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Expert Mathematicians’ Approach to Understanding 
Definitions 
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In this article I report on a study of the cognitive tools that research mathematicians employ when developing 
deep understandings of abstract mathematical definitions. I arrived at several conclusions about this process: 
Examples play a predominant role in understanding definitions. Equivalent reformulations of definitions enrich 
understanding. Evoked conflicts and their resolutions result in improved understanding. The primary role of 
definitions in mathematics is in proving theorems. And there are several stages in developing understandings of 
mathematical definitions (Manin, 2007; Tall & Vinner, 1981; Thurston, 1994). I also include some suggestions 
for pedagogy that are found in the data. 

 

Definitions play a pivotal role in mathematics. 
Research on students' understandings of mathematical 
definitions reveals that learners encounter different 
types of obstacles. According to Vinner (1991), serious 
difficulties in comprehending definitions can be 
attributed to the dichotomy that exists between the 
structure of mathematics as conceived by professional 
mathematicians and the cognitive processes involved 
in concept acquisition by learners. Hence, it is 
instructive, based on the resulting pedagogical 
implications, for both mathematics teachers and 
educational researchers, to understand how 
professional mathematicians view mathematical 
definitions and what cognitive processes they employ 
when they attempt to understand definitions created by 
their peers.  

With this goal in mind, I conducted a qualitative 
research study with 12 professional mathematicians. 
The mathematicians in this study have made lasting 
contributions to mathematics, and many have won 
several international awards and honors. For the 
purposes of this article, I define a professional 
mathematician as a mathematician who is actively 
involved in mathematical research. An expert 
mathematician has additionally been internationally 
recognized by peers based on his or her profound 
findings. In this research study, I only solicited 
participants who are expert mathematicians in their 
respective fields. The participants' responses provided 
insight  into  their  world  of  mathematics,  particularly  

with respect to definitions. At times, their responses 
went beyond their understandings of mathematical 
definitions, allowing important themes to emerge, such 
as the role of examples, conflicts, models, abstraction, 
intuition, and generalization. In order to adequately 
represent the emergent themes from participants' 
responses, I have also relied upon writings on the 
nature of mathematics alluded to by some of our 
respondents. In the following sections I present the 
views expressed by the mathematicians on each of the 
aforementioned themes. 

Theoretical Perspective and Literature 

The theoretical framework of Pirie and Kieren 
(1994) is relevant to this study, for it describes the 
development of understanding within the learner's 
mind when a mathematical concept is learned. This 
theory describes the dynamic growth of understanding 
over a period of time. The essence of their theory is 
that understanding is not always a linear, continuous 
process; learners often revert back to their previous 
ways of thinking, only to emerge forward with more 
sophisticated and deeper understanding.  

Pirie and Kieren propose an onion-layer model to 
depict eight different levels of understanding within the 
learner (see Figure 1). The innermost level of the 
model is referred to as primitive knowing, for this level 
describes the process of initial attempts to understand a 
new concept (such as functions) through actions 
involving the concept (adding or composing functions, 
evaluating a function at a point, etc.) or representations 
of the concept (such as the graph of a function). In the 
next level, the learner develops images out of these 
effective actions. This level is called image making. 
Continuing outward, the next level is called image 
having. At this level the learner is able to refine and 
manipulate the image (such as the image of a conic 

Revathy Parameswaran received her PhD from Chennai 
Mathematical Institute. She has been teaching mathematics for 
high school seniors for the past eighteen years. Her research 
interests include cognitive development and advanced 
mathematical thinking.  



Experts’ Approach to Definitions 

44  

associated to a quadratic function) without having to 
work out particular examples, and, hence, this level 

represents the learner's first level of abstraction. 
 

Figure 1. Pirie-Kieren's model 
 

The next level is called property noticing, in which 
the learner is able to examine these images for 
properties, distinctions and so on. At this level the 
learner may notice, for example, that certain conic 
sections such as circles and ellipses are bounded, 
whereas hyperbola and parabola are unbounded. The 
model's next level is formalizing: The learner thinks 
consciously about the noticed properties and is able to 
generalize by abstracting the important features of the 
mathematical concept. At this level, the mathematical 
concepts become defined for the learner and begin to 
exist as an independent entity. 

