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Reading Grade Levels and Mathematics Assessment: 
An Analysis of Texas Mathematics Assessment Items  

and Their Reading Difficulty1 

John H. Lamb 
 

 
Increased reading difficulty of mathematics assessment items has been shown to negatively affect student 
performance. The advent of high-stakes testing, which has serious ramifications for students’ futures and 
teachers’ careers, necessitates analysis of reading difficulty on state assessment items and student performance 
on those items. Using analysis of covariance, this study analyzed the effects of reading grade level of 
mathematics assessment items on student performance on the Texas Assessment of Knowledge and Skills. 
Results indicated that elementary and middle school students performed significantly worse on mathematics 
assessment items having a reading level above the student grade level. The implications of these results are 
discussed.  

 
Rubenstein (2000) stated, “[Teachers of 

mathematics] want [students] to speak the language of 
mathematics, using standard terms that others 
recognize and understand” (p. 243). Boero, Couek, and 
Ferrari (2008) noted that the language of mathematics 
requires a mastery of one’s natural language, both 
words and structures, in order to incorporate this 
language within the context of mathematical syntax. 
They illustrated how teachers of mathematics must go 
beyond simple classroom discussions in order to 
promote their students’ mastery of the language of 
mathematics.  

Carter and Dean (2006) illustrated how 5th through 
11th grade mathematics teachers spend a considerable 
amount of time teaching reading strategies such as 
decoding written language into spoken words, 
understanding and discovering the meaning of new 
vocabulary, and making connections between the 
written language and the learner’s prior knowledge. 
Out of 72 mathematics lessons they observed, nearly 
70% of the implemented reading strategies addressed 
vocabulary. According to Lager (2006), “Without a 
strong command of both everyday language and 
specialized mathematical language students cannot 
fully access the mathematics content of the text, lesson, 
or assessment” (p. 194). Teachers of mathematics are 
faced with the challenge to not only prepare their 
students    to   successfully    understand   mathematical  

concepts but to also to prepare students to read and 
comprehend technically dense, descriptive 
mathematics problems.  

Student Difficulties in Reading Related to 
Mathematics Achievement 

Evidence has shown that a student’s level of 
reading proficiency can be a strong indicator of 
mathematical success (Jiban & Deno, 2007). The 
correlation between reading and mathematics 
achievement has been well documented over the last 
five decades (e.g., Breen, Lehman, & Carlson, 1984; 
Fuchs, Fuchs, Eaton, Hamlett, & Karns, 2000; Helwig, 
Rozek-Tedesco, Tindal, Heath, & Almond, 1999; 
Jerman & Mirman, 1974; Pitts, 1952; Thompson, 
1967). Evidence suggests that students without a strong 
ability to read and with difficulties in mathematics 
struggle more to be as successful as they could be in 
mathematics when compared to students only having 
difficulties in mathematics (Jordan, Hanich, & Kaplan, 
2003). This situation is exacerbated for students with 
limited English proficiency (LEP).  

Many students with LEP have accommodations to 
help account for students’ academic difficulties related 
to their language deficiency. Accommodations may 
include  extended  time   to   complete   assessments  or  
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assignments and having test questions read aloud. In 
Oregon, 6th-grade students with low reading ability 
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performed better on mathematical problem solving 
assessment items when each assessment item was 
projected on a video monitor while a recorded 
narration of the written portions of the assessment 
items was played (Helwig et al., 1999). Fuchs et al. 
(2000) conducted a quasi-experimental study that 
randomly assigned students with and without learning 
disabilities (LD) to treatment accommodations that 
included extended time, calculator use, having 
questions read aloud, and encoding (when the teacher 
writes the student’s responses). Fuchs et al. found these 
accommodations significantly benefited students with 
LD on their achievement in mathematical problem 
solving. Ketterlin-Geller, Yovanoff, and Tindall (2007) 
found that students with lower reading abilities scored 
better on linguistically and mathematically difficult 
assessment items when the questions were read aloud. 
Bolt and Thurlow (2007) found that reading questions 
aloud to students had a positive effect on 4th-grade 
student performance on mathematical assessment items 
with challenging text. For 8th-grade students, however, 
this positive effect was not evident. As this study 
demonstrates, there are inconsistencies in research 
conclusions that both reinforce and challenge the 
validity of such accommodations (Ketterlin-Geller, 
Yavonoff, & Tindal, 2007). 

