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Moving Toward More Authentic Proof 

Practices in Geometry 

Michelle Cirillo and Patricio G. Herbst 

Various stakeholders in mathematics education have called for 

increasing the role of reasoning and proving in the school 

mathematics curriculum. There is some evidence that these 

recommendations have been taken seriously by mathematics 

educators and textbook developers. However, if we are truly to 

realize this goal, we must pose problems to students that allow them 

to play a greater role in proving. We offer nine such problems and 

discuss how using multiple proof representations moves us toward 

more authentic proof practices in geometry.  

Over the past few decades, proof has been given increased 

attention in many countries around the world (see, e.g., 

Knipping, 2004). This is primarily because proof is considered 

the basis of mathematical understanding and is essential for 

developing, establishing, and communicating mathematical 

knowledge (Hanna & Jahnke, 1996; Kitcher, 1984; Polya, 

1981; Stylianides, 2007). More specifically, in describing proof 

as the “guts of mathematics,” Wu (1996, p. 222) argued that 

anyone who wants to know what mathematics is about must 

learn how to write, or at least understand, a proof. This 

comment complements the call to bring students’ experiences 

in school mathematics closer to the discipline of mathematics, 

that is, the practices of mathematicians (Ball, 1993; Lampert, 

1992; National  Council of Teachers of  Mathematics  [NCTM] 
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2000). This idea is not new: A number of curriculum theorists 

from Dewey (1902) to Schwab (1978) have argued that the 

disciplines should play a critical role in the school curricula. 

Thus, by engaging students in authentic mathematics, where 

they are given opportunities to refute and prove conjectures 

(Lakatos, 1976; Lampert, 1992; NCTM, 2000), teachers can 

create small, genuine mathematical communities in their 

classrooms (Brousseau, 1997).  

Through the introduction of the Standards documents 

(1989, 2000), NCTM put forth some significant 

recommendations related to the Reasoning & Proof and 

Geometry standards that have had the potential to impact the 

high school geometry curriculum. First, it has been 

recommended that reasoning and proof should not be taught 

solely in the geometry course, as it typically has been done in 

the United States. Rather, instructional programs in all grade 

bands  

• should enable students to recognize reasoning and proof 

as fundamental aspects of mathematics;  

• make and investigate mathematical conjectures; 

• develop and evaluate mathematical arguments and 

proofs; and 

• select and use various types of reasoning and methods of 

proof. (NCTM, 2000, p. 56) 

Other calls to increase attention to reasoning and proof 

come from descriptions of mathematical proficiency. For 

example, the National Research Council (2001) recommended 

that students develop the capacity to think logically, to justify, 

and, ultimately, to prove the correctness of mathematical 

procedures or assertions (i.e., adaptive reasoning). More 

recently, the U.S. Common Core State Standards document 

(National Governors Association Center for Best Practices & 

Council of Chief State School Officers, 2010) included, as one 

of their Standards for Mathematical Practice, the ability to 

construct viable arguments and critique the reasoning of others.  

Despite these recommendations, in the United States 

the high school geometry course continues to be the dominant 

place where formal reasoning and the deductive method are 
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learned (Brumfiel, 1973; Driscoll, 2011; Yackel & Hanna, 

2003). One reason for this is practical: After students 

conjecture about the characteristics and relationships of 

geometric shapes and structures found in the real world, 

geometry offers a natural space for the development of 

reasoning and justification skills (NCTM, 2000). However, 

even in the high school geometry course, students are typically 

not provided the kinds of experiences recommended in the 

standards documents. For example, in her study on teachers’ 

thinking about students’ thinking in geometry, Lampert (1993) 

outlined what doing a proof in high school geometry typically 

entails. According to Lampert, students are first asked to 

memorize definitions and learn the labeling conventions before 

they can progress to the reasoning process. They are also taught 

how to generate a geometrical argument in the two-column 

form where the theorem to be proved is written as an if-then 

statement. After students write down the “givens” and 

determine what it is that they are to prove, they write the lists 

of statements and reasons to make up the body of the proof. In 

this context, there is never any doubt that what needs to be 

proved can be proved, and because teachers rarely ask students 

to write a proof on a test that they have not seen before, 

students are not expected to do much in the way of independent 

reasoning. Similarly, through their analyses, Herbst and Brach 

(2006) argued that the norms of the situation of doing proofs do 

not necessarily support students through the creative reasoning 

process needed to come up with arguments on their own.  