At the level titled observing, the learner tries to 
achieve consistency in his or her thought processes by 
trying to accommodate existing knowledge structures 
to fit with the newly acquired knowledge. For example, 
the learner may base his or her properties of functions 
on a modification of the properties of numbers, 
noticing that functions, similar to numbers, can be 
added and multiplied, and yet, unlike numbers, 
functions can be composed. The level called 
structuring takes place when the learner is able to place 
his or her thought processes into an axiomatic 
structure. At the outermost level, appropriately named 
inventing, the learner is able to freely create new 

mathematical structures with the previous knowledge 
structures acting as the initiating ground. At this final 
level, in which the highest level of recursion occurs, 
the learner begins to function independently. It is 
important to note that the levels do not correspond to 
levels in mathematics, but, rather, levels in 
understanding. Thus this theory reflects understanding 
as a personal knowledge construction process.  

Vinner and Tall (1981) provide a framework for 
understanding how one understands and uses a 
mathematical definition. This framework is 
foundational to this study in that it explains the 
dynamic interaction between the concept image and 
concept definition in addition to being influential in 
subsequent research on the role of concept-images in 
understanding formal mathematical definitions. 
According to Tall (1980), each mathematical concept 
is associated with both a concept definition and a 
concept image. 

Concept image is regarded as the cognitive 
structure consisting of the mental picture and the 
properties and processes associated with the 
concept. Depending on the context, different parts 
of the concept image may be activated. At any 
given time the portion of the concept image that is 
activated is called evoked concept image. Quite 
distinct from the complex structure of the concept 
image is the concept definition which is the form 
of words used to describe the concept. (pp. 171–2) 

The mathematical definition could be formal and given 
to the individual as a part of a formal theory or it may 
be a personal definition invented by an individual 
describing his or her concept image. A potential 
conflict factor (Tall, 1980) describes any aspect of the 
concept image that may conflict with any part or 
resulting implication of the particular concept 
definition. Factors in different formal theories can give 
rise to such a conflict. A cognitive conflict is created 
when two mutually conflicting factors are evoked 
simultaneously in the mind of an individual. The 
potential conflict may not become a cognitive conflict 
if the implications of the concept definition do not 
become a part of the individual’s concept image. The 
lack of coordination between the concept image 
developed by an individual and the implication of the 
concept definition can lead to obstacles in learning. 
This has been corroborated by the work of several 
researchers including Cornu (1991) and Edwards and 
Ward (2004). 

The influence of concept images on the 
understanding of mathematical concepts has been 
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extensively studied. Nardi (1996) observes that novices 
are often obstructed by their previous unstable 
knowledge. Alcock and Simpson's (2002) research 
observes that students generally do not consult 
definitions to resolve conflicts because they do not 
understand either the relevance or importance of 
definitions. When learning certain concepts, learners 
also face difficulties due to the concept’s intrinsic 
complexity. Bachelard (1938) classifies learning 
obstacles into several types according to their source: 
use of particular language, association of inappropriate 
images, or effect of a previous piece of knowledge that 
was originally useful but which becomes false in the 
present context. Thus research reveals that learners, in 
general, find it difficult to comprehend and use 
definitions. 

Research Methodology 

This research began with a pilot study exploring 
how expert mathematicians approach and understand 
mathematical definitions. I conducted in-person 
interviews with two expert mathematicians concerning 
the cognitive processes involved in their understanding 
of mathematical concepts and definitions. During the 
analysis of the pilot study data, the principal themes of 
the role of examples, conflict resolution, and 
reformulations and generalizations emerged. The 
emergent themes provided focus for subsequent 
research and informed the development and 
preparation of a questionnaire. 

Participants   

Twelve expert mathematicians participated in this 
research study. Although the research interests of the 
participating mathematicians varied, all participants 
study and research pure mathematics. Most of them 
have also taught mathematics for many years.  

Data Collection and Methods 

Because the participating mathematicians live in 
different parts of the world, only 5 participants took 
part in personal interviews. All participants responded 
to the questionnaire. Although no new questions were 
put forth during the interviews, this approach provided 
more time to reflect on the questions given. 