Reading Difficulty of Assessment Items Related to 
Mathematics 

When students have difficulties in reading, 
research has indicated that they also struggle in 
mathematics. The way mathematics assessment items 
are written may influence the mathematical 
achievement of these poor readers. In 1967, Thompson 
generated two sets of mathematically similar test items 
written at different reading levels. He found that sixth 
grade students performed significantly better on the 
assessment items written at a lower reading level. 
Jerman and Mirman (1974) correlated several 
measures of readability with student performance on 
mathematics assessment items and found that the 
higher the word count, character count, sentence count, 
syllable count, word length, and sentence length of an 
assessment item, the lower the student performance. 
Similarly, Walker, Zhang, and Surber (2008) found 
that the reading difficulty of mathematics assessment 
items significantly lowered student performance. 
Hence, research conducted in recent decades has 
indicated mathematics assessment items and how they 
are written can have an effect on student performance. 
One may question how connected these two subjects 

are in terms of their predictive power towards one 
another.  

Predictive Power of Reading Ability on Mathematics 
Achievement 

Research indicates that students with difficulties in 
reading tend to have lower achievement in 
mathematics (e.g., Fuchs et al., 2000; Jiban & Deno, 
2007; Jordan et al., 2003; Reikerâs, 2006). This 
supports the research indicating a strong correlation 
between reading and mathematics achievement (e.g., 
Breen, Lehman, & Carlson, 1984; Pitts, 1952). 
Evidence also exists for a connection between higher 
reading levels of mathematics assessment items and 
decreased student performance (e.g., Jerman & 
Mirman, 1974; Thompson, 1967; Walker et al., 2008). 
With the available data indicating reading affects 
mathematical performance, several states have 
implemented quantitative measures that utilize 
students’ reading scores as predictive variables in their 
mathematics performance. The push for these states to 
identify predictive models came from the United States 
Department of Education (USDOE) Growth Model 
Pilot Program initiated in 2005 (USDOE, 2008). 
Twenty-three states have submitted applications, and 
as of January 2009, 15 states, including Texas, have 
been fully or conditionally approved (USDOE, 2009). 
The Texas Education Agency (TEA, 2009) established 
a Texas Projection Measure (TPM) that generated 
student expectant scores on state mathematics 
assessments based on reading and mathematics scores 
from previous end-of-year assessments. The TPM is 
designed to strengthen TEA’s measure of Adequate 
Yearly Progress (AYP) for the No Child Left Behind 
(NCLB) law by generating a measure that assesses 
growth. This growth is evaluated using predictive 
measures for each child’s 5th-, 8th-, and 11th-grade 
achievement level. The TPM projects a student’s 
performance in 5th-grade reading and mathematics by 
utilizing 3rd- and 4th-grade reading and mathematics 
performance results. The TPM predicts 8th-grade 
performance by using 5th-, 6th-, and 7th-grade results 
and 11th-grade performance by using 8th-, 9th-, and 
10th-grade results. TEA found that nearly 1% of the 
variance in mathematics was accounted for by the 
student’s previous reading performance and up to 5.2% 
of the variance in reading was accounted for by the 
student’s previous mathematics performance. TEA 
generated these results by finding the difference in 
explained variance with and without the other subject 
as a predictive variable. TEA showed that this 
percentage of explained variance was significant and 



Reading Difficulty 

24  

highlights the likelihood that mathematics and reading 
abilities are highly intertwined.  

The Ohio Department of Education (ODE, 2007), 
also using a USDOE-approved growth-model with a 
regression-based value-added design of assessing 
student growth , found results similar to TEA (2009), 
identifying strong correlations and covariance between 
reading and mathematics achievement. In 2003, nearly 
two years prior to the USDOE’s growth-model pilot 
program, Mississippi proposed and implemented an 
accountability model that predicted future performance 
in mathematics based on students’ previous English, 
reading, and mathematics results on state assessments 
(Mississippi Department of Education, 2008). States 
across the country have illustrated, both in action and 
through quantitative measures, that reading and 
mathematics achievement are connected. 

Purpose of This Study 

The purpose of this study was to determine 
whether the reading grade level (RGL) of mathematics 
assessment items had a significant effect on 3rd- 
through 11th-grade student performance in the state of 
Texas. RGL of a mathematics assessment item was 
operationally defined as the approximate grade level a 
student was expected to obtain in order to comprehend 
a reading passage within the item. Based on the 
available research, I hypothesized that student 
performance is negatively affected by the RGL of 
mathematics assessment items on the state mandated 
Texas Assessment of Knowledge and Skills (TAKS).  

To test this hypothesis, I analyzed assessment 
items and utilized available item analysis data from the 
2006 TAKS. Several extraneous variables were

identified and used as covariates in order to isolate the 
effect RGL might have on student performance. The 
three research questions in this study were: 

1. Do students in grades 3 through 11 perform 
better on mathematics assessment items that are 
written with a RGL At-or-Below their grade 
level than on assessment items written with a 
RGL above their grade level? 

2. Do students in specific grade bands perform 
better on mathematics assessment items that are 
written with a RGL At-or-Below their grade 
level than on assessment items written with a 
RGL above their grade level? 

3. Do students regardless of their grade or grade 
band perform better on mathematics assessment 
items that are written with a RGL At-or-Below 
their grade level than on assessment items 
written with a RGL above their grade level? 

