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Using Technology to Unify Geometric Theorems About the 
Power of a Point 

José N. Contreras  
 

 
In this article, I describe a classroom investigation in which a group of prospective secondary mathematics 

teachers discovered theorems related to the power of a point using The Geometer’s Sketchpad (GSP). The 

power of a point is defines as follows: Let P be a fixed point coplanar with a circle. If line PA  is a secant line 

that intersects the circle at points A and B, then PA·PB is a constant called the power of P with respect to the 

circle. In the investigation, the students discovered and unified the four theorems associated with the power of a 

point: the secant-secant theorem, the secant-tangent theorem, the tangent-tangent theorem, and the chord-chord 

theorem. In our journey the students and I also discovered two kinds of proofs that can be adapted to prove each 

of the four theorems. As teacher educators, we need to design learning tasks for future teachers that deepen their 

understanding of the content they are likely to teach. Having a profound understanding of a mathematical idea 

involves seeing the connectedness of mathematical ideas. By discovering and unifying the power-of-a-point 

theorems and proofs, these future teachers experienced what it means to understand a mathematical theorem 

deeply. GSP was an instrumental pedagogical tool that facilitated and supported the investigation in three main 

ways: as a management tool, motivational tool, and cognitive tool. 

 

The judicious use of technology enhances the 

teaching and learning of mathematics. Technology 

frees the user from performing repetitive and 

computational tasks, and thus, it allows more time for 

action and reflection. As a consequence, when students 

use technology as a cognitive tool, they develop a 

deeper understanding of mathematical concepts, 

patterns, and relationships (Battista, 2007; Clements, 

Sarama, Yelland, & Glass, 2008; Hollebrands, 2007; 

Hollebrands, Conner, & Smith, 2010; Hollebrands, 

Laborde, & Sträβer, 2008; Hoyles & Healy, 1999; 

Hoyles & Jones, 1998; Koedinger, 1998; Laborde, 

1998; Laborde, Kynigos, Hollebrands, & Sträβer, 

2006).    

For example, Battista (2007) describes how two 

fifth graders constructed meaning for a spatial property 

of rectangles--each of the four angles of a rectangle 

measures 90°--within the Shape Makers environment 

(Battista, 1998), a GSP microworld for investigating 

geometric shapes. In their review of research on 

learning and teaching geometry within interactive 

geometry software (IGS) environments, Clements, 

Sarama, Yelland, and Glass (2008) concluded that IGS 

“can be beneficial to students in their development of 

understandings of geometric shapes and figures” (p. 

131). Similarly, research reviewed by Hollebrands, 

Conner, and Smith (2010) suggests that IGS 

environments “enable students to abstract general 

properties and relationships among geometric figures” 

(p. 325).      

IGS such as The Geometer’s Sketchpad (GSP) 

(Jackiw, 2001) and Cabri Geometry II (Laborde & 

Bellemain, 1994) are powerful instructional technology 

tools. IGS allows the user to construct dynamic figures 

that can be manipulated or moved without altering the 

mathematical nature of the geometric figure. This 

feature allows the user to quickly generate many 

examples of a geometric diagram. This feature is in 

marked contrast to the static nature of textbook and 

paper-and-pencil illustrations. A diagram that can be 

resized by dragging flexible points also motivates the 

user to investigate invariant geometric relationships. 

As a result of motivation, action, and reflection, 

students construct a more powerful abstraction of 

mathematical concepts (Battista, 1999).  

This article describes a classroom activity in which 

a group of 13 prospective secondary mathematics 

teachers (hereafter referred to as students) investigated 

the power of a point with GSP. My objective was to 

guide my students to discover and unify several 

geometric theorems related to the power of a point. 

The power of a point is defined as follows: Let P be a 

fixed point coplanar with a circle. If PA  is a secant 

line that intersects the circle at points A and B, then 
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PA·PB is a constant called the power of with respect to 

the circle. 