The intent of the questionnaire (see Appendix) was 
to understand how expert mathematicians comprehend 
definitions. Guided by the emergent themes of the pilot 
study, the questions focused on the roles of imagery, 
examples, conflicts, as well as the domain to which a 
given definition belongs. 

 Analysis 

Analysis of the participant responses used 
grounded theory as defined by Glaser and Strauss 
(1967). In particular, my analysis followed Glaser and 
Strauss's method of open coding of data. Using this 
approach, I constructed meaningful patterns within 
participant descriptions by looking for structure in the 
data. Themes emerged as a result of analyzing the 
responses for commonalities and differences. 

Results 

Processes Used by Mathematicians in Understanding 
Definitions 

The role of examples. I define examples as 
instantiations of a concept. Every participating 
mathematician discussed the importance of examples 
in developing their understanding of mathematical 
definitions. This research finding supports the 
contention that having a sufficient number of suitable 
examples is closely linked with the understanding of 
the mathematical object. The image forming and image 
having levels of Pirie and Kieren’s (1994) onion-layer 
model seem to be related to identifying examples and 
non-examples associated with a particular definition. 
By making sense of theorems that rely on a given 
definition, these images are further strengthened. For 
the participants, intuition, in any particular area, is also 
built by having a rich source of examples. 

The following responses highlight the different 
ways expert mathematicians use examples to develop 
their understanding of mathematical definitions. 

Response 1: To comprehend a definition means it 
usually includes examples, simple counter-
examples, and theorems using the definition.  

Response 2: I try to see how the definition will 
exclude/include examples that I already know. For 
example, if the definition is about groups then I 
would try to see whether it clearly divides the 
groups that I know into those that fit and those that 
do not. 

Response 3: In my area of my expertise, it is less 
of a challenge for me to comprehend a definition, 
as I may have already built up an intuition in that 
area, and examples are already swirling in my head 
upon reading a definition. In an area less familiar, I 
cannot feel like I understand a definition (or a 
theorem for that matter) until I have checked 
myself that it is not an empty definition (or 
theorem). I immediately try to think of easy 
examples, try to make a picture or connect it with 
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some definition I already know and see how it 
differs in comparison. 

Additionally, some of the participants used 
examples specifically as scaffolds to build their 
understanding. This use of scaffolding is seen in the 
responses that follow. 

Response 4: Examples are scaffoldings as one tries 
to build one’s understanding of definitions. They 
are the steps to attain higher and higher levels of 
understanding. They are also the pillars on which 
the definitions rest. The more examples one has, 
the closer one is to understanding the mathematical 
object. If you want to go from A to B, there may be 
several ways. Different examples provide the 
different routes. In fact, examples give 
approximate shape of the object that is defined. So, 
complete understanding is impossible. As you 
make interconnections you get a finer and finer 
picture of the object.  

Response 5: For me, any definition is associated 
with examples. Definitions cannot stand abstractly 
without examples. For me, knowledge can be 
thought of as subdivided into islands. It is 
examples that connect them. So a definition is a 
collection of all the examples that will conform to 
the definition. For me, in some sense, all the 
examples that satisfy a definition is like a kernel of 
the definition. The construction of examples and 
analogies are so important in understanding 
definitions in all the subjects you mention. 

The role of conflicts. Based on the responses of the 
participants, when one receives external stimuli in the 
form of a new mathematical definition, one tries to 
incorporate this new knowledge to one’s existing 
knowledge structure. This can be influenced by 
distorted images, resulting in a conflict. According to 
our participating mathematicians, when the same 
mathematical object is viewed from a different 
perspective, conflicts may be resolved. Additionally, 
there are times when the usual meaning associated with 
a word used in a new definition also can be a cause of 
conflict, as the first response below indicates. 

Response 1: I guess it might also sometimes be 
required to ignore the usual meaning of the word 
being defined, but this always came naturally to 
me.  

Response 2: I recall conflicts occurring when I 
convinced myself that the definition meant a 
certain something, and then later on I encountered 
a counterexample! I had to re-evaluate my 
understanding and re-understand it correctly so that 
the paradox could be resolved. 