Methods 

This study used the Spring 2006 TAKS 3rd-11th 
grade released tests and item analysis from TEA 
(2008a). The TAKS objective and percentage of Texas 
students who correctly responded for each assessment 
item was collected for 438 test items. Of the six TAKS 
objectives in items for grades 3 through 8, five were 
aligned with the NCTM (2000) content standards, and 
the sixth objective was aligned to the NCTM process 
standard, problem solving. Ten 9th through 11th grade 
TAKS objectives incorporated algebraic, geometric, 
and problem solving objectives. Tables 1 and 2 list the 
total number of TAKS assessment items at each grade 
level   and    categorize    each   grade-level    objective.  

 

Table 1 

 Texas Assessment of Knowledge and Skills Objectives at Grades 3-8 

Number of Items per Grade Level 
Objective 

3rd 4th 5th 6th 7th 8th 

1—Numbers, operations, and quantitative reasoning 10 11 11 10 10 10 

2—Patterns, relationships, and algebraic reasoning 6 7 7 9 10 10 

3—Geometry and spatial reasoning 6 6 7 7 7 7 

4—Measurement 6 6 7 5 5 5 

5—Probability and statistics 4 4 4 6 7 8 

6—Mathematical processes and tools 8 8 8 9 9 10 

Total Number of Items 40 42 44 46 48 50 
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Table 2 

Texas Assessment of Knowledge and Skills Objectives at Grades 9-11 

Number of Items per Grade Level 
Objective 

9th 10th 11th 

1—Functional relationships 5 5 5 

2—Properties and attributes of functions 5 5 5 

3—Linear functions 5 5 5 

4—Linear equations and inequalities 5 5 5 

5—Quadratic and other nonlinear functions 4 5 5 

6—Geometric relationships and spatial reasoning 4 5 7 

7—2D and 3D representations 4 5 7 

8—Measurement 6 7 7 

9—Percents, proportions, probability, and statistics 5 5 5 

10—Mathematical processes and tools 9 9 9 

Total Number of Items 52 56 60 

 
Reading Grade Level 

Prior to conducting this study, I needed to 
determine if TEA relied on any measure of reading 
grade level when creating assessment items for the 
TAKS. In each of the TEA (2008b) TAKS Information 
Booklets, a passage of text was used to illustrate how 
experts reviewed and determined the appropriateness 
of each assessment item prior to field testing. TEA did 
not specifically state whether experts analyzed the 
reading level of each mathematics assessment item; 
however, the use of experts in education, specifically 
mathematics education, does provide some level of 
validity that items were written at appropriate reading 
grade levels. Because TEA did not quantify the reading 
level of TAKS assessment items, a quantitative 
measure of the readability of these assessment items 
needed to be determined for the purposes of this study.  

In 1935, Gray and Leary found that there were 
nearly 228 variables that affected readability. 
Semantic, syntactic, and stylistic elements accounted 
for the majority of these variables. Over the last 
century, numerous methods have been created to 
determine the readability of a passage. In 1948, 
Rudolph Flesch created one of the earliest formulas, 
the Flesch Reading Ease Formula. This formula 
incorporated the variables of sentence length and 
syllable count into a calculation of reading difficulty. 
Working for the United States Navy, Kincaid, Fishurn, 
Rogers, and Chissom (1975) adapted the Flesch 
Reading Ease Formula, known as the Flesch-Kincaid 
Grade Level Formula, to provide an outcome that 
better   predicts  a   reader’s   grade-level.  Edward  Fry  

(1977) further advanced the science of readability by 
creating another popular readability formula known as 
the Fry Graph Readability Formula. He utilized the 
averages of sentence count and syllable count per 100 
words to determine an ordered pair (average sentence 
count, average syllable count) located within sectors of 
a coordinate plane corresponding to the reading age of 
the text. The Flesch Reading Ease Formula, Flesch 
Kincaid Grade Level Formula, and Fry Graph 
Readability Formula all utilized some type of average 
counts based on sentences, words, and syllables that 
provided strong support for the syntactic structure of a 
passage of text and an effective means for determining 
semantic complexity. Determining readability based on 
these methods did not improve until the use of 
electronic databases surfaced in recent decades.  

Electronic databases have been useful in improving 
the validity and reliability of calculated semantic 
complexity in readability formulas. The New Dale-
Chall Readability Formula incorporates the variable of 
sentence length and a calculated percentage of words 
not found in a database of 3,000 common 4th-grade 
vocabulary terms (Chall & Dale, 1995). Chall and Dale 
believed words not found on this list of 3,000 common 
words were more difficult and thus used a calculated 
percentage of words not found in this list as a measure 
to produce higher grade-equivalence scores. 
Touchstone Applied Science Associates (1999) built 
upon the work of Chall and Dale (1995) by using a 
database of common vocabulary terms in their 
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readability formula and by adding a new calculation of 
the average number of letters per word.  

