; Smith, 1992), helps 
students experience the range of creativity that is a 
hallmark of mathematical problem solving. 
Emphasizing dialogic functioning (Wertsch & Toma, 
1995), when students think about each others’ thinking, 
also contributes to the intellectual work needed to 
make sense of others’ ways and means of operating 
mathematically. 

The ultimate goal of mathematics instruction 
should be for students to become “lifelong 
mathematics learners” (Cuoco, 2001, p. 169). What 
might this look like in a classroom? Although this 
article is not the place for delving into the specifics of 
intellectual and social rejuvenation of mathematics 
classes, I do offer three categories of examples at the 
levels of task, lesson, and overall curriculum to whet 
the reader’s appetite (e.g., similar to Usiskin, 1998). 

Mathematical Tasks  
The most obvious place for change is at the level 

of mathematical activities. Stein et al. (2000) detailed a 
task framework for measuring a task’s cognitive 
demand, ordered from lowest to highest: 
memorization, procedures without connections, 
procedures with connections, and doing mathematics. 
For them, doing mathematics is a cognitively 
demanding activity “requiring complex and non-

algorithmic thinking” where no rehearsed approach is 
used (p. 16), as opposed to memorization, defined as 
the recall or reproduction of previously learned 
material, or procedures, defined as emphasizing 
algorithms to produce correct answers with little 
explanation of thinking. They consider doing 
mathematics tasks to be the most beneficial student 
activities, and their study details several classroom 
case studies of teachers iteratively attempting to setup 
and implement doing mathematics tasks appropriately. 

Definitions can be developed through 
investigating, rather than having definitions presented 
by the teacher at the beginning of lessons as though 
they were axiomatic. For example, developing a 
definition for trapezoid could lead to intriguing 
intellectual and social possibilities. As there is no 
accepted standard definition for trapezoid (Wolfram, 
2010). Are trapezoids quadrilaterals with at least one 
pair or only one pair of parallel sides? There are 
tantalizing ramifications of this choice, such as 
implications for trapezoidal classification as a subset or 
superset of parallelograms, how the trapezoid and 
parallelogram area formulas relate, etc. Students can 
explore how the taxonomy of other shapes change with 
similar definition modification. The teacher can 
mediate a class discussion about which definition is 
better and why, and the class can then adopt this 
specific definition in their future work.  

Mathematical Lessons  
Teachers can also structure their lessons to 

accentuate the intellectual and social aspects of 
mathematics. Instead of a lesson structured around 
teacher presentation, demonstration, and modeling of 
pre-packaged mathematical procedures (Cuoco, 2001), 
the teacher can pose challenging tasks, and then allow 
individual and/or group work followed by whole class 
discussions (Yackel, 2000). There are many examples 
of such lessons available for teachers, e.g., videos from 
the Annenberg collection (WGBH Boston, 1995). 
Another excellent example is the released 1995 Trends 
in Mathematics and Science Study (TIMSS) videos 
(NCES, 2003), including one of an eighth grade 
Japanese geometry lesson that revolved around a single 
task of dividing land equally. This lesson’s unified 
structure is particularly powerful when juxtaposed 
against the piecemeal problem review and teacher 
lecture of an eighth grade U.S. geometry lesson in 
another TIMSS video. 

Lessons from Deborah Ball’s 1989 third grade 
classroom offer further examples of rich intellectual 
and social mathematics lessons (Ball, 1991). In the 
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lesson known as Shea’s Numbers, a student claims that 
the number six is both an even and an odd number. 
Rather than telling Shea that he is mistaken about the 
definitions (a typical teacher’s response), Ball instead 
allows him to fully explain his reasoning. Doing so 
allows others to value his argument, and to recognize 
that certain even numbers (2, 6, 10,…, 2 + 4n) have an 
odd number of twos; these the class calls Shea 
numbers. 

Mathematical Curriculum  
Mathematics teachers can also structure their units, 

courses, and curriculum to more accurately mimic the 
work of mathematicians. Examples of this abound, 
such as Moses’ (2001) Algebra Project where students 
learn algebra from real-life experiences, the Moore 
Method (Corry, 2007) of building mathematical 
structure from a small set of teacher-provided axioms, 
and Anderson’s (1990) mathematics courses 
“emphasizing that ordinary people create mathematical 
ideas and ‘do’ mathematics” (p. 354). Deborah Ball’s 
(1991) year-long third-grade class offers another 
glimpse at such curriculum innovation because she 
allows students to reason through their thinking in 
whole class discussions.  

Conclusion 
Current school mathematics strips from the subject 

the very constituents that provide for meaningful 
mathematical experiences. A solution to the crisis may 
be far easier than some think and this solution would 
not require more rigorous standards, more standardized 
testing, more funding for smaller classes, or more 
content training—only a return to the fundamental 
aspects that make mathematics so intriguing. 
The primary way to engage students in mathematics 
classrooms is to allow them to experience 
mathematical activity. Mathematical activity is a 
motivating activity because it connects the ubiquitous 
human capabilities of intellectualizing and socializing 
(Devlin, 2000). More specifically, mathematical 
activity welds together the intellectual and social 
dimensions of human beings as they collaboratively 
wrestle with and jointly create mathematical terrain in 
a process of social mathematizing.  
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