Another recommendation that has had the potential to 

impact the high school geometry curriculum is related to the 

modes of representation that are used to communicate 

mathematical proof. In the 1989 NCTM Geometry Standard, 

two-column proofs (which have typically been the proof form 

presented in U.S. textbooks) were put on the list of geometry 

topics that should receive “decreased attention” (p. 127). In the 

2000 Standards, NCTM clarified its position, stating, “The 

focus should be on producing logical arguments and presenting 

them effectively with careful explanation of the reasoning 

rather than on the form of proof used (e.g., paragraph proof or 

two-column proof)” (p. 310). In other words, it is the argument, 

not the form of the argument, that is important.  
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Since these recommendations have been published, we 

have begun to see some changes to the written curriculum (i.e., 

textbooks). For example, many authors have addressed the 

proof form recommendation by promoting paragraph and flow 

proofs in their textbooks (see, e.g., Larson, Boswell, & Stiff, 

2001). Discovering Geometry (Serra, 2008) is another example 

of a curricular shift in which the author expanded the role of 

the students by asking them to discover and conjecture through 

investigations but delays the introduction of formal proofs until 

the final chapter of the textbook. Most recently, the CME 

(Center for Mathematics Education) Project’s Geometry 

(Education Development Center [EDC], 2009) asks students to 

conjecture and analyze arguments, proposes a variety of ways 

to write and present proofs, and asks students to identify the 

hypotheses and conclusions of given statements.   

While we do not necessarily endorse all of these 

changes, we see these curricular adjustments as evidence that 

mathematics educators and textbook developers are, in fact, 

rethinking the geometry course. Through our research, 

however, we have noticed that even when teachers share this 

goal, many find it difficult to move away from the two-column 

proof form where students are provided with “givens” and a 

statement to prove (Cirillo, 2008; Herbst, 2002). In fact, the 

two-column form is so prominent that some research has 

shown that when proofs are written in other forms (e.g., 

paragraphs), high school students are unsure of their validity 

(McCrone & Martin, 2009).   

 One reason that the two-column form continues to 

dominate geometry proof is likely related to the 

“apprenticeship of observation” (Lortie, 1975) where teachers 

tend to teach in ways that are similar to how they were taught 

as students. We argue that this version of “doing proofs” does 

not do enough to involve students in the manifold aspects of 

proving that are found in the discipline of mathematics. This is 

important because, unless we expand our vision of proving in 

school mathematics, we cannot fully realize the 

aforementioned goals for mathematical proficiency and of 

NCTM’s Reasoning & Proof and Geometry Standards. The 

focus of this article is on NCTM’s recommendations for 

students to make and investigate conjectures, develop and 
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evaluate mathematical proofs, and select and use various types 

of reasoning and methods of proof. Through our examples, we 

focus on the recommendation to expand the role of the student 

in the work of developing proofs and support this work through 

the selection of various proof representations.  

In this paper, we first provide some historical context 

that sheds light on the prominent position that the two-column 

proof form holds in the geometry course. We do this in order to 

show how the student’s role in proving has been narrowed over 

time. We then present a set of problems that are intended to 

expand the role of students by providing them with 

opportunities to make and investigate conjectures and develop 

and evaluate mathematical proofs. Finally, we discuss various 

proof forms as representations used to communicate 

mathematics. We conclude with a brief discussion of how these 

activities allow students to participate in more authentic proof 

practices in geometry.  

Historical Context 

A second reason that the two-column proof holds such 

a prominent position in the geometry course is historical. A 

perusal of American geometry textbooks covering the last 150 

years reveals that problems where students are expected to 

produce a proof have changed considerably. As Herbst (2002) 

noted, the custom of using a two-column proof developed 

gradually. Before the 20th century, students were expected to 

prove statements in which geometric objects are referred to by 

their general names (e.g., triangle, angle) rather than by the 

labels for specific objects (e.g., �ABC, ∠ABC). Students also 

had the chance to use deductive reasoning to determine the 

claim of their proof. For example, in response to a question 

about a generally described figure, they might be expected to 

develop a conjecture and prove it. Although less common, 

some problems (those problems left for independent 

exploration) included finding the conditions or hypotheses (i.e., 

the “givens”) on which basis one could claim a certain 

conclusion.  