Methods of understanding. The participants' 
responses suggest that encountering alternate 
definitions can increase understanding. Similarly, 
comparing and contrasting the new definition with an 
already known definition is a tool used for 
understanding (see Response 3). Additionally, 
participants commented on the utility of proving 
theorems based on a given definition to develop their 
understanding of that definition. Participants detailed 
how self-inquiry, or posing questions to oneself, 
increased understanding.  

Response 1: I had once a professor of geometry 
who told us his main aim was that we understood 
….[I don’t remember if it was “cube”, “tetra-
hedron”, or “projective plane”] as well as we 
understand what “chair” means. We can recognize 
a chair, sit on one, or in case of need stand on one 
to reach a high shelf.  
 That is what, for me, it is to comprehend a 
definition. It usually includes examples, simple 
counterexamples, and theorems using the 
definition. It happens that “definition” and 
“theorem” can be interchanged, and sometimes this 
makes a better understanding.  

Response 2: When one meets an elegant result in 
an area, one usually marvels at the proof. If I 
would like to understand this at a deeper level, I 
usually try to formulate a question in which these 
notions would intervene and this way, I learn to 
appreciate those concepts as well as the techniques.  

If the definition is equivalent, I note it in the 
back of my mind that this is an equivalent 
formulation. At times, the alternate way of looking 
at things proves useful in solving problems.  

Response 3: I try to make a picture or connect it 
with some definition I already know and see how it 
differs in comparison. 

Response 4, below, sums up many of the methods 
for understanding that were discussed by the 
participating mathematicians. It is also consistent with 
the framework developed by Vinner and Tall (1981): 
The participant hypothesizes that when a learner 
encounters a new formal mathematical definition, he or 
she develops a concept image associated with the 
definition. When this concept image becomes a useful 
tool, it may replace the definition, or, rather, it may 
become the concept definition. 

Response 4: Understanding (comprehending) a 
mathematical definition is a process which is in 
principle open-ended: you can never tell that you 
understand something completely. It can be 
conceived as consisting of several stages.  
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Stage 1. Understanding the language in which 
the definition is stated. In mathematics, I will take 
for granted that this means the language of more or 
less formalized set theory, which is expressed in 
metalanguage based on some natural dialect: 
English, Russian ... All other choices lack 
universality, conciseness, common acceptability, 
etc., of Set Theory. However, they might be 
unavoidable at earlier stages of studying 
mathematics, e.g., if one is taught Euclidean 
geometry a la Euclid. 

Stage 2. (a) Understanding of the Definition 
itself as a syntactically correct and meaningful 
expression of the language of Set Theory. (b) 
Forming imprecise but intuitively helpful 
“semantic cloud” of the definition. Let’s take as a 
representative example the definition of a group. 
Its “semantic cloud” consists in various ideas about 
symmetry: symmetry of “things”, symmetry of 
patterns, symmetry of physical laws ... 

Stage 3. Trying to compile a list of 
“examples”: concrete objects satisfying conditions 
of the Definition. “Small” objects: groups with 
one, two, three elements. “Big objects”: integers, 
rationals, matrices ... Can one classify small 
objects? Describe explicitly groups of 1,2,3,4,5,6 
elements up to isomorphism? Here one more 
definition crops up: that of isomorphism to which 
the same (up to now, three stage process must be 
applied).  
 Stage 4. Studying how the Definition works in 
various theorems about groups, and in various 
theories where groups are not the central, but an 
important part of the picture. Where and how we 
use associativity, existence of identity, existence of 
inverse element ? When there is a chance that all 
these conditions for a composition law will be 
satisfied, and when not? Does a given theorem 
remain true if one omits existence of inverse 
element in the definition? What kind of “group-like 
objects” [do] we get then?  

All stages, but especially Stage 4, is in 
principle open-ended. It might involve returning to 
Stage 3, posing and solving classification 
problems, sometimes marveling at their complexity 
(classification of simple finite groups). It enriches 
our grasp of semantics of the basic language and in 
this way helps to understand further definitions. 