One of the latest and most sophisticated measures 
of readability is the Lexile Framework © for Reading 
(referred to as “Lexile”) (2008). Lexile measures of 
readability are also based on semantic complexity and 
sentence length, but Lexile determines semantic 
complexity through the calculation of word frequency 
incorporating a database of nearly 600-million words, 
whereas other databases have only 5- to 25-million 
words (Wilson, Archer, & Rayson, 2006). Lexile has 
incorporated the advances of the past and paired them 
with an enormous database of words.  

Lexile text measures are based on two well-
established predictors of how difficult a text is to 
comprehend: semantic difficulty (word frequency) 
and syntactic complexity (sentence length). In 
order to determine the Lexile measure of a book or 
article, the text is split into 125-word slices. Each 
slice is compared to the nearly 600-million word 
Lexile corpus—taken from a variety of sources and 
genres—and the words in each sentence are 
counted. These calculations are put into the Lexile 
equation. Then, each slice’s resulting Lexile 
measure is applied to the Rasch psychometric 
model to determine the Lexile measure for the 
entire text. (Lexile Frequently Asked Questions, 
2008) 

The Lexile measure was chosen for this study because 
it is a grade equivalence measure that accounts for both 
syntactic and semantic elements, relies on an extensive 
database, and is readily accessible.  

The first step in calculating the Lexile (2008) 
Measure for the TAKS assessment items required each 
mathematics assessment item to be converted into a 
text format, thus eliminating any graphs, tables, or 
other figures not representing standard sentence 
structure. Next, each assessment item was uploaded 
into the online Lexile Analyzer to obtain a Lexile 
Measure ranging from 10L to above 1700L. Each 
Lexile Measure was then located on the Lexile Map to 
determine its approximate reading grade level (RGL) 
ranging from 1 to 17, where scores of 13 through 17 
represent post-secondary grade equivalencies. The 
Lexile Map provides an interval of Lexile Measures 
that correspond to a particular grade level at which the 
reader should have at least a 75% comprehension. 
Many Lexile Measures span more than one grade level. 
For instance, 3rd-grade Lexile Measures range from 
520L-750L and 4th-grade Lexile Measures range from 
620L-910L. In this case of overlapping Lexile 
Measures, 0.5 was added to the lowest grade level 

approximation. Therefore, in this study, a Lexile 
Measure of 620L would be assigned a grade 
equivalence of 3.5. 

Cognitive Demand 

According to the Wisconsin Center for Educational 
Research (WCER, 2008), there are five cognitive 
demand categories for mathematics: (1) memorize; (2) 
perform procedures; (3) demonstrate understanding; 
(4) conjecture, prove, solve; and (5) apply/make 
connections. The researcher used his training provided 
by the WCER to train nine groups of K-12 
mathematics teachers on how to rate assessment items 
based on these cognitive demand categories. Grade-
level groups of three to five teachers rated TAKS 
mathematics assessment items. After teachers rated the 
items individually, they discussed their ratings with 
their group. Because some assessment items could 
address more than one cognitive demand category, the 
teachers could categorize an item in up to three 
cognitive demand categories. An overall average 
cognitive demand score based on the teachers’ 
categorizations was computed for each assessment 
item. 

In general, the cognitive demand of each TAKS 
assessment had an even distribution of the cognitive 
demand levels from 1 to 5. However, as illustrated in 
Figure 1, the cognitive demand ratings for the 5th- and 
11th-grade assessments did not match this trend. The 
5th-grade distribution of cognitive demand levels had a 
much smaller range of scores and included more 
outliers than any of the other grade levels. The 11th-
grade interquartile range of cognitive demand levels 
was elevated as compared to the other grade levels. In 
both cases, the unusual distribution may be the result 
of a single outspoken teacher in each group. Future 
research may use other means to categorize the 
cognitive demand level of assessment items to 
minimize this issue.  

Data Analysis 

An analysis of covariance (ANCOVA) determined 
differences in student performance based on the 
between-subjects factor of RGL. On a mathematics 
assessment, the item’s content strand and level of 
cognitive demand are known variables that influence 
student performance. Field (2009) noted that when 
variables not part of the main experiment have an 
influence on the dependent variable, then an ANCOVA 
should be used to control for the effect of these 
covariates. Field also explained that two assumptions 
in an ANCOVA should be tested: “(1) independence of
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Figure 1. Box plots of cognitive demand scores for each TAKS grade level 

the covariate and treatment effect, and (2) homogeneity 
of regression slopes” (p. 397). For these reasons, the 
data analysis in this study included tests of 
independence and homogeneity.  

