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In a secondary school mathematics teaching methods course, a research team engaged 22 preservice secondary 
teachers (PSTs) in designing and posing tasks to algebra students through weekly letter writing. The goal of the 
tasks was for PSTs to elicit responses that would indicate student engagement in the mathematical processes 
described by NCTM (2000) and Bloom’s taxonomy (Bloom, Englehart, Furst, Hill, & Krathwohl, 1956), as 
well as student engagement in the highest levels of cognitive activity described by Stein, Smith, Henningsen, 
and Silver (2000). This paper describes our efforts to design reliable measures that assess student engagement in 
those processes as a product of the evolving relationship within letter-writing pairs. Results indicate that some 
processes are easier to elicit and assess than others, but that the letter-writing pairs demonstrated significant 
growth in terms of elicited processes. Although it is impossible to disentangle student factors from teacher 
factors that contributed to that growth, we find value in the authenticity of assessing PSTs’ tasks in terms of 
student engagement rather than student-independent task analysis. 

 
Designing and posing tasks plays a central role for 

mathematics teaching (Krainer, 1993; NCTM, 2000). 
However, research indicates that preservice teachers 
lack ability to pose appropriately challenging 
mathematical tasks for students (e.g., Silver, Mamona-
Downs, Leung, & Kenney, 1996). This article 
addresses the development of such ability by engaging 
preservice secondary teachers (PSTs) in posing 
mathematical tasks to high school algebra students 
through mathematical letter writing. We consider our 
approach an extension of the kind of letter-writing 
study performed by Crespo (2000; 2003). In a previous 
article (Rutledge & Norton, 2008), we reported results 
from this project related to the letter-writing 
interactions between PSTs and students. That article 
focused on comparing cognitive constructivist and 
socio-cultural lenses for examining the interactions. 
The purpose of this article is to investigate the 
mathematical processes that PSTs’ tasks elicited from 
students. 

Crespo (2003) engaged preservice elementary 
school teachers in posing mathematical tasks to fourth-
grade students through letter writing. The purpose of 
her study was to elicit and assess students’ 
mathematical thinking. She found the tasks preservice 

teachers wrote became more open-ended and 
cognitively complex over the weeks of letter writing. 
This result affirmed her key hypothesis that the 
preservice teachers’ extended and reflective 
interactions with an “authentic audience” (p. 243) 
would provide opportunities for them to learn how to 
pose appropriately challenging tasks. Crespo’s work 
informed our approach to studying the development of 
task-posing ability among PSTs, and we too used letter 
writing with PSTs to foster such development. Rather 
than focusing on the tasks PSTs posed, as Crespo did, 
we specifically examined elicited student responses as 
a product of the evolving relationship within letter-
writing pairs.  

During a secondary methods course, 22 PSTs were 
paired with high school algebra students; the PSTs 
posed tasks to their student partners and assessed the 
responses. As researchers, we independently examined 
the responses from the algebra students to make 
inferences about their cognitive activity. Considering 
this study to be an extension of Crespo’s work, we 
introduce a method for measuring PSTs’ progress in 
learning to design and pose individualized 
mathematical tasks through letter writing. We 
measured the effectiveness of PSTs’ tasks by assessing 
the cognitive activities those tasks elicited from 
students (as indicated by student responses), and we 
hypothesized that such measurements would 
demonstrate growth over the course of letter-writing 
exchanges between the pairs.  

We report on our design of measurements for the 
effectiveness of the letter-writing pairs, in addition to 
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the results of applying that design. In particular, we 
relied on descriptions of cognitive activities described 
in three main sources: Bloom’s taxonomy (Bloom et 
al., 1956; Kastberg, 2003), Principles and Standards of 
School Mathematics (NCTM, 2000), and a chapter on 
“cognitively complex tasks” by Stein, Smith, 
Henningsen, and Silver (2000). We chose these sources 
because they are common readings in the PSTs’ 
methods courses, and they provide potential metrics for 
assessing the quality of tasks. We collectively modified 
them to form a comprehensive and complementary 
framework for assessing students’ responses to the 
tasks.  

In the following section we summarize the original 
authors’ descriptions of these processes. We then 
describe how we operationalized the processes to 
assess the cognitive activities indicated by each student 
response. In the final two sections, we report on the 
reliability of our measures and the evolution of 
cognitive activity elicited by the PSTs’ tasks over the 
course of 12 weeks. Findings from this study inform 
the following research questions: How can we reliably 
measure the effectiveness of the letter-writing 
exchanges in terms of elicited cognitive activity from 
the high school students? And, using the measurements 
we develop, in what ways do the PSTs demonstrate 
progress in designing and posing appropriately 
challenging mathematical tasks for students? 