The Classroom Setting 

The students were enrolled in my college geometry 

class for secondary mathematics teachers. The 

textbook I used was Geometry: A Problem-Solving 

Approach with Applications (Musser & Trimpe, 1994). 

All of my students had completed the calculus 

sequence, discrete mathematics, and linear algebra. In 

addition, by this point in the course, my students were 

proficient using GSP, as they had employed it to 

complete several tasks involving constructing 

geometric figures (e.g., centroid of a triangle, squares, 

etc.), detecting patterns, and making conjectures. We 

conducted our power of a point investigation in the 

computer lab where each student had access to a 

computer with GSP. To facilitate and manage the 

investigation more efficiently and accurately, I 

provided students with geometric files relevant to the 

investigation. I had my laptop computer connected to 

an LCD projector.  

Starting the Investigation: Discovering the Power of 

a Point 

We began our investigation with the problem 

shown in Figure 1.  

 

Find the value of PD in the configuration below 

where 60.1=PA cm, 50.1=PC cm, 30.3=PB cm. 

Justify your method. 

C

A

P

B

D

 

Figure 1. The initial problem. 

Some students used the proportion 
50.160.1

30.3 PD
=  or one 

of its equivalent forms, others said that they did not 

remember how to do this type of problem, while a third 

group claimed that they had never seen a problem like 

that before. I then asked students to open the “power of 

a point” file to investigate this problem using GSP. I 

had hoped for students to attempt to discover the 

general relationship. A few students quickly used the 

measurement capabilities of GSP to find or verify their 

solution. When they realized that their solution was 

incorrect, they concluded that their proposed 

relationship 
50.160.1

30.3 PD
=  did not hold. Another student 

reached this conclusion by noticing that dragging point 

B changed PA, PB, and 
PA

PB
, but did not influence PC 

and PD. Therefore, the proportion 
PD

PC

PA

PB
=  did not 

hold. The measurement and dragging capabilities of 

GSP allowed students to disconfirm their initial 

conjectures.  

After confirming that dragging point B changed PA 

and PB, I told them that a hidden quantity involving 

only PA and PB remained constant and challenged 

them  to  find  it.  Some   students   tried   PA+PB   and  

PB–PA. One of the first students who discovered that 

PA·PB remains constant said, “I can’t believe it. PA·PB 

remains the same no matter where points A and B are.” 

Other students verified this hypothesis by dragging 

point B and calculating PA·PB (see Figure 2). One 

student was puzzled because she noticed that PB 

increases in some instances but the product remained 

the same. Another student said, “Yes, but PA 

decreases. When one number increases the other 

decreases. So they balance each other.” At this time I 

mentioned that the constant PA·PB is called the power 

of point P, P(P), with respect to the circle. In this case, 

the computational and dynamic capacities of GSP 

allowed some students to discover that PA·PB remains 

invariant regardless of where points A and B are 

located in the circle.  

Continuing the Investigation: An Unanticipated 

Discovery 

As we did with other investigations involving GSP, 

we systematically tested our conjecture for different 

circles and points. To test our power-of-a point 

conjecture for a given circle, we dragged point P and 

then point B to verify that PA·PB is constant. Students 

also noticed that for a given circle, the farther point P 

was from it, the greater its power. A couple of students 

also dragged the point controlling the radius of the 

circle and noticed that the radius influenced the power 

of a point as well. I had originally planned to just test 

our conjecture for different points and different circles, 

but our systematic testing led us to investigate an 

unexpected conjecture related to how both the length 

of the radius (r) of the circle, and the distance from P 

to the center (O) of the circle impacted its power.  
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60.1=PA cm      30.3=PB cm      50.1=PC cm 

30.5=⋅PBCPA cm2 

C

A

P

B

D

 

44.1=PA cm      68.3=PB cm      50.1=PC cm 

30.5=⋅PBCPA cm2 

C

A

P

B

D

 

Figure 2. PA·PB seems to be constant for a given point P and circle. 