The mathematics TAKS assessment items were 
categorized based on whether the item’s RGL is At-or-
Below grade level (henceforth written as RGL At-or-
Below) or above the student’s grade level (henceforth 
written as RGL Above), establishing the independent 
variables in this study. For example, a 3rd-grade TAKS 
mathematics assessment item having a 2.5 RGL would 
be categorized as RGL At-or-Below, and a 3rd grade 
TAKS assessment item having a 5.0 RGL would be 
categorized as RGL Above. The dependent variable in 
this study was the percentage of students who correctly 
answered each assessment item.  

An ANCOVA was conducted at three levels. The 
first level of analysis was a 2 x 9 factorial ANCOVA 
with RGL as the between-subjects factor and student 
grade level as the within-subjects factor. The 

covariates were cognitive demand and TAKS objective 
of each assessment item. The second level of analysis 
was a 2 x 3 factorial ANCOVA with RGL as the 
between-subjects factor and the assessment item’s 
grade band (i.e., elementary school grades 3-5, middle 
school grades 6-8, or high school grades 9-11) as the 
within-subjects factor. The covariates of student grade 
level, cognitive demand, and TAKS objective data 
were used in this analysis. The final level of analysis 
grouped all assessment items from each TAKS grade 
level together. At this level, the covariates were grade 
level of each assessment item and the item’s cognitive 
demand. SPSS 13 © was used for all statistical analysis 
in this study. 

Tests of independence and homogeneity were also 
conducted for each ANCOVA, at each level of 
analysis. The test of independence consisted of a 
univariate analysis to determine if the RGL groups 
differed on each covariate. If no significant difference 
occurred  between  the  RGL   groups   based    on   the 
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   Figure 2. Box plot of the Reading Grade Level based on TAKS grade level 
 
covariate, then the covariate was used in the 
ANCOVA. The test of homogeneity occurred after 
each ANCOVA with the researcher running the test a 
second time to check for any significant interactions 
between the independent variable of RGL and each 
covariate. If significant interaction was observed, the 
researcher further investigated this interaction using a 
univariate analysis between the RGL groups and 
covariate to further explain the significant interaction 
and determine effect (Tabachnick & Fidell, 1996).  

Results 

The average RGL for mathematics assessment 
items at each TAKS grade level ranged from 3.15 to 
9.08 (see Table 3). All three elementary grades (3–5) 
had an average RGL greater than the student grade 
level being assessed. Excluding the 8th grade, all other 
grades had an average RGL below the student grade 
level being assessed. 

As illustrated in Figure 2 and Table 3, the variance 
in RGL increased with the increase in the grade level. 
This increase in variance for higher grade levels was to 
be expected given that higher grade level assessments 
have a larger range of possible RGLs. It was also 
expected and confirmed that, at each grade level, there 
were assessment items written at a very low RGL. 
These assessment items were the standard mathematics 
questions requiring students to simply evaluate 
expressions or solve problems having no words other 
than action verbs and phrases like solve, add, find the 
product, or evaluate. Although there was a gradual 
increase in the range of RGL at each grade level, five 
out of the seven grade levels had assessment items with 
RGL measures at the graduate level (>16). Only the 
third grade assessment items were found to have a 
reasonable range of RGL measures, from 1 to 5.5. 

The outliers identified in the cognitive demand and 
reading grade level variables presented some concern. 
Initial analysis at all three levels included assessment 
item data that were outliers in either RGL or cognitive 
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demand. Analysis was performed again, at all three 
levels, with these assessment items removed. At all 
three levels of analysis, there were no differences in 
results between the data with and without outliers. 
Therefore, in this study, the initial analysis results, 
using data that included outliers, is presented.  

Table 3 

Reading Grade Level Descriptive Statistics  
TAKS 
Grade 
Level  

Min. 
RGL 

Max. 
RGL 

Mean Std. Dev. 

3rd 1 5.5 3.15 0.99 

4th 2 17 5.21 2.64 

5th 1 155 5.23 2.89 

6th 1 15.5 5.88 3.03 

7th 1 11 5.81 2.58 

8th 2 17 8.04 3.85 

9th 1 17 8.15 4.03 

10th  2 17 8.15 4.31 

11th 1 17 9.08 4.18 

 
A mean comparison of student performance based 

on the between-subjects factor of RGL was conducted 
at each grade level, each grade band, and over the 
entire set of mathematics assessment items. Items with 
an RGL At-or-Below had a higher percentage of 
successful students than items with an RGL Above in 
every grade level, grade band, and over the entire set of 
items except for 9th and 11th grade assessment items 
(see Table 5). These mean comparisons, however, do 
not account for the variance explained by other 
confounding variables. Therefore an analysis of 
covariance helped to determine differences in student 
performance at each grade level, grade band, and 
overall assessment items. The adjusted marginal means 
are provided in Table 5 to illustrate differences after 
controlling for various covariates. Inspection of 
differences between RGL group means, using either 
adjusted or unadjusted means, showed the 7th-grade 
RGL At-or-Below student performance average to be 
over 10 percentage points higher than the average for 
the 7th grade RGL Above. This adjusted mean 
difference between the two groups of items at the 7th 
grade level was the largest at any grade level, grade 
band, or over the entire set of assessment items. This 
observable difference at the 7th grade is discussed in 
great detail below. 