We wanted PSTs to learn to pose more engaging 
mathematical tasks and to assess students’ thinking 
based on their written responses. We hypothesized that 
over the 12 weeks the PSTs’ tasks would elicit more of 
NCTM’s Process Standards (2000) and the four highest 
levels of reasoning in Bloom’s taxonomy (i.e. 
application, analysis, synthesis, and evaluation). We 
also expected a general progression toward responses 
that indicated students were using Procedures with 
Connections and Doing Mathematics, moving away 
from responses reliant upon Memorization or 
Procedures without Connections (Stein et al., 2000). 

Theoretical Orientation 

Task Posing 
Since Brown and Walter’s (1990) seminal work on 

problem posing (read as “task posing”), many 
subsequent publications focused on teachers engaging 
students in posing problems (e.g., Gonzales, 1996; 
Goldenberg, 2003). Whereas these publications have 
implications for teacher education, they do not 
examine teachers’ abilities to design appropriately 
challenging tasks for their students. Research 
investigating teachers’ abilities to design such tasks has 

typically focused on student-independent attributes of 
the tasks, such as whether they introduce new implicit 
assumptions, initial conditions, or goals (Silver et al., 
1996). Similarly, Prestage and Perks (2007) engaged 
PSTs in modifying givens and analyzing mathematical 
demand of tasks in order for these future teachers to 
develop fluency in creating ad hoc tasks in the 
classroom. However, Prestage and Perks noted, “the 
analysis of the mathematics within a task can only 
offer a description of potential for learning” (p. 385). 
Understanding the actual cognitive demand of a task 
depends upon the learner. “Today, there is general 
agreement that problem difficulty is not so much a 
function of various task variables, as it is of 
characteristics of the problem solver” (Lester & Kehle, 
2003, p. 507). One such characteristic that has received 
insufficient attention during task posing is the students’ 
understanding of mathematics content (NCTM, 2000, 
p. 5). As Crespo (2000; 2003) demonstrated, letter 
writing can provide a rich context for PSTs to develop 
task-posing ability through mathematical interactions 
with students and help PSTs better attend to student 
understanding of content.  

Liljedhal, Chernoff, and Zazkis (2007) described 
another important component of task-posing for PSTs: 
“predicting the affordances that the task may access” 
(p. 241) as PSTs attempt to elicit particular 
mathematical concepts or processes from students. 
However, within letter writing such analyses no longer 
determine whether the task is ‘good’ because PSTs can 
rely on students’ actual responses for making that 
determination. Crespo (2003) described letter writing 
as an opportunity for “an authentic experience in that it 
paralleled and simulated three important aspects of 
mathematics teaching practice: posing tasks, analyzing 
pupils’ work, and responding to pupils’ ideas” (p. 246). 
The authenticity of PST-student interactions is highly 
desirable because the PSTs can assess the effectiveness 
of their tasks without relying on the authority of a 
teacher educator. The benefits of this kind of 
authenticity might be analogous to students’ 
experiences when they view their own mathematical 
reasoning as an authority, rather than relying on the 
text or a teacher for validation. The PSTs’ problem 
becomes one of “witnessing the development of the 
activities provoked by the task, and comparing it to the 
ones they predicted and to the initial task” (Horoks & 
Robert, 2007, p. 285). This development allows PSTs 
to use these comparisons as they modify their initial 
tasks and design new tasks. 
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Cognitive Measures (in Theory) 
In order to measure PSTs’ progress in eliciting 

mathematical activity from students through task 
posing, we looked to three sources: Bloom’s taxonomy 
(Bloom et al., 1956), the NCTM Process Standards 
(2000), and the levels of cognitive demand designed by 
Stein et al. (2000). PSTs’ familiarity with these sources 
was important to us for the following reason: Often 
these sources (or others that describe a hierarchy for 
analyzing student thinking) are introduced to PSTs as 
useful ideas to adapt into their future teaching. Teacher 
educators should move beyond introduction of these 
sources and instead facilitate opportunities for PSTs to 
investigate ways that they prove beneficial in working 
with students. Therefore, we asked PSTs to assess their 
students’ responses to tasks using these sources. This 
mirrors the way that we used them in this study to 
assess the PST’s task-posing ability. 