 

I hid the product PA·PB on my GSP sketch and 

asked students to predict the behavior of the power of 

point P as I increased the radius of the circle from 0 

with both its center O and point P fixed. A student 

claimed that the power of the point would remain 

constant because PB increases and PA decreases. 

Another student refuted this explanation saying that the 

power would decrease because PB increases but PA 

approaches zero and becomes zero when the circle 

goes through P. The second student added that the 

power would increase as the radius of the circle 

increased “beyond P”. Students confirmed this 

conjecture on their GSP sketches. At this time, it 

occurred to me to ask students for the maximum value 

of the power of the point when the point is still in the 

exterior of the circle (i.e., the radius of the circle is less 

than PO). Some students provided a numerical value 

while others argued that the maximum value did not 

exist because PA, PB, and PB·PA disappear when the 

circle becomes a point. One student said that we could 

still consider a point as a circle of radius zero, and 

another student mentioned that a point could be 

considered as the limiting case of a circle when the 

radius approaches zero. However, most students in the 

class agreed that a point is not a circle because the 

radius has to be greater than zero. I then asked students 

to consider what conception would be more helpful or 

convenient to describe the behavior of PA·PB. We then 

formulated the following conjecture:    

Let P be a fixed point and C a circle with fixed 

center O but variable radius r. As the radius of the 

circle increases from zero, the power of the point 

with respect to C 

a) decreases from a maximum, the square of the 

distance from the point to the center of the 

circle (when the radius of the circle is zero), to 

zero (when the circle contains P) as the radius 

increases from 0 to OP.  

b) increases from zero without limit as the radius 

increases without limit from OP (P is an 

interior point).   

At this point, I wanted to investigate the 

relationship between the power of a point and the 

radius of a circle. Since I knew my students were not 

familiar with the graphing capabilities of GSP, I asked 

them to use pencil and paper to sketch a graph of the 

power of a point as a function of the radius. While they 

did this, I constructed the graph in GSP using the trace 

feature. I asked students how we could conveniently 

position a circle in the coordinate plane to simplify the 

computations. One student suggested putting the center 

of the circle at the origin and points P, A, and B on the 

x-axis. This student provided the table shown (see 

Figure 3) for the point P whose coordinates were (2, 

0). Other students constructed similar tables using the 

same or different coordinates for point P.  

 
 

 P(P) 

0 2(2) = 4 

1 3(1) = 3 

2 4(0) = 0 

3 5(1) = 5 

4 6(2) = 12 

5 7(3) = 21 
 

Figure 3. Student-constructed table examining the 

relationship between radius of a circle and power of 
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point.  

All students agreed with the GSP graph (see Figure 

4) since it looked like their sketches, and that the first 

piece of the graph seemed to be a parabolic arc. To 

better visualize the nature of the second piece of the 

graph, I changed the scale of the y-axis. Notice that the 

circle is not shown on the second graph. We 

conjectured that the graph appeared to be two pieces of 

parabolic arcs. 

As we tried to make sense of the table in Figure 3 

and the graphs in Figure 4, we generalized the pattern 

depending on whether P is an exterior or an interior 

point as:  

P(P) = (2 + r)(2 – r) = 4 – 2r  

or 

(r + 2)(r – 2) = 
2r – 4. 