During the 20th century, the student’s role in proving 

substantially narrowed. It is interesting that this narrowing 

occurred simultaneously with the standardization of the two-
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column form for writing proofs. If a goal for our students is 

simply to use the “givens” to construct the statements and the 

reasons that prove a conclusion, then the two-column form 

offers a useful scaffold to assist students in this work. Were we 

to increase the share of labor that students do when proving, 

however, we might have to think of other types of problems 

and forms of representation to support and scaffold their work. 

In thinking about expanding the student’s role in the proof 

process, two questions are important to consider: What kinds of 

problems might be posed to increase students’ share of the 

labor? What kinds of support, other than the traditional two-

column scaffold, could be provided to students to do this work? 

We address these two questions in the sections that follow.  

Expanding the Role of the Student Through Alternative 

Problems 

One reason that the two-column form has come under 

so much scrutiny in recent times is related to the belief that it is 

not an authentic form of mathematics. For example, in A 

Mathematician’s Lament, after presenting a two-column proof 

(that demonstrates that an angle inscribed in a semicircle where 

the vertex is on the circle is a right angle), Lockhart (2009) 

stated, “No mathematician works this way. No mathematician 

has ever worked this way. This is a complete and utter 

misunderstanding of the mathematical enterprise” (pp. 76–77). 

A critical piece that has been lost in our modern version of 

what doing proofs is like in school mathematics today is related 

to conjecturing and setting up the proof. This is important if 

you believe, as Lampert (1992) argued, that “conjecturing 

about…relationships is at the heart of mathematical practice” 

(p. 308). Related to this is the importance of determining the 

premises (“givens”) and statements to be proved: 

Many people think of geometry in terms of proofs, without 

stopping to consider the source of the statements that are to 

be proved….Insight can be developed most effectively by 

making such conjectures very freely and then testing them 

in reference to the postulates and previously proved 

theorems. (Meserve & Sobel, 1962, p. 230) 
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Because we believe that students should play a larger 

role in the important work of setting up and carefully analyzing 

proofs, we present problems that are reminiscent of the 

historical problems described above in that they do not simply 

provide students with the given hypotheses and ask them to 

prove particular statements. Rather, we propose nine different 

problems (presented in no particular order) that illustrate how 

students may be provided with opportunities to expand their 

role in the process of proving. 

In the first three problems, students are asked to 

participate in setting up the proof by either providing the 

premises, the conclusion, and/or the diagram for the proof. In 

Problem 1, the student is provided with a conjecture (i.e., the 

diagonals of a rectangle are congruent) and a corresponding 

diagram and asked to write the “Given” and the “Prove” 

statements. In contrast, in Problem 2, the student is provided 

with the “Given” and the “Prove” statements but is asked to 

draw the diagram.  

PROBLEM 1: Writing the “Given” and “Prove” from a 

conjecture  

Suppose you conjectured that the diagonals of a rectangle 

are congruent and drew the diagram below.  

Write the “Given” and the 

“Prove” statements that you 

would need to use to prove your 

conjecture. 

PROBLEM 2: Drawing a diagram when provided with 

the “Given” and the “Prove” 

Draw a diagram that could be used to prove the following: 

Given: Parallelogram PQRS where T is the midpoint of PQ  

and V is the midpoint of SR . 

Prove: QVST ≅  
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Finally, in Problem 3, when provided with a particular 

theorem, the student is asked to do all three of these tasks (i.e., 

write the “Given,” the “Prove,” and draw the diagram).  

PROBLEM 3: Setting up the “Given,” the “Prove,” and 

the diagram when provided with the theorem 

Determine what you have been given and what you are 

being asked to prove in the theorem below. Mark a diagram 

that represents the theorem. 

Theorem: If the diagonals of a quadrilateral bisect each 

other, then the quadrilateral is a parallelogram.   