The various stages involved in understanding 
mathematical definitions described in this response 
also resonate with the levels of understanding given by 
Pirie and Kieren (1994). Forming a semantic cloud 
with a good supply of examples related to small and 
big objects corresponds to primitive knowing, image 
making and image having levels. Identifying patterns, 
asking questions and proving theorems related to the 

definition is similar to the level of property noticing, 
formalizing and observing. It becomes apparent 
through the Pirie-Kieren model and the participating 
mathematician’s description that the levels are nested 
within each other and not necessarily linear.   

The responses in this section can also be linked to 
Lakoff and Núñez's (2000) work, which demonstrates 
how mathematicians conceptualize mathematical 
objects through conceptual mapping. Just as in 
mathematics, where a mapping (or a function) has a 
domain and a range or target, the domain of the 
conceptual mapping consists of examples and the 
target is the algebraic structure that underlies the set of 
examples. It is through such metaphorical mappings 
that mathematicians assign an algebraic essence to an 
arithmetic structure. They claim that mathematicians 
tend to think of the algebraic structure as being present 
in the arithmetic structure. Calling this a metaphorical 
idea, Lakoff and Núñez propose that this metaphorical 
idea helps mathematicians to see, for example, the 
same mathematical structure in addition modulo 3 and 
rotational symmetries of an equilateral triangle. 

Nature and role of mathematical definitions. When 
mathematicians communicate their results in a formal 
way (e.g., a journal article), a need arises to introduce a 
collection of associated definitions in order to facilitate 
“chunking” and help avoid repetition. According to 
David Mumford (2001), when one encounters many 
complex examples, isolating part of their shared 
structure is the best approach. This is what generating 
models is all about, and, as he points out, pure 
mathematics is full of models. This method of 
generating models is referred to by Mumford as the 
“bottom-up view”. The opposing view is the “top-
down view” where different branches of mathematics 
grow out of one true axiomatization of the subject. 
This “top-down view” is contrary to the ideas of 
generating mathematical models (pp. 4–5). These two 
viewpoints also reflect the two different approaches 
used by mathematicians in solving problems and 
developing theories. Some mathematicians work from 
concrete examples, abstract their essence, and 
generalize theorems. Some mathematicians, by 
intuition and by virtue of their mathematical 
experience, conjecture some mathematical statements 
to be true, verify it by examples and then prove them 
formally. Mumford points out that, according to Sir 
Michael Atiyah, the most significant aspects of a new 
idea are often not contained in the deepest or most 
general theorem resulting from the idea, but they are 
often embodied in the simplest examples, the simplest 
definitions and their immediate consequences (p. 3). 
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The following participant responses depict 
additional emergent themes on the nature and role of 
mathematical definitions in understanding. 

Response 1: In some sense, a mathematical 
definition is an isolated tool obtained from a mass 
of concepts which is utilizable again and again. 
From existing mathematical concepts, when a 
selection is made by rearrangement so that this 
rearrangement becomes a useful tool, or, when a 
part of an existing concept is isolated so that it 
becomes an entity in its own right, a new object is 
born. It is characterized completely by its 
definition. 
 
Response 2: Some prefer to start with some 
examples and then work slowly to an abstract 
setting. And some much prefer to start with a 
general abstract definition and find examples as 
they crop up. I am strongly of the first type and 
always seek to delineate the abstract concept with 
an array of examples or else I just can’t work with 
it.  
 
Response 3: Mathematicians in the process of 
setting up a whole universe of mathematical 
definitions and abstractions to express their ideas 
in their generality, fail to communicate the original 
examples, which led to these ideas in the first 
place. This leads to difficulties in comprehending 
these new ideas even for some fellow 
mathematicians. It is no wonder that students 
struggling to comprehend new mathematical 
definitions and theorems exhibit great difficulties. 

Discussion and Conclusions 

The themes that emerged from the responses of the 
participating mathematicians led to several 
conclusions, outlined below. I believe that the 
emergent themes identified in this study are applicable 
to most mathematicians and the way they understand 
mathematical definitions. Nevertheless, the sample size 
of the mathematicians involved was small and all of 
them were pure mathematicians. It would be 
interesting to conduct a similar study with a much 
larger sample and, perhaps, involve applied 
mathematicians as well. It is possible that wordings of 
some questions—specifically questions (1) and (3)—in 
the questionnaire might have influenced the responses, 
which in turn might have influenced the conclusions. 