I then asked students for the geometric interpretation of 

the number 2 in this formula. After some reflection and 

discussion, students realized that 2 was the distance 

from the point P to the origin, which is the center of the 

circle O. Therefore we could rewrite our equations as: 

P(P) = PA·PB = (OP – r)(OP + r) = OP
2
 – r

2
 

and 

P(P) = r
2
 – OP

2
 . 

when P is exterior to the circle and when P is interior 

to the circle, respectively. Since my objective for this 

activity was to unify theorems related to the power of a 

point, I asked the students, “How can these two graphs 

be unified? How we can have one parabolic arc instead 

of two pieces?” In a previous activity we had unified 

the theorems related to the measures of angles formed 

by secant lines when the vertex of an angle is an is an 

exterior point and when the vertex is an interior point 

by considering directed arcs, so it was natural for a 

student to suggest using directed distances. Another 

student said that using directed distances could “flip” 

the second piece across the x-axis. The first student 

inferred from the graph that we could unify the two 

formulas by considering the power of an exterior point  

to be positive and the power of an interior point to be 

negative. In order to do this, we needed to consider PA. 

and PB as directed distances, similar  to  directed  arcs. 

As a result, we obtained the graph displayed in Figure 

5. The equation of this graph is P(P) = 
22 rOP − . 

I was particularly delighted that we had also 

discovered a formula for the power of a point in terms 

of its distance to the center of the circle and the radius. 

The interactive, graphing, and dynamic capabilities of 

GSP motivated us to follow our intuitions and test the 

resulting conjectures. It minimized the managerial and 

logistic difficulties of performing this part of the 

investigation with paper and pencil. 

I was particularly delighted that we had also 

discovered a formula for the power of a point in terms 

of its distance to the center of the circle and the radius. 

The interactive, graphing, and dynamic capabilities of 

GSP motivated us to follow our intuitions and test the 

resulting conjectures. It minimized the managerial and 

logistic difficulties of performing this part of the 

investigation with paper and pencil.  
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Figure 4. The power of a point as a function of the radius of the circle. 

 66.0=PA cm 

32.3=PB cm 

18.2=⋅PBPA cm2 

33.1=OA cm 
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4

2

-2

OP2-OA2 = 3.04 cm2

OP = 2.01 cm

OA = 1.00 cm

B

O

P

A

 
Figure 5. The unified graph of the power of a point 

as a function of the radius of the circle. 

 

Continuing the Investigation: Establishing the 

Secant-Secant Theorem 

After these unexpected but productive digressions, 

we came back to our original problem. Two students 

admitted that they did not know how to use PA·PB to 

find PD. After I dragged point B around the circle 

hoping that these students could see the connection that 

PA·PB = PC·PD because PA·PB is a constant, only one 

student still failed to see the connection. A classmate 

provided the following explanation: “PA times PB is a 

constant no matter where points A and B are. So if A = 

C and B = D we have that PA·PB = PC·PD.” The 

student computed the product PC·PD to see the 

pattern. After we established the relationship PA·PB = 

PC·PD, I asked the class how we could prove it. Since 

nobody provided any hint or suggestion about how to 

prove the relationship, I suggested rewriting PA·PB = 

PC·PD in another way. Some students suggested 

rewriting PA·PB = PC·PD as
PB

PD

PC

PA
= . This 

prompted one student to suggest using similar 

triangles. Several students immediately proved the 

equality by using the AA similarity theorem to prove 

∆APD ~ ∆CPB (see Figure 6), and one student shared 

his proof with the rest of the class.  

By proving that PA·PB = PC·PD for arbitrary B 

and D on the circle, we established that PA·PB is a 

constant for a particular exterior point of a given circle. 

We then formulated the corresponding theorems in the 

following terms:  

 

C

A

P

B

D

 

Figure 6. ∆APD ~ ∆CPB. 

 

(i) The secant-secant theorem: Let P be an 

exterior point of a circle. If two secants PA   

and PC intersect the circle at points A, B, C, 

and D, respectively (see Figure 6), then 

PA·PB = PC·PD.  

(ii) P is an exterior point and PA is a secant of a 

circle. If the secant PA to the circle intersects 

the circle at points A and B, then PA·PB is a 

constant. This constant is called the power of 

P with respect to the circle.   

GSP allowed students to dynamically manipulate 

and interact with the power of a point, an abstract 

object, in a “hands-on” manner. By moving points 

along the circle, they gained experience with one of the 

representations of the power of a point.  