Table 1 presents the measures created for this study 
based on these frameworks. The short definition 
provides a summary of the different measures as 
described by the original authors. The first four 
measures come from Bloom’s taxonomy of educational 
objectives (Bloom et al., 1956), the next five measures 
come from NCTM’s Process Standards (2000), and the 
last four measures come from Stein et al. (2000). It is 
important to note that we chose to disregard the first 
two levels of Bloom’s taxonomy, Knowledge and 
Comprehension, because we felt that these measures 
were too low-level and would likely be elicited with 
great frequency. On the other hand, we kept all four of 
Stein’s levels of cognitive demand because they 
provide a necessary hierarchy for ranking tasks and 
measuring growth, as we describe in the following 
section.  
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Methodology 

Setting 
The 22 PSTs who participated in this study were 

enrolled in the first of two mathematics methods 
courses that precede student teaching at a large 
midwestern university. Mrs. Rae, a local high school 
mathematics teacher, was interested in finding ways to 
challenge her students by individualizing instruction. 
When the PSTs’ methods instructor (first author) 
approached her about task-posing through letter 
writing, Mrs. Rae agreed that such an activity would 
serve the educational interests of her students, as well 
as the PSTs. Each PST was assigned to one student 
from Mrs. Rae’s Algebra I class, and wrote letters back 
and forth to her or his assigned student, once per week 
for seven weeks. The PSTs were given no guidelines 
on the type of problems to pose; instead they were 
instructed to focus on building students’ mathematical 
engagement. The high school term (trimester) ended 
after the seventh week and students were assigned to 
new classes, so the PSTs began writing letters to a new 
group of students in the eighth week. They wrote to 
Mrs. Rae’s Algebra II students the final five weeks of 
the project. Each week, the methods instructor and 
Mrs. Rae collected the letters and responses, 
respectively, and exchanged them.  

In the title of this article, we use the term cycle to 
refer to the PSTs’ iterative task design. After posing an 
initial task, we expected PSTs to use student responses 
to construct models of students’ mathematical thinking. 
That is, we expected PSTs to try to “understand the 
way children build up their mathematical reality and 
the operations by means of which they try to move 
within that reality” (von Glasersfeld & Steffe, 1991, p. 
92). Using this knowledge, the PSTs could design tasks 
more attuned with their students’ mathematics—the 
students’ particular mental actions and ways of 
applying those actions to problem-solving situations. In 
turn, we hypothesized that the well-designed tasks 
would presumably increase student engagement and 
cognitive activity. By focusing PSTs’ attention on the 
cognitive activities described by NCTM, Bloom et al., 
and Stein et al., we hoped to provide a framework for 
PSTs to begin building models.  

Whereas PSTs’ goals for student learning often 
revert to mastery of procedural knowledge (Eisenhart 
et al., 1993), we promoted goals for conceptual 
learning among the PSTs through class readings and 
discussions. We encouraged PSTs to use open-ended 
tasks (i.e. tasks that invite more than one particular 
response) so student responses would be rich enough 

for PSTs to make inferences about the students’ 
thinking. We hoped the opportunity to make inferences 
about the students’ mathematical thinking would lead 
the PSTs to construct models of students’ mathematics. 
We also encouraged the PSTs to rely on their models 
to imagine how students’ mathematics might be 
reorganized in order to become more powerful, 
allowing the students to engage with a broader range of 
mathematical situations. 

Data Analysis 
Data consisted of PSTs’ letters and students’ 

responses. PSTs complied these documents into their 
notebooks, and we collected them at the end of their 
methods course. After removing 31 letters that were 
not matched with task responses, 233 tasks/response 
pairs remained to be analyzed.  

Data analysis had four phases: (a) 
operationalization of our cognitive measures, (b) the 
raters’ individual coding, (c) reconciliation of our 
individual coding, and (d) interpretation of the final 
codes. The operationalization concerns the way in 
which we transformed the theoretical processes given 
in the previous section into heuristics that allowed us to 
identify cognitive activity. Individual coding relied on 
this operationalization while continuing to inform 
further operationalization of the cognitive measures. 
As not to distort inter-rater reliability scores, in the 
interim we met only to discuss clarifications of the 
cognitive activities, without sharing notes or discussing 
particular responses. At the end of the letter-writing 
project, we computed the inter-rater reliability of our 
coding for the cognitive measures. Following this 
analysis, we reconciled our codes by arguing points of 
view regarding scoring differences until we reached 
consensus. Finally, we could interpret the reconciled 
codes, graphically and statistically. 