Predominant Role of Examples in Comprehending New 
Definitions 

All participating mathematicians described 
examples as an important cognitive tool they employ 
during the process of understanding a new definition. 

One of the processes employed is commonly known as 
the inclusion-exclusion principle. For example, one of 
the participating mathematicians stated, 

I try to see how the definition will exclude/include 
examples that I already know. For example, if the 
definition is about groups then I would try to see 
whether it clearly divides the groups that I know 
into those that fit and those that do not. 

In other words, a set of mathematical objects can 
be viewed as specifying a territory. Other mathematical 
objects can then be differentiated according to whether 
they belong to a specific territory or not. Examples and 
counterexamples can be viewed as an approximation of 
the form or shape of this territory. Therefore, the more 
numerous and varied the examples, the finer the 
approximation. 

To illustrate, consider the concept of continuous 
functions. Typically, the first examples of continuous 
functions students encounter are polynomial functions, 
followed by trigonometric, exponential, logarithmic 
functions, and so on. When one encounters the 
absolute value function and notices it to be continuous 
but not differentiable, one gains a better understanding 
of the territory of continuous functions. Therefore, 
pedagogically speaking, it helps to have a good supply 
of examples when learning a new concept or definition. 
Thus, a definition is a collection of all the examples 
that conform to the definition. According to one of the 
mathematicians, definitions cannot stand abstractly 
without examples. He said, "All the examples which 
satisfy a definition is like a kernel of the definition." 

Definitions in one's area of expertise are easily 
understood because one has at hand a rich supply of 
objects on which to test the definition. Thus, examples 
are like pillars on which definitions are built. For some 
expert mathematicians, understanding a new definition 
involves the process of continuously molding the 
definition so that it approximately fits into their area of 
expertise. 

For example, there is a close relation between 
algebraic geometry and commutative algebra in that 
many algebraic objects have parallels in geometry. 
When a mathematician encounters a definition in 
algebra (concerning, say, projective module), the 
mathematician may prefer to view the definition as one 
in geometry (in this case, vector bundles). 
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Role of Equivalent Reformulations of Definitions in 
Enriching Understanding 

At times, a definition and a theorem can be 
interchanged. That is, the theorem yields an equivalent 
reformulation of the definition, leading to deeper 
understanding. For example, an equilateral triangle 
may be defined as a triangle in which all sides have 
equal length. The theorem stating that a triangle is 
equilateral if and only if it is equiangular provides an 
equivalent reformulation of this definition. This 
realization gives new insight into the original 
definition. Thus, a mathematical object is better 
understood through characterizing properties. 

Role of Evoked Conflicts and Their Resolutions in 
Improved Understanding 

Sometimes when one's understanding of a 
definition encounters an example that conflicts with 
one's understanding, it can lead to transformation in 
one’s thinking that helps to resolve the conflict in 
understanding. For example, one might believe that all 
continuous functions are differentiable until one 
encounters an example that is continuous but not 
differentiable. It appears that understanding of a 
definition undergoes constant change as conflicts of 
various kinds are evoked and resolved. One 
participating mathematician described how some 
conflicts simply disappear as one views the definition 
with a new perspective and at other times by 
performing a simple calculation. 

Role of Definitions in Mathematics 

One of our participants believed the central role of 
definitions is to prove theorems. For example, the 
importance of understanding the definition of a 
continuous function is not found in the ability to apply 
it in order to determine the continuity of individual 
functions. The importance of understanding the 
definition is using it to make broader conclusions. For 
instance, one can use the definition of continuity to 
prove that all polynomial functions are continuous. 