Modifying the Secant-Secant Theorem: The 

Tangent-Secant Theorem 

Since my goal was to formulate theorems related to 

the secant-secant theorem, I asked students what other 

theorems could be generated from this theorem. The 

class listed the following possible cases to consider:  

1. P is on the exterior  

2. One secant and one tangent 

3. Two tangents  

4. P is on the circle 

5. P is in the interior of the circle  

We then proceeded to investigate the case when P 

is an exterior point of a circle, one line is a secant, and 

the other is a tangent. With my computer, I illustrated 

the situation as D approaches C (see Figure 7a) and 

01.2=OP cm 

00.31=OA cm 

04.322 =⋅OAOP cm2 
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asked students to predict the relationship PA·PB = 

PC·PD when line PC  (or PD ) is a tangent line to the 

circle. Most students predicted that PA·PB = 
2PC  (or 

2
PD ). To further test their conjecture, I had my 

students open a file containing a pre-constructed 

configuration to illustrate the “secant-tangent” situation 

(see Figure 7b). After testing our conjecture for several 

cases by dragging point P and varying the size of the 

circle (see Figure 7c), students were confident that the 

conjecture was true and, therefore, that we could prove 

it.  

Since ∆APD approaches ∆APC (see Figures 7a and 

7b), I was expecting students would use the similarity 

of ∆APC and ∆CPB to prove the tangent-secant 

conjecture. However, only two students thought of 

using the fact that ∆APC ~ ∆CPB (see Figure 8a) to 

prove our conjecture. Since I wanted to unify the two 

theorems (the secant-secant theorem and the tangent-

secant theorem), I illustrated on my computer how, as 

line PC  approaches a tangent line, ∆APD approaches 

∆APC (see Figure 8b). All students were able to justify 

that ∆APC ~ ∆CPB by the AA similarity theorem and 

derived the tangent-secant relationship. Initially two 

students measured angles ACP∠  and CBP∠  to 

convince themselves that those angles are congruent. 

Eventually both of them “saw” why they are 

congruent: By the inscribed angle theorem 

( )
⌢

ACCBPm
2
1=∠  and, by the semi-inscribed angle 

theorem, ( )
⌢

ACACPm
2
1=∠ . We formulated our 

theorems as follows:    

(iii) The tangent-secant theorem: Let P be an 

exterior point of a circle. If a secant PA  and 

a tangent PC  intersect the circle at points A, 

B, and C, respectively, then PA·PB = 2PC . 

(iv) If P is an exterior point and PA  is a tangent 

line of a circle with point of tangency A, then 

the power of the point is = 2PA . 

 

C

A

P

B

D

 

A

C

P

B

 

 

A

C

P

B

 

 

(a) (b) (c) 

Figure. 7: Discovering the tangent-secant theorem. 

 

A

C

P

B

 
C

A

P

B

D
 

(a) (b) 

Figure 8. ∆APD approaches to ∆APC as C and D get closer. 

96.0=PA cm 

47.2=PB cm 

36.2=⋅PBPA cm2 

09.1=PA cm        42.2=⋅PBPA cm2 

22.2=PB cm       42.22 =PC  cm2 

56.1=PC cm 
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The dynamic geometry environment facilitated our 

examination of what varied and what remained 

invariant as one secant line approached and eventually 

became a tangent line. Students gained experience with 

a second representation of the power of a point. They 

were also able to see similarities and differences 

between the new proof and the proof for the secant-

secant theorem. 