Graphs of the relative frequency of each cognitive 
activity, as measured week-by-week, provide an 
indication of growth among the PST-student pairs. We 
use the graphs to describe patterns in elicited activity 
over time. Although the two different groups of 
students involved in letter writing (Algebra I students 
in the first seven weeks, and Algebra II students in the 
final five weeks) render a 12-week longitudinal 
analysis untenable, data from the two groups do 
provide opportunity for us to consider differences in 
PSTs’ success in working across the groups. Finally, 
we performed linear regressions on aggregate results to 
provide a statistical analysis of progress.  
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Cognitive Measures (in Practice) 
The operationalization occurred mostly during the 

individual coding phase with minor adjustments 
required during the reconciliation phase. That is to say, 
we essentially transformed the 13 measures into a 
system allowing a researcher or a practitioner to 
categorize his or her inferences of students’ cognitive 
activity. To achieve this transformation, we began with 
the previously discussed definitions for the various 
measures and then made adjustments throughout the 
individual coding phase. Whenever one of the raters 
(authors) encountered difficulty in assessing a student 
response, he would approach the other to discuss the 
difficulty, in a general way, without referring to a 
particular student response. This interaction would 
allow the raters to decide how to resolve the difficulty 
and individually reassess previous ratings to ensure 
consistent use of the newly operationalized measure. 

Table 2 describes the most fundamental changes 
that we made to the measures. The adjustments are the 
results of the following two goals: (1) to ensure that 
measures could be consistently applied from task to 
task and (2) to ensure that no two measures were 
redundant.  

With regard to redundancy, we had to differentiate 
Connections, Procedures with Connections, and 

Application. We used Connections to refer to 
connections among disparate mathematical concepts; 
we reserved Procedures with Connections to describe 
connections between mathematical procedures and 
concepts; and we reserved Application to describe 
connections among mathematical concepts and other 
domains. With regard to our ability to consistently 
apply a measure, we had difficulty with Problem 
Solving and Doing Mathematics. As defined in Table 
1, Problem Solving requires a struggle toward a novel 
solution, rather than the application of an existing 
procedure or concept. Lester and Kehle (2003) further 
characterized problem solving as “an activity requiring 
the individual to engage in a variety of cognitive 
actions” (p. 510). 

Lester and Kehle (2003) described a tension 
between what is known and what is unknown:  

Successful problem solving involves coordinating 
previous experiences, knowledge, familiar 
representations and patterns of inference, and 
intuition in an effort to generate new 
representations and patterns of inference that 
resolve the tension or ambiguity (i.e., lack of 
meaningful representations and supporting 
inferential moves) that prompted the original 
problem solving activity. (p. 510) 
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Other cognitive activities, such as representation 
and inference (possibly involving reasoning and proof), 
may support a resolution to this tension. For us to infer 
that a student engaged in Problem Solving, we needed 
to identify indications of this perceived tension, and we 
needed to infer a new construction through a 
coordination of cognitive actions. This meant 
responses labeled as involving Problem Solving were 
often labeled as involving other cognitive activities as 
well, such as Analysis and Reasoning & Proof.  

While Stein et al.’s (2000) definition of Doing 
Mathematics provided some orientation for our work, 
we found it to be too vague for our purposes. So, we 
relied on Schifter’s (1996) definition for further 
clarification; she defined Doing Mathematics as 
conjecturing. To infer a student had engaged in Doing 
Mathematics, we needed to infer the student had 
engaged in making and testing conjectures. For 
example, if we inferred from student work that the 
student designed a mathematical formula to describe a 
situation and then appropriately tested this formula, 
then we would consider this to be Doing Mathematics. 
We recognize that our restriction precludes assessment 
of other activities that Stein et al. (2000) would 
consider to be “doing mathematics,” but this restriction 
provided a workable resolution to assessing students’ 
written responses.  

As a final and general modification of the original  

cognitive measures, we required that each process 
(other than the lowest two levels of cognitive demand) 
produce a novelty. For example, assessing Synthesis 
required some indication that the student had produced 
a new whole from existing constituent parts. 
Furthermore, we needed indication that the student 
generated the cognitive activity as part of their 
reasoning. If a PST explicitly asked for a bar graph, the 
students’ production of it would not constitute 
Representation, because it would not indicate 
reasoning. Such a response would probably indicate a 
Procedure without Connections.  