Problem 4 is similar to the first three in that students 

are invited to determine the “Given,” but this time they are also 

provided with the statement to be proved as well as the proof of 

that statement. Students are asked to determine what would 

have been “Given” in order to develop the proof that is 

provided. They are then asked to condense those two “Givens” 

into a single, more concise statement. This exercise asks 

students to reflect on two different ways that the line segment 

bisector premise might be handled. Problem 4 is similar to the 

“fill in” type proofs that we have seen in some textbooks (e.g., 

Larson et al., 2001; Serra, 2008), except that rather than having 

students fill in the statements or reasons, they are filling in the 

premises.  

PROBLEM 4: Determining the “Given” from a Flow 

Proof 

1. Provide the two missing “Given” statements for the 

proof shown on the next page. 

2. Write a single statement that could replace these two 

given statements.  
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Given:  ___________ 

___________ 

 

Prove: MBCL ≅  

 

 

 

 

 

 

? 

MBCL ≅  

(CPCTC) 

(Adapted from Serra, 2008, p. 239) 

(Given) (Given) 

MJCJ ≅  JBJL ≅  21 ∠≅∠  

(Definition of 

Midpoint) 

(Definition of 

Midpoint) 

(Intersecting lines 

form congruent 

vertical angles) 

MJBCJL ∆≅∆  

(SAS ≅  SAS) 

? 
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Next, in Problem 5, students are asked to draw a 

conclusion or determine what could be proved when provided 

with particular “Given” conditions and a corresponding 

diagram. This type of problem can be a useful scaffold in that it 

isolates particular geometric ideas such as definitions or 

postulates of equality, for example.  

PROBLEM 5: Drawing Conclusions from the “Given” 

 

What conclusions can be drawn from the given information? 

 

Given:  ABC , DEF  

DEAB ≅  

EFBC ≅  

 

 

 

 

 

 

Given:  Quad ABCD where FG  is bisected by diagonal AC  

       

 

 

 

 

 

 

(Adapted from Lewis, 1978, pp. 135 & 68) 

In Problem 6, students are asked to determine what 

auxiliary line might be drawn in order to construct the proof 

that two angles are congruent. This is not a common problem 

posed to students because, typically, teachers either construct 

the auxiliary lines for their students or a hint is provided in the 

textbook that helps students determine where this line should 
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be drawn (Herbst & Brach, 2006). We view these first six 

problems as scaffolds that could eventually allow students to 

conjecture and set up a proof on their own. 

PROBLEM 6: Drawing an auxiliary line.  

What auxiliary line might we draw in to construct this 

proof?  

Is it possible to construct the proof without considering an 

auxiliary line? 

Given:   Kite ABCD with  

ABAD ≅  and  

BCDC ≅  

Prove:   DB ∠≅∠  

Problem 7 is unique in the sense that the student is 

asked what could be proved, but the givens are ambiguous. 

Leaving the problem more open-ended affords students 

opportunities to write conjectures. It is expected that the 

student will consider two different cases corresponding to 

whether the quadrilateral is concave or convex. In both cases 

the student could argue that the remaining pair of sides are 

congruent to each other.  

PROBLEM 7: Solving a problem that involves writing a 

conjecture (i.e., deciding what to prove) 

Consider a quadrilateral that has two congruent consecutive 

segments and two opposite angles congruent. The angle 

determined by the two congruent sides is not one of the 

congruent angles. What else could be true about that 

quadrilateral? What could you prove in this scenario? What 
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are the “Given” statements? 

Finally, in Problems 8 and 9, students have the 

opportunity to take part in analyzing proofs. In Problem 8, a 

paragraph proof is provided, and students are asked to find the 

error. In this proof, the corresponding parts that are proved to 

be congruent are two pairs of angles and one pair of sides. The 

student author determined that the triangles were congruent by 

Angle-Side-Angle (ASA) based on the order that these 

corresponding parts were proved congruent, rather than 

attending to how these parts are oriented in the triangles. In 

Problem 9, students are provided with a proof and asked to 

determine what theorem was proved. 

PROBLEM 8: Finding the error in a proof. 

 

In the figure to the right,  

EDAB ||  and 

EDAB ≅ . 

 

 

Luis uses this information to prove that DEFABF ∆≅∆ . 

Explain why his paragraph proof is incorrect and give a 

reason why he may have made this error. 