Student Grade Level Analysis 

The initial test of independence between the RGL 
groups and covariates of TAKS objective and cognitive 
demand resulted in no significant differences. This 
allowed for the inclusion of both covariates in the 
ANCOVA. Table 4 provides results from the 
ANCOVA performed at each grade level. It indicated a 
significant difference between RGL At-or-Below items 
and RGL Above items at the 7th-grade level (F (1, 44) 
= 8.336, p = 0.006, 2 = 0.159, observed power = 
0.81). Tests of homogeneity between the RGL groups 
and the covariates of cognitive demand and TAKS 
objective had no significant interactions except at the 
10th-grade level. In this case, homogeneity was 
violated between the RGL groups and cognitive 
demand (F (2, 51) = 6.453, p = 0.003). Further 
investigation into this significant interaction revealed 
no significant difference in cognitive demand between 
the 10th-grade RGL groups (F (1, 54) = 1.300, p = 
0.259). Therefore, the inclusion of the covariate in the 
analysis is justified (Tabachnick & Fidell, 1996).  
 

Table 4 

Tests of Between-Subjects Effects of RGL at Each 
Grade Level 

Grade F Sig.  2 Observed 
Power 

3rd 0.752 0.391 0.020 0.135 

4th 1.778 0.190 0.045 0.255 

5th 3.708 0.061 0.085 0.468 

6th 2.571 0.116 0.058 0.347 

7th 8.336 0.006 0.159 0.806 

8th 0.060 0.808 0.001 0.057 

9th 0.149 0.701 0.003 0.067 

10th 2.788 0.101 0.051 0.374 

11th 0.011 0.917 0.000 0.051 

Note:  = 0.05 

 

Student Grade Band Analysis 

The second phase of analysis of covariance yielded 
results related to differences in student performance at 
each of the three grade bands. The initial test for 
independence found that the covariates of cognitive 
demand, TAKS objective, and student grade level did 
not have any significant differences between  the  RGL 
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Table 5 

Adjusted and Unadjusted Student Performance Means and Variability 

Unadjusted  Adjusted 
Grade Level RGL N 

M SD  M SE 

3rd At-or-Below 28 81.04 11.12  81.10 2.42 

 Above 12 77.42 17.44  77.26 3.70 

 Total 40 79.95 13.20  79.18 2.20 

4th At-or-Below 20 82.45 7.79  82.51 1.60 

 Above 22 79.59 7.78  79.54 1.53 

 Total 42 80.95 7.82  81.02 1.10 

5th At-or-Below 30 82.27 6.57  82.31 1.31 

 Above 14 77.86 7.93  77.77 1.93 

 Total 44 80.86 7.24  80.04 1.15 

6th At-or-Below 33 78.03 11.03  77.98 2.06 

 Above 13 71.62 13.06  71.75 3.29 

 Total 46 76.22 11.85  74.86 1.94 

7th At-or-Below 34 70.29 9.95  70.87 1.90 

 Above 14 61.71 13.74  60.31 3.03 

 Total 48 67.79 11.72  65.59 1.75 

8th At-or-Below 31 67.97 12.96  67.74 2.25 

 Above 19 66.47 11.10  66.84 2.89 

 Total 50 67.40 12.19  67.29 1.82 

9th At-or-Below 32 61.03 12.97  61.34 2.41 

 Above 20 63.35 14.49  62.86 3.06 

 Total 52 61.92 13.48  62.10 1.92 

10th At-or-Below 40 66.25 13.25  65.49 1.87 

 Above 16 57.56 11.06  59.47 3.01 

 Total 56 63.77 13.18  62.48 1.75 

11th At-or-Below 43 40.86 14.46  40.86 2.20 

 Above 17 41.29 15.06  41.29 3.51 

 Total 60 40.98 14.50  41.08 2.07 

Elementary At-or-Below 78 81.87 8.66  81.96 1.04 

 Above 48 78.54 10.80  78.40 1.32 

 Total 126 80.60 9.63  80.18 0.84 

Middle School At-or-Below 98 72.16 12.01  71.95 1.20 

 Above 46 66.48 12.81  66.94 1.76 

 Total 144 70.35 12.51  69.44 1.06 

High School At-or-Below 115 55.30 17.68  55.65 1.37 

 Above 53 54.53 16.49  53.78 2.03 

 Total 168 55.06 17.27  54.71 1.22 

Overall At-or-Below 291 68.10 17.68  68.53 0.77 

 Above 147 66.11 16.86  65.28 1.09 

 Total 438 67.43 17.42  66.90 0.67 

 
groups at the elementary and high school levels. 
However, a significant difference was found between 
the RGL groups based on the cognitive demand 
covariate at the middle school level (F (1, 142) = 

5.540, p = 0.020). This led to the rejection of the 
assumption that the covariate and treatment effect were 
independent, and therefore the cognitive demand 
variable  was   omitted   from   the   ANCOVA  for the 
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Table 6 

Tests of Between-Subjects Effects of RGL at each Grade Band 

Grade 

Band 
Source 

Type III Sum 

of Squares 
df 

Mean 

Square 
F Sig.  2 Obs. 