Results 

A Letter-Writing Exchange 
To illustrate the exchanges between letter-writing 

pairs, and to clarify the manner of our assessments, we 
provide the following sample exchange. A complete 
record of the exchange can be found in Rutledge and 
Norton (2008). Figure 1 shows the task posed by a 
PST, Ellen, in her initial letter to her student partner, 
Jacques. The task is similar to other introductory tasks 
posed by PSTs and seems to fit the kinds of tasks to 
which they had become accustomed from their own 
experiences as students. However, there is evidence 
(i.e. the “why” questions at the task’s end) that Ellen, 
like fellow PSTs, attempted to engage the student in 
responding with more than a computational answer.  
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Jacques’ response (Figure 2) indicates that he did 
not meaningfully engage in the task of finding 
equations for lines meeting the specified geometric 
conditions. However, he was able to assimilate (make 
sense of) the situation as one involving solutions to 
systems of equations. From his activity of 
manipulating two linear equations and their graph, we 
inferred that the task elicited only procedural 
knowledge from Jacques. It is possible that Jacques 
may have had a more connected understanding of the 
concepts underlying the procedure, but there was no 
clear indication from his response that allowed us to 
infer this. Therefore, we coded the elicited activity as 
Procedures without Connections.  

 
 
 
 
 

Other codes assigned to Jacques’ response 
included Application and Communication. The former 
was based on our inference that Jacques used existing 
ideas in a novel situation. He effectively applied an 
algebraic procedure to a new domain when he applied 
his knowledge of systems of equations to a situation 
involving finding equations of intersecting lines, When 
coding for Communication, we inferred that Jacques’ 
written language intended to convey a mathematical 
idea involving the use of systems of equations to find 
points of intersection.  

Subsequent tasks and responses indicate Ellen 
began to model Jacques’ mathematical thinking. Using 
these models, she designed tasks that successfully 
engaged Jacques in additional cognitive activities, such 
as problem solving. For example, Ellen asked 
questions to focus Jacques’ attention on the angles 
formed in the drawing on Figure 1. Her questions 

provoked Jacques to struggle through finding equations 
for the lines. In addition, Ellen seemed to detect an 
overall trend that Jacques engaged more readily with 
familiar procedures. She adapted to the trend and 
began to frame future tasks around a procedure with 
which she felt Jacques was likely familiar. This kind of 
adaptation to the student indicates that Ellen began to 
model the student’s thinking.  

Inter-Rater Reliability Results 
When we finished individually coding all of the 

task responses for the letter-writing pairs, we met to 
compile the results into a spreadsheet, for this process 
allowed   us   to   measure   inter-rater   reliability   and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
reconcile discrepancies. To understand inter-rater 
reliability, we considered three measures as shown in 
Tables 4 and 5. These measures were Cohen’s Kappa, 
Percent Agreement, and Effective Percent Agreement. 
As Table 4 indicates, percent agreement was high on 
all four measures from Bloom’s taxonomy, but this 
result is because of the rarity of either rater identifying 
the measures. Effective percent agreement provides 
further confirmation of this outcome by considering 
agreement among those items positively identified by 
at least one of the raters. 

Moving from left to right, the Kappa scores in 
Table 3 show decreasing inter-rater reliability as we 
progress to higher levels of Bloom’s taxonomy. Sim 
and Wright (2005) cite Landis and Koch who suggest 
the following delineations for interpreting Kappa 
scores: less than or equal to 0 poor, 0.01-0.20 slight, 
0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 
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substantial, and 0.81-1 almost perfect. With this in 
mind, we see Application has a substantial agreement, 
Analysis has moderate agreement, Synthesis has slight 
agreement, and Evaluation did not have agreement 
distinguishable from random. 

The high percent agreement in combination with a 
low effective percent agreement for Synthesis and 
Evaluation highlight the fact the raters rarely identified 
these two constructs. In the few times one rater 
identified such a construct when the other did not, this 
resulted in a low Kappa score. For further support of 
this assessment, we note that the 95% confidence 
interval for these two measures includes 0; thus, there 
is no support for inter-rater reliability with these two 
measures.  

Table 4 displays the data for the NCTM Process 
Standards. In a similar analysis, Communication and 
Problem Solving have moderate agreement. 
Representation is on the border between fair and 
moderate; Reasoning & Proof is on the border between 
slight and fair; and Connections has a poor inter-rater 
reliability. Connections and Reasoning & Proof were 
quite rare, hence the high levels of percent agreement 
and the lower level of Kappa, as was the case with  

Synthesis and Evaluation. In fact, the 95% 
confidence interval for each of these measures includes 
0, indicating no reliability on these measures.  