Modifying the Secant-Secant Theorem: The 

Tangent-Tangent Theorem 

Our next task was to investigate the case when 

both lines are tangent (see Figure 9a). I asked students 

to conjecture a new relationship by applying our 

knowledge of the power of a point to Figure 9a. One 

student said that PA = PC but he was unable to explain 

the connection between this relationship and the 

tangent-secant theorem. He could only say that the 

figure suggests such a relationship. As a hint, I used 

the tangent-secant configuration, dragging point B until  

it got close to point A (see Figure 9b), and asked 

students what would happen when PA  becomes a 

tangent. After some reflection, two students were able 

to deduce  that PA = PC.  One  of the arguments was as  

follows: By the secant-tangent theorem, P(P) = 2PA  

and P(P) = 2PA , so 2PA  =  2PC . After taking the 

square root of both expressions, we got PA = PC. We 

formulated our theorem as follows: 

(v) Let P be an exterior point of a circle. If PA  

and PC  are tangent lines to the circle, with 

tangency points A and C, then PA = PC (see 

Figure 9a).  

To illustrate the interconnectedness of these 

mathematical theorems, I challenged my students to 

find as many additional proofs as they could that 

PCPA = . As a group, students provided two more 

proofs, which refer to the diagram in Figure 10. 
  

C

A

P

 

A

C

P

B

 

(a) (b) 

Figure. 9: Discovering the tangent-tangent theorem. 

 

C

A

O
P

 
 

Figure 10. Diagram students used to prove PCPA =   

 

Sketch of proof 1. Since lines PA  and PBC  are 

tangent lines, they are perpendicular to the radii that go 

through their points of tangency. Therefore, triangles 

∆AOP and ∆COP are right triangles. Since AO = CO 

(by definition of a circle), ∆AOP ≅ ∆COP by the 

Hypotenuse-Leg congruence criterion. As a 

consequence, AP = CP.   

Sketch of proof 2: As in proof 1, ∠OAP and 

∠OCP are right angles. In addition AO = CO. Since O 

is equidistant from the sides of ∠APC, it belongs to its 

angle bisector. Therefore, PCO  is the angle bisector of 

∠APC, which means that CPOAPO ∠≅∠ . We 

conclude that ∆AOP ≅ ∆COP by the AAS congruence 

criterion. By definition of congruent triangles, 

CPAP = . 

O 

A 

P 

A 

P 

C 

C 
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Since one of my objectives was to unify the 

theorems related to the power of a point, I asked 

students to prove that PA = PC by modifying the proof 

for the tangent-secant theorem. Since ∆APC ~ ∆CPB 

and points A and B collapse into one point, all of the 

students were able to see that ∆APC ~ ∆CPA. Some 

students established that 22 PCPA =  using the 

proportion
PA

PC

CP

AP
= , another established directly that  

PCPA =  using the proportion 1==
CA

AC

CP

AP
, and 

others used the fact that ∆APC ≅ ∆CPA by the ASA 

congruence criterion. Finally, following my 

suggestion, the class proved that PCPA =  using the 

converse of the isosceles triangle theorem since 

∠PAC ≅∠PCA.  

 

C

A

P

 
Figure 11. The tangent diagram. 

 

 

GSP was a powerful pedagogical tool because it 

allowed students to adapt the proof of the tangent-

secant theorem to develop another proof of the tangent-

tangent theorem. They were able to dynamically see 

how the two original triangles were continuously 

transformed into a single triangle. 

GSP was a powerful pedagogical tool because it 

allowed students to adapt the proof of the tangent-

secant theorem to develop another proof of the tangent-

tangent theorem. They were able to dynamically see 

how the two original triangles were continuously 

transformed into a single triangle.   

The Secant-Secant Theorem Again: The Chord 

Theorem 

As we continued working towards the unification 

of all the theorems related to the power of a point, I 

had my students consider the case when P is an interior 

point of the circle and both lines are secant to the given 

circle (see Figure 12a). The theorem states: 

(vi) If AB  and CD  are two chords of the same 

circle that intersect at P, then PA·PB = 

PC·PD. 

By now, all of my students were able to predict 

that PA·PB = PC·PD. As I expected, all but two 

students proved this relationship by using the fact that 

∆APD ~ ∆CPB (see Figure 12b). 