 Proof: 

It is given that EDAB ||  so ABEDEB ∠≅∠  because parallel 

lines cut by a transversal form congruent alternate interior 

angles. It is also given that EDAB ≅ . And DFEAFB ≅∠ ∠ 

because they are vertical angles, and vertical angles are 

congruent. So DEFABF ∆≅∆ by ASA.  

(Adapted from EDC, 2009, p. 122) 
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PROBLEM 9: Determine the theorem that was proved by 

the given proof. 

 

Write the theorem that was  

proved by the proof below. 

 

 

Statements Reasons 

1. ACB∆ with CBCA ≅  

2. Let CD be the bisector of 

vertex ACB∠ , D being the 

point at which the bisector 

intersects AB . 

3. 21 ∠≅∠  

4. CDCD ≅  

5. BCDACD ∆≅∆  

6. BA ∠≅∠   
   

1. Given. 

2. Every angle has one and 

only one bisector.  

 

 

3. A bisector of an angle 

divides the angle into two 

congruent angles. 

4. Reflexive property of 

congruence. 

5. Side-Angle-Side ≅ Side-

Angle-Side 

6. Corresponding parts of 

congruent triangles are 

congruent. 

(Adapted from Keenan & Dressler, 1990, p. 172) 

In this section, we proposed nine problems that 

illustrate how teachers could increase their students’ 

involvement in proving by having them make reasoned 

mathematical conjectures, use conjectures to set up a proof, and 

evaluate mathematical proofs by looking for errors and 

determining what was proved. In the next section, we address 
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the issue of supporting students in proving by commenting on 

multiple proof representations.   

Proof Representations that Support Developing and 

Writing Proofs 

Representation is one of the five Process Standards which 

highlight the ways in which students acquire and make use of 

content knowledge (NCTM, 2000). In particular, various proof 

forms can be considered as representations of geometric 

knowledge. Providing students with access to various proof 

representations is useful because “different representations 

support different ways of thinking about and manipulating 

mathematical objects” (NCTM, 2000, p. 360). Although it is 

important to encourage students to represent their ideas in ways 

that make sense to them, it is also important that they learn 

conventional forms of representation to facilitate both their 

learning of mathematics and their communication of 

mathematical ideas (NCTM, 2000). The purpose of this section 

is to highlight four different ways that proofs can be 

represented in geometry and discuss how these various 

representations have the potential to facilitate proving. 

 As pointed out by Anderson (1983), successful 

attempts at proof generation can be divided into two major 

episodes—“an episode in which a student attempts to find a 

plan for the proof and an episode in which the student 

translates that plan into an actual proof” (p. 193). We refer to 

these two activities as developing and writing a proof, 

respectively. The proof forms that we highlight include proof 

tree, two-column proof, flow proof, and paragraph proof. 

Descriptions and examples of each representation can be found 

in the appendix. In this section we briefly discuss the ways in 

which these proof representations can support students in 

developing and writing a proof.     

Two-Column Proof  

A two-column proof lists the numbered statements in 

the left column and a reason for each statement in the right 

column (Larson et al., 2001). The two-column form requires 

that students record the claims that make up their argument (in 

the statements column) as well as their justifications for these 
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claims (in the reasons column). In this sense, the two-column 

form appears to be a rigid representation. This could be 

intimidating to students. However, students can be flexible 

when using this representation. For example, they might leave 

out a reason that they do not know but still move ahead with 

the rest of the proof; the incomplete form reminds them that 

they still have something to complete (Weiss, Herbst, & Chen, 

2009) However, the consecutively numbered steps of the proof 

may lead students to believe that the deductive process is more 

linear than it actually is. The deductive process, in general, 

hides the struggle and the adventure of doing proofs (Lakatos, 

1976).   

Paragraph Proof  

A paragraph proof describes the logical argument using 

sentences. This form is more conversational than the other 

proof forms (Larson et al., 2001).  Paragraph proofs are more 

like ordinary writing and can be less intimidating (EDC, 2009). 

For this reason, they look more like an explanation than a 

structured mathematical device (EDC, 2009). However the lack 

of structure could also be a detriment. In particular, some 

teachers have concluded that the paragraph form was not 

appropriate for high school students because students tended to 

leave out the reasons that justified their statements. As a result, 

students would often come to invalid conclusions (Cirillo, 

2008). Yet, if a goal is to help students develop mathematical 

literacy, this proof form most closely resembles the 

representation that a mathematician would use to write up a 

proof. Another advantage of this form is that when writing a 

proof by contradiction, the paragraph form seems a more 

sensible choice than some of the other options (Lewis, 1978).  