Table 5 displays the raters’ responses for the levels 
of cognitive demand described by Stein et al. (2000). 
The Kappa was .55—described as moderately 
reliable—with a 95% confidence interval of .47 to .64 
(note that we report only one Kappa because we could 
choose only one categorization for each task response). 
We see that although 164 of the 233 items are on the 
main diagonal (showing agreement), there is definite 
spread away from the diagonal as well. We determined 
this was partly attributable to a shift in how 
conservatively the raters interpreted student responses. 
Specifically, one rater tended to identify items as 
eliciting lower cognitive demand than the other rater. 
This is seen in the total column and row, where one 
rater identified 178 items as either Memorization or 
Procedures without Connections and only 45 items as 
Procedures with Connections. Alternately, the other 
rater found 157 items to be either Memorization or 
Procedures without Connections and 70 items to be 
Procedures with Connections.  
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       To summarize, Evaluation was the measure with 
the weakest reliability, for it had a negative Kappa 
associated with it. Although having a positive Kappa, 
Synthesis, Connections, and Reasoning & Proof had 
confidence intervals that contained 0; this result 
indicates we cannot be certain whether it was above 0 
randomly. It is also important to note these measures 
were some of the least-often identified. Conversely, the 
most reliable measures were Communication, Problem 
Solving, and Application. In addition, our assessments 
of levels of cognitive demand were reliable to a similar 
degree. Again, this conclusion is supported by our 

design in that these measures were more commonly 
identified in the coding.  

Elicited-Response Results 
After measuring inter-rater reliability, we 

reconciled our scores by arguing for or against each 
discrepant score. For example, the second author 
assessed Task 1 (Figure 1 and Figure 2) as having 
elicited Connections. However, the first author 
successfully argued that the evidence was stronger for 
connections to concrete situations, and according to 
our operationalization that should be coded as 
Application. We report on the reconciled scores in 
Figures 3, 4, and 5. Each of those figures illustrates the 
percentages of responses that satisfied our negotiated 
measures over the course of the twelve weeks. We 
excluded missing responses from all calculations. 
Although we included letters from week 1, we note 
many of the introductory letters did not include tasks, 
presumably because the PSTs were becoming familiar 
with the students and the format of the activity. We 
also note the first seven letters were written between 
PSTs and Algebra I students, whereas the final five 
letters were written between PSTs and Algebra II 
students. Once again, the letters written in week 8 were  
introductory letters, though these included many more 
tasks. In  Figures  3,  4,  and  5,  the  dark  vertical  line  
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between weeks 7 and 8 marks the transition from 
Algebra I letters to Algebra II letters. 

Ignoring the introductory letters from week 1, the 
general trends illustrated in Figure 3 indicate the 
frequency of PSTs eliciting Application from students 
decreased over the duration of letter writing, even 
across correspondences with Algebra I and Algebra II 
students. Analysis was elicited more frequently, with a 
pronounced spike among correspondence between 
PSTs and Algebra II students in the final weeks. As 
previously mentioned in the reliability results, we 
found both Synthesis and Evaluation were rarely 
elicited in correspondence with either group of 
students.  

These patterns indicate the levels of cognition 
described by Bloom’s taxonomy—at least in our 
operationalization of them—were heavily dependent 
on the PSTs and the tasks they posed. Interestingly, 
these patterns show little apparent dependence on the 
groups of students (i.e. Algebra I and Algebra II). This 
outcome may be because many of the posed tasks 
inherently required application and analysis to resolve  

them, with PSTs gaining a greater appreciation for 
students’ use of analysis over the course of the 
semester. Application tasks tended to describe new 
situations where the PSTs inferred, often correctly, that 
the students could use existing knowledge. For 

example, we characterized Jacques’ response in Figure 
2 as indicating an Application, for he applied his 
knowledge about solving linear equations to a concrete 
situation that required finding the point of intersection 
of two lines. Analysis tasks often involved equations 
whose components needed to be examined. For 
example, in a subsequent exchange with Ellen, Jacques 
broke down the triangle (Figure 1) into three lines and 
correctly identified the sign of the slopes of these lines. 
Using this knowledge, he attempted to formulate the 
equations of these lines. It seems that either PSTs were 
less familiar with the kinds of tasks that might elicit 
Synthesis and Evaluation, or students did not readily 
engage in such activity.  