 

 

 

 

 

  

C

AP

B

D
 

C

AP

B

D
 

(a) (b) 

Figure 12. Proving that PA·PB = PC·PD using ∆APD ~ ∆CPB. 

 

 

A 

P 

C 
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The Investigation Concludes: The Unification and 

Another Discovery 

At this point, the investigation took another 

unexpected turn: Two students proved the power-of-a-

point relationship using triangles ∆ACP and ∆DBP 

(see Figure 13a). At that time, it occurred to me that 

this proof could be extended to the other cases, so I 

challenged the class to adapt the proof to the other 

situations. While there were no changes for the 

tangent-secant theorem and the tangent-tangent 

theorem, all of my students were challenged by the 

secant-secant theorem (see Figure 13b).  

Some students argued that the proof could not be 

adapted to the secant-secant theorem because triangles 

∆ACP and ∆DBP did not look similar. I myself was 

not sure whether triangles ∆ACP and ∆DBP were 

similar. Based on visual clues, one student thought that 

BDPACP ∆∆ ~ , but another student refuted her 

proposition because lines AC  and BD  are not 

necessarily parallel. To investigate whether triangles 

∆ACP and ∆DBP were similar, we measured their 

angles and, to our surprise, we found that 

DBPACP ∠≅∠  and ∠CAP ≅ ∠BDP.  Our next task 

was to explain these congruencies. After some 

reflection and discussion, and without my guidance, a 

student concluded that ∠CAP ≅ ∠BDP if and only if 

°=∠+∠ 180)()( CABmBDPm . Since we had not 

proved that angles ∠BDP and ∠CAB are 

supplementary, I challenged the class to prove their 

claim. Some students were able to prove the claim 

using the inscribed angle theorem as follows: 

°==

+=∠+∠

° 180

)()()()(

2
360

2
1

2
1

⌢⌢

BDCmCABmCABmBDPm   

We stated our theorem as follows:  

(vii) The opposite angles of a cyclic quadrilateral 

are supplementary.  

 

  

C

A

P

B

D
 

C

A

P

B

D

 

(a) (b) 

Figure 13. Triangles ∆ACP and ∆DBP support our theorems. 

 

We concluded our investigation of the power of the 

point by combining our theorems into one theorem that 

we called the power-of-the-point theorem:   

(viii) Let C be a circle and P be any point not on 

the circle. If two different lines PA  and PC  

intersect the circle at points A and B, and C 

and D, respectively, then PA·PB = PC·PD.  

In addition, we came back to our formula for the 

power of a point in terms of its distance to the center of 

the circle and the radius of the circle:  

(ix) The power of a point with respect to a circle 

with center O and radius r is 
22 rOP −  .  

GSP was instrumental in investigating the 

possibility of developing a second proof for the secant-

secant theorem based on two triangles that did not look 

similar to us at first sight. GSP motivated us to 

question our initial impression that the triangles are 

non-similar and to go beyond empirical evidence to 

justify mathematically why those two triangles are 

similar.  

We then discussed why textbooks presented the 

four theorems (secant-secant, secant-tangent, tangent-

tangent, and chord-chord) separately if they could be 

stated as a single theorem. My goal was to help my 

students recognize that our knowledge of a 

mathematical theorem deepens as we discover or come 

to know the new relationships or patterns that emerge 
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in special cases of a theorem. If we do not make 

explicit that the four theorems can be unified, we tend 

to learn each one as a separate, compartmentalized 

theorem. As a consequence, we may fail to remember 

one case (e.g., the tangent-secant case) even when we 

know another case (e.g., the secant-secant case).   