Pwr.
 (a)

 

Cognitive Demand 22.126 1 22.13 0.264 0.608 0.00 0.08 

TAKS Objective 1097.001 1 1097.00 13.107 0.000 0.10 0.95 

Student Grade Level 23.005 1 23.01 0.275 0.601 0.00 0.08 

RGL 374.203 1 374.20 4.471 0.037 0.04 0.56 

Elementary 

School 

Error 10127.313 121 83.70     

TAKS Objective 24.382 1 24.382 0.173 0.678 0.00 0.07 

Student Grade Level 1612.186 1 1612.186 11.429 0.001 0.08 0.92 

RGL 773.341 1 773.341 5.482 0.021 0.04 0.64 

Middle 

School 

Error 19747.948 140 141.057     

Cognitive Demand 1108.06 1 1108.06 5.139 0.025 0.03 0.62 

TAKS Objective 455.103 1 455.10 2.111 0.148 0.01 0.30 

Student Grade Level 14089.68 1 14089.68 65.34 0.000 0.29 1.00 

RGL 125.434 1 125.43 0.582 0.447 0.00 0.12 

High 

School 

Error 35148.711 163 215.64     
(a) 

Computed using   = 0.05
 

 

Table 7 

Tests of Between-Subjects Effects of RGL Over All Assessment Items 

Source 
Type III 
Sum of 
Squares 

df Mean Square F Sig.  2
 Obs. Pwr. (a)

 

Cognitive Demand 0.025 1 0.025 0.000 0.990 0.00 0.05 

Student Grade Level 54532.535 1 54532.535 315.162 0.000 0.42 1.00 

RGL 1025.366 1 1025.366 5.926 0.015 0.01 0.68 

Error 75095.139 434 173.030         
(a)

 Computed using  = 0.05 

 

middle school grade band. The ANCOVA yielded 
significant differences between the RGL At-or-Below 
assessment items and RGL Above assessment items in 
both the elementary (F (1, 121) = 4.471, p = 0.037, 2 = 
0.036, observed power = 0.56) and middle school (F 
(1, 140) = 5.482, p = 0.021, 2 = 0.038, observed power 
= 0.64) grade bands (see Table 6). The adjusted mean 
difference at the elementary grade band resulted in the 
RGL At-or-Below student performance average being 
3.52 percentage points higher than the RGL Above 
average. The middle school marginal mean difference 
had the RGL At-or-Below average 5.01 percentage 
points higher. At both of these grade bands, the 
students performed better on the assessment items 
written at-or-below their grade level. As illustrated by 
the adjusted means in Table 4, there was virtually no 
difference between RGL At-or-Below averages and 

RGL Above averages found at the high school grade 
band. 

Tests of homogeneity were violated at all three 
grade bands. At the elementary grade band, a 
significant interaction existed between the RGL groups 
and TAKS objective covariate (F (2, 121) = 6.583, p = 
0.002). This did not affect the ANCOVA results; no 
significant differences in TAKS objectives were found 
between the RGL groups at the elementary level (F (1, 
124) = 0.078, p = 0.781). A significant interaction 
between the RGL groups and student grade level 
covariate at the middle school indicated homogeneity 
was violated (F (2, 139) = 5.832, p = 0.004). Similarly, 
because no significant differences in student grade 
level were found between the RGL groups at the 
middle school level (F (1, 142) = 1.063, p = 0.304), 
these interactions were not found to affect the 
ANCOVA results. Homogeneity was violated at the 
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high school level as well, with a significant interaction 
between the RGL groups and student grade level 
covariate (F (2, 163) = 29.315, p = 0.000). Like the 
elementary and middle grades, this interaction did not 
affect the ANCOVA, having no significant differences 
in student grade level between the RGL groups at the 
high school level (F (1, 166) = 1.260, p = 0.263).  