In Figure 4, we begin to see some differences 
between the elicited responses of the two groups of 
students. Whereas Connections, Representation, and 
Reasoning & Proof were rarely elicited from either 
group of  students,  there is  a  pronounced  increase  in 
Problem Solving among correspondence with the 
Algebra II students as compared to the Algebra I 
students. Communication also increased among 
correspondences with Algebra II students, but seemed 
to be elicited in a pattern that was similar across the 
two groups.  

We see mathematical communication from both 
groups  of   students   increased  to  a  peak  during  the  
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middle weeks, and then decreased toward the end of 
the correspondence between letter writing pairs. This 
trend may be due to the PSTs’ initial interest in the 
students’ thinking, which was replaced by more goal-
directed tasks, once the PSTs determined a particular 
trajectory along which to direct the students. We found 
Communication dropped among both groups of 
students after their fourth week. This could be due to a 
lack of enthusiasm among the students once the 
novelty of letter writing had faded. In fact, Mrs. Rae 
noticed the Algebra I students began to tire of writing 
responses and wrote less in later weeks.  

Figure 5 illustrates a general trend away from tasks 
eliciting Memorization. It seems the PSTs used 
students’ recall of facts in order to gauge where the 
students were developmentally, both at the beginning 
and end of their correspondence with the students.  

Procedures without Connections dominated the 
elicited responses from students, whereas Procedures 
with Connections seemed to play a significantly lesser 
role. It is also interesting to note that the few instances 
identified as Doing Mathematics occurred among 
correspondence with Algebra II students. Along with 
the previous observation about Problem Solving 
(namely, that problem solving was elicited much more 
with Algebra II students), these results lead us to one 

of two conclusions: (1) the PSTs held higher 
expectations for Algebra II students (in terms of 
cognitive activity, and not just content) and were, 
therefore, more inclined to challenge them with higher-
level tasks, or (2) the Algebra II students were better 
prepared (either from previous learning or accepted 
social norms) to engage in these higher levels of 
cognitive activity.  

A Statistical Analysis 
 In addition to considering the measures 

individually, we performed a linear regression on 
aggregate results over time. The first column in Table 
6 lists the average number of processes elicited week-
by-week, among the five NCTM Process Standards 
and the four highest levels of Bloom’s taxonomy.  For  
example, the PSTs elicited, on average, two of the nine 
processes during Week 10. The second column in 
Table 6 lists the average ranking of the levels of 
cognitive demand elicited week-by-week. We ranked 
Memorization as 0, Procedures without Connections as 
1, Procedures with Connections as 2, and Doing 
Mathematics as 3. If we accept this simple form of 
ranking, the student responses from Week 7 indicated, 
on average, as a 1, Procedures without Connections. 
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       Table 7 reports the slopes and r-squared values for 
each column over each of the following time periods: 
the first seven weeks (interactions with Algebra I 
students), the final five weeks (interactions with 
Algebra II students), and the entire 12 weeks (across 
the two groups of students). In addition, Table 7 
includes the corresponding p-values to indicate 
whether the slopes are statistically significant. We 
calculated these values using rank coefficients. The 
slopes provide indications of the group’s growth from 
week to week to the degree that the r-squared values 
approach 1 and p-values approach 0.05. It is interesting 
to note that the slope, r-squared value, and p-value for  
the final five weeks of letter writing suggest 
considerable growth in the level of mathematical 
engagement during interactions between PSTs and 
Algebra II students.  

Discussion of Findings and Implications 
Having operationalized measures of cognitive 

activity and having applied them to a cohort of letter-
writing pairs, we are now prepared to evaluate the  

measurements. We intend to improve the 
measurements in terms of their reliability and their 
value as assessments of professional growth. First, we 
recognize areas of weakness in reliable uses of the 
measures, as well as areas of weakness in elicited 
responses. These areas coincide because cognitive 
activities that were least assessed were assessed least 
reliably; they include Synthesis, Evaluation, 
Connections, Reasoning & Proof, and Representation. 

Reliability of Measures as Operationalized 
When we reconciled our independent assessments 

of task responses, common themes emerged 
concerning the least assessed cognitive activities. Some 
of these involved highly subjective judgments, such as 
the novelty of the activity for the student and the 
student’s familiarity with particular concepts and 
procedures. This subjectivity highlights the need for us 
to make our assessments based on inferences about the 
student’s mathematical activity, just as we asked the 
PSTs to design their tasks based on such inferences. 
For example, one student assimilated information from 
a story problem in order to produce a simple linear 
equation. During coding, this response would typically 
be evaluated as Synthesis; however, one of the raters 
inferred that the student was so familiar with the 
mathematical material that her actions indicated a 
procedural exercise.  