Stages in Understanding Definitions 

The participant responses supported several 
theoretical models of stages in understanding 
definitions. In fact, the view of stages represented by 
Response 4 in “Methods of Understanding” reflects 
ideas from many of the participants. According to 
Response 4, understanding a mathematical definition 
consists of four stages (cf. Manin, 2007). The first 
stage involves familiarizing oneself with the 

formalized mathematical language of and the dialect in 
which it is written. For instance, when one attempts to 
grapple with the definition of continuous functions, 
one should be familiar with the notation used to 
express limit of a function. The second stage involves 
understanding the definition as a syntactically correct 
and meaningful expression represented with 
mathematical language. This second stage also requires 
development of an intuitive understanding of the 
definition, a “semantic cloud.” It appears that semantic 
cloud is the mathematical aspect of what is termed as 
concept image (Tall & Vinner, 1981). According to 
Thurston (1994), learning a mathematical topic 
consists of building useful, non-formal mental models, 
and this learning cannot be accomplished by studying 
definitions and rigorous proofs alone. I include these 
processes as part of the semantic cloud. Using the 
representative example of continuous functions, its 
semantic cloud could consist of ideas of graphs without 
gaps. In the third stage, one acquires a variety of 
examples, ranging from “small objects” to “big 
objects”. In the case of continuous functions, small 
objects could include the constant function, identity 
function, etc., while big objects could include 
continuous functions that are nowhere differentiable. In 
the fourth stage, one acquires the knowledge of how 
the definition is used in theorems and in other related 
topics. This stage leads to an understanding of why a 
particular definition is formulated in a specific way. 
Also, it often leads to an appreciation of the need to 
characterize mathematical concepts with precise, 
unambiguous definitions. This understanding may also 
lead to the construction of new examples and counter-
examples. Hence, the third and fourth stages are 
dynamically nested, representing the complexity of the 
learning process for mathematical definitions. 

Pedagogical Implications 

Participants provided the following pedagogical 
recommendations: 

Response 1: Teaching strategies must take into 
consideration the different challenges posed by 
each of the stages (given above) in understanding 
the mathematical definition. 
 
Response 2: It is preferable to start with some 
examples and then work slowly towards an abstract 
setting. It is important to delineate abstract 
concepts with an array of examples which tie the 
idea into their cognitive framework. 
 
Response 3: The teaching strategy should aim to 
convey that a mathematical definition is just as 
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tangible as a table or a chair. The student should be 
able to recognize it, use it for the routine purposes 
for which it is meant, and perhaps use it in a novel 
way, just as one can recognize a chair, sit on one, 
or in case of need stand on one to reach a high 
shelf. 
 
Response 4: Solving well-formulated problems is 
an important strategy to gain in-depth 
understanding of the definition. 

According to one of our participants, there is a 
wide gulf between mathematical thinking and formal 
mathematical writing. While mathematical thinking 
involves creativity unrestrained by demands of 
structure, logic, and rigor, guided only by intuition, 
knowledge, and experience, mathematical writing, 
particularly the development of proofs, does not permit 
such freedom. According to this mathematician, 
abstraction is a very relative term. He concludes: 

Abstraction is very individualistic. One question 
students frequently ask is: What can one say or do 
about a mathematical object when it is so abstract 
that it can’t be even be seen or imagined? I wish to 
suggest that a mathematical object is its defining 
property. The more you learn its characterizing 
properties the better you get to “know” it. 
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Appendix 

Questionnaire 

1.  How would you comprehend a definition in your area of expertise and a definition in an area less familiar to 
you? More specifically, is there a specific identifiable intellectual process specific to your individuality which 
is called up when needed to comprehend a definition. As a part of the process, do you use special examples and 
then abstract the process, or draw pictures, schematic diagrams, etc.?  

2. In the course of your mathematical development, are you aware of any changes in the way you comprehend a 
new definition? In what ways, if any, are they different from the ones you use now?  

3. Do you have a recollection of having understood a definition or a mathematical statement in a particular way 
which later on resulted in a conflict? If so, how is the awareness of the conflict triggered? Does the awareness 
occur spontaneously or when working consciously at it?  

4. In your experience, if someone recasts your definition in a different way, what method(s) do you use for 
reconciling or understanding the new definition?  

5. Is it possible to evolve general strategies for understanding mathematical definitions based on your research 
experience or teaching? To what extent are the strategies common or different across the subjects (algebra, 
topology, geometry, analysis,...). 