Overall Assessment Item Analysis 

Controlling for cognitive demand and student 
grade level, the final level of analysis of covariance 
determined a significant difference in student 
performance based on the RGL for all TAKS 
mathematics assessment items (F (1, 434) = 5.926, p = 
0.015, 2 = 0.013, observed power = 0.68) (see Table 
7). The marginal mean difference between the RGL 
At-or-Below student performance average and RGL 
Above student performance average was 3.25 
percentage points, indicating that students performed 
better on the RGL At-or-Below questions. Both the 
cognitive demand (F (1, 436) = 1.174, p = 0.279) and 
student grade level (F (1, 392) = 0.313, p = 0.576) 
covariates were independent from the RGL group 
variable. However, a significant interaction existed 
between the RGL group variable and student grade 
level covariate (F (2, 389) = 127.504, p = 0.000). This 
violation of homogeneity did not, however, have an 
effect on the ANCOVA, with no significant differences 
in student grade level found between the RGL groups. 

Discussion and Conclusions 

The purpose of this study was to determine if the 
reading difficulty of mathematics assessment items 
affected student performance on TAKS items. The 
claim that student performance would be affected by 
RGL of mathematics assessment items is supported by 
the results of this study. Analysis revealed that students 
in the state of Texas performed significantly lower on 
mathematics assessment items having RGL measures 
above their grade level than on items having RGL 
measures At-or-Below their grade level. This was 
especially true for elementary and middle school 
students. More specifically, the seventh grade students 
in the state of Texas were negatively affected by the 
RGL of mathematics assessment items.  

Despite controlling for several extraneous 
variables at each level of analysis, the RGL explained 
very little of the variance as evidenced through the low 
effect size coefficients. Additionally, the observed 
power at nearly all levels of analysis yielded results 
illustrating the limited power of the RGL, except at the 
7th grade level, where the observed power coefficient 
was above 0.8. This evidence of low effect size and 

power coefficients either suggests more extraneous 
variables could be identified or that the limitations of 
this study had an effect on the results. 

In this study, a grade-equivalence measure was 
obtained for each mathematics assessment item’s RGL 
to determine the item’s categorization as being at-or-
below versus above the student grade level. This 
measure constituted the greatest limitation of this 
study. Like Walker et al. (2008) noted, determining the 
reading grade level of a small passage of text, like that 
of a mathematics assessment item, lacks reliability. 
Lexile (2008) based their calculations on subsets of 
125 words within the text sample, and no assessment 
item in this study had a word count close to 125 words. 
Therefore the calculations made using the Lexile 
Analyzer may not have provided the best reading 
grade-equivalence measure.  

Another limitation to this study was the number of 
assessment items analyzed at each grade level. After 
items were categorized based on their RGL, nearly all 
subsets of RGL Above items had less than 20 items. A 
larger sampling of grade level items would have been 
ideal. Additionally, the utilization of publicly available 
data with respect to student performance measures 
limited the results of this study. Obtaining student level 
data that can be disaggregated would also be useful 
because determining how students from different 
ethnic, socioeconomic, regional, and gender groups 
could help in identifying how different subgroups of 
students are affected by the RGL of mathematics 
assessment items. However, the usage of state level 
data allowed this study to illustrate effects evident 
within the overall population of students in Texas.  

Overall, this study provides support to the 
available research indicating the negative effect of a 
greater reading difficulty on student performance on 
mathematics assessment items (Bolt & Thurlow, 2007; 
Powell et al., 2009; Walker et al., 2008). Ideally, 
assessment items would minimize reading difficulty 
without jeopardizing mathematical complexity. 
Therefore, investigating ways of writing mathematics 
assessment items that require students to read and 
synthesize text without going beyond the students’ 
reading grade level is imperative. Further empirical 
research is needed in this area.  

Because this study relied on Texas state 
assessment items in mathematics that are used for 
determining AYP, implications regarding 
accountability practices should be considered. If 
schools and school districts are held accountable for 
student performance on standardized state mathematics 
assessments (NCLB, 2002), students (and hence 
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schools and districts) may be unduly penalized twice, 
once for low reading performance and once for low 
mathematics performance resulting from reading 
difficulties. To provide an accurate assessment of 
student mathematics performance, student results in 
mathematics may need to reflect individual student 
reading difficulties. Adjusted mathematics assessment 
scores could be created based on individual student 
reading levels, and these adjusted mathematics 
achievement results could be used in state 
accountability measures.  

Students are called to acquire mathematical skills 
that are not only grounded in computation but also in 
complex problem solving (NCTM, 2000). These 
complex problem solving skills are assessed with items 
that unavoidably require a great deal of reading (Bolt 
& Thurlow, 2007; Walker et al., 2008); mathematics 
test items will continue to include reading passages in 
order to accurately present the mathematical situation. 
Teachers, administrators, test and textbook writers, 
students, and parents should understand that this 
dualistic nature of mathematics assessment items is 
inevitable. However, researchers should continue to 
investigate ways to minimize the reading difficulty of 
assessment items without limiting the mathematics 
content. There may soon be accountability measures 
that reflect the reading levels of students. But, until that 
time, teachers must continue to teach both the 
mathematics content and reading strategies in order for 
students to perform their best. 
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