For our reconciliations of all measures, we agreed 
each cognitive activity needed to produce a 
mathematical novelty, such as a tabular representation 
a student produced to organize data in resolving the 
task. If the PST were to request the table, then the 
student’s   production  of  it  would  not  be  considered  
novel. Therefore, this response would not be labeled as 
a Representation. Likewise, we decided Connections 
should be used to refer to a novel connection between 
two mathematical concepts, such as a connection a 
student might make between his or her concepts of 
function and reflection in resolving a task involving 
transformational geometry. The need to make 
inferences about the novelty of students’ activities 
introduced ambiguity in assessing student responses,  
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particularly because we assessed responses week-by-
week without considering the history of each student’s 
responses. 

We also realized we introduced some reliability 
issues through our selection of cognitive activities. 
Whereas we were pleased with the diversity of 
measures offered by the three categorizations (Bloom’s 
taxonomy, NCTM’s Process Standards, and Stein’s 
levels of cognitive demand), these are not mutually 
exclusive. Despite our efforts to operationalize the 
measures in a way that would reduce overlap, we 
realized, for example, Connections would always 
implicate Procedures with Connections or Doing 
Mathematics. Additionally, we recognize that Doing 
Mathematics would always implicate Problem Solving, 
and Reasoning & Proof would always implicate 
Communication. Recognizing such implications might 
reduce ambiguity and increase reliability by 
eliminating some of the perceived need for raters to 
choose one measure over another. Finally, because 
frequently elicited cognitive activities were measured 
reliably, we conclude that supporting PSTs’ attempts to 
elicit all cognitive activities can increase the reliability 
of each measurement. This support would also promote 
our goals for PSTs to design more engaging tasks.  

Eliciting Cognitive Activity 
We originally hypothesized that PSTs’ tasks would 

elicit more cognitive processes over time, and we 
anticipated a general progression toward the highest 
levels of cognitive demand. Such findings would 
indicate growth in the evolving problem-
posing/problem-solving relationships between PSTs 
and students. Our hypothesis is confirmed to the degree 
that r-squared values indicate the positive slopes 
reported in Table 7. Those values indicate that the 
relationships were particularly productive between 
PSTs and Algebra II students. There are many reasons 
students’ content level might have influenced the 
relationship, and we cannot discern the main 
contributors. Possible contributors include the 
following: (1) PSTs wrote to the Algebra II students 
second and for a shorter duration so the students’ 
remained motivated throughout the project; (2) greater 
content knowledge of Algebra II students contributed 
to greater process knowledge as well by allowing the 
students to engage in more problem solving or make 
more connections; (3) PSTs were more familiar with 
the content knowledge of Algebra II students so the 
PSTs were better prepared to design more challenging 
tasks; (4) social norms in the two classes differed and 
affected students’ levels of engagement. In any case, 

our findings do indicate that PSTs—as a whole and 
over the course of the entire twelve weeks—became 
more successful in eliciting cognitive activity through 
their letter writing relationships. 

Our findings also indicate which cognitive 
activities seem most difficult to elicit through letter 
writing, and we have suggested classroom social norms 
play a role in students’ reluctance to engage in some of 
those activities, such as Problem Solving and Doing 
Mathematics. However, we also found that PSTs were 
able to engage students in some cognitive activities, 
such as Application and Communication, which 
affirms, “prospective teachers have some personal 
capacity for mathematical problem posing” (Silver et 
al., 1996, p. 293). Moreover, PSTs demonstrated 
increased proficiency at engaging their student partners 
in additional higher-level cognitive activities, such as 
Analysis. 

Silver et al. found, “the frequency of inadequately 
stated problems is quite disappointing” (1996, p. 305). 
Although, like Silver et al., our expectations for our 
PSTs’ task design were not met, we found students 
accepted nearly all of the tasks as personally 
meaningful and engaged in some kind of mathematical 
activity as a result. The disparity of this finding with 
that of Silver et al. (1996) might be attributed to our 
disparate approaches in studying problem posing. Most 
notably, the PSTs in our study designed tasks with 
particular students in mind and used student responses 
to assess the effectiveness of those tasks and to model 
students’ thinking. We believe such experiences are 
essential to making methods courses personally 
meaningful to future teachers.  
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