Discussion and Conclusion 

In the power of the point investigation, we used the 

power of the dynamic, dragging, computational, 

graphing, and measurement features of GSP to 

discover and unify several theorems related to the 

power of a point. We all discovered some theorems. 

my students, under my guidance, discovered the main 

theorems related to the power of a point and the 

supplementary property of the opposite angles of a 

cyclic quadrilateral, and I discovered alongside my 

students the formula of the power of a point in terms of 

both the distance from the point to the center of the 

circle and the length of the radius of the circle. In 

addition, we unified the five main power-of-a point 

theorems. As I have shown, GSP was an essential 

pedagogical tool that was instrumental in our 

investigation.  

I used GSP as a pedagogical tool in three main 

ways: as a management tool, a motivational tool, and a 

cognitive tool (Peressini & Knuth, 2005). As a 

management tool, GSP allowed us to perform the 

investigation more efficiently and accurately avoiding 

computational errors and imprecise drawings and 

measurements associated with lengthy paper and pencil 

constructions needed to examine multiple examples. 

As a motivational tool, GSP enhanced our dispositions 

to perform the investigation.  The dynamic and 

interactive capabilities of GSP allowed us to follow our 

intuitions, question our predispositions, and test the 

resulting conjectures easily and accurately. As a 

cognitive tool, GSP provided an environment in which 

all of us were active in the process of learning the 

concepts and procedures at hand. We were able to 

actively represent and manipulate this abstract 

geometric object in a hands-on mode. As we 

experienced first hand the meaning of the power of a 

point, we reflected on the factors that influenced its 

behavior. As a result of our actions and reflections, we 

constructed a more powerful abstraction of this 

concept, and, thus, we developed a deeper 

understanding of it. 

Understanding the unification of the four theorems 

is important from both pedagogical and mathematical 

perspectives. From a pedagogical point of view, 

understanding the relationships among different 

representations of mathematical theorems and concepts 

helps us to generate the special cases, to remember the 

different forms that a theorem can take, to reduce the 

amount of information that must be remembered, to 

facilitate transfer to new problem situations, and to 

believe that mathematics is a cohesive body of 

knowledge (Hiebert & Carpenter, 1992). From a 

mathematical point of view, doing mathematics 

involves discovering special relationships as well as 

unifying known theorems. Even concepts that are 

apparently different can be unified when examined 

from another viewpoint. For example, from the 

perspective of inversion theory, lines and circles are 

the same type of geometric objects. Yet, from a 

Euclidean point of view, the circles and lines are 

absolutely different geometric entities. In our case, the 

power of a point P with respect to a circle with center 

O and radius r is the product of two directed distances 

from P to any two points A and B of the circle with 

which it is collinear. By allowing A = B, the theorem is 

transformed into useful instances from which we 

derive special and useful corollaries. By considering 

the case when points P, A, B and O are collinear, we 

obtain another useful instance of the theorem (i.e., 

P(P) = 
22 rOP − ).  

In this mathematical investigation, students 

experienced learning mathematical concepts with a 

specific piece of technology. They were engaged in the 

process of constructing mathematical knowledge by 

discovering and justifying their conjectures and 

making sense of classmates’ explanations. They 

justified their conjectures not only with the 

technological tool (i.e., testing a conjecture for several 

instances), but also with mathematical theory (i.e., 

justifying why a conjecture is plausible and proving 

that a theorem is true). By learning mathematical 

concepts within technology environments, these future 

teachers further developed not only specific content 

knowledge but also their conceptions about the nature 

of mathematical activity and their pedagogical ideas 

about learning mathematics with technology. They 

deepened their knowledge of the connections among 

the various special cases of the secant-secant theorem. 

They experienced that doing mathematics involves 

formulating and testing conjectures and 

generalizations, as well as discovering and proving 

theorems. From a pedagogical point of view, these 

future teachers experienced what it means to teach and 

learn mathematics within IGS environments. The 

students take a more active role in their own learning 

under the guidance of the teacher whose main 

responsibility becomes facilitating. Making 

connections among mathematical ideas is a powerful 
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tool for prospective teachers’ learning that they can 

transfer to their own teaching practice.  
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