Proof Trees  

The proof tree is an outline for action, where the action 

is writing the proof. Anderson (1983) described the proof tree 

as follows: 

The student must either try to search forward from the 

givens trying to find some set of paths that converge 

satisfactorily on the statement to be proven, or [s/he] 

must try to search backward from the statement to be 
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proven, trying to find some set of dependencies that 

lead back to the givens. (p. 194) 

In other words, students might begin by asking 

themselves, “What would I need to do in order to prove this 

statement?” Using a proof tree to think through a proof could 

be a useful scaffold to support students in developing a proof. 

The proof tree could also be a useful tool to scaffold the work 

of determining what the given premises are or what conclusion 

can be proved.  

Flow Proof  

A flow proof uses the same statements and reasons as a 

two-column proof, but the logical flow connecting the 

statements is indicated by arrows (Larson et al., 2001) and 

separated into different “branches.” The flow proof helps 

students to brainstorm, working through the most difficult parts 

of solving a proof: (1) understanding the working 

information—analyzing the given and the diagram—and (2) 

knowing what additional information is needed to solve the 

proof—analyzing what is being proved (Brandell, 1994). The 

flow proof form also allows students to see how different 

subarguments can come together to make the overarching 

argument (i.e., the “prove” statement).  A disadvantage to this 

proof form might be that students are not required to supply 

reasons that justify their statements in the way that the 

“Reasons” column of the two-column proof forces them to do. 

For that reason, however, it allows students to focus on 

organizing the argument and thus could be particularly useful 

toward developing a proof. 

The Teacher’s Role in Managing Proof Activity  

Through his work, Stylianides (2007) concluded that 

teachers must play an active role in managing their students' 

proving activity by making judgments on whether certain 

arguments qualify as proofs and selecting from a repertoire of 

courses of action in designing instructional interventions to 

advance students' mathematical resources related to proof. One 

way that we can see teachers playing this active role is through 

their use and allowance of various representations of proof. 

More specifically, acceptance of these various representations 
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of proof allows teachers and their students to focus more on the 

argument rather than its form. This can be done through the 

side-by-side presentation of a flow proof and a two-column 

proof that presented the same argument, as we observed in one 

secondary classroom. In this case, the teacher emphasized to 

his students that he was not as concerned with the form of the 

proof as he was with the presentation of valid reasoning 

(Cirillo, 2008).  

Lampert (1992) noted: 

Classroom discourse in ‘authentic mathematics’ has to 

bounce back and forth between being authentic (that is, 

meaningful and important) to the immediate participants 

and being authentic in its reflection of a wider 

mathematical culture. The teacher needs to live in both 

worlds in a sense belonging to neither but being an 

ambassador from one to the other. (p. 310) 

If teachers can be flexible in their thinking about the 

form that proofs might take, while at the same time concerning 

themselves with the content of the argument, then students may 

have more success in learning to prove. Furthermore, the 

examples we provide suggest that teachers could also enrich 

students’ proving experiences by creating opportunities for 

students to do more than producing an argument that links the 

givens and the prove. The experiences of students can be more 

authentic if they have opportunities to hypothesize the premises 

needed to prove a conclusion, to make deductions from a set of 

premises so as to find an unanticipated conclusion, and so 

forth. This affords students opportunities to learn about proof 

as a mathematical process and participate in mathematics in 

ways that are truer to the discipline.  

Conclusion 

Various stakeholders in mathematics education have 

called for reasoning and proof to play a more significant role in 

the mathematics classroom. There is some evidence that these 

recommendations have been taken seriously by mathematics 

educators and textbook developers. In this paper, however, we 

argue that if we are truly to realize the goals of these standards, 

we must pose problems to our students that allow them a 
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greater role in proving. We presented problems that asked 

students to write the premises, write the statements to be 

proved, as well as construct the diagrams. We suggest that 

students should be provided with opportunities to make 

reasoned conjectures and evaluate mathematical arguments and 

proofs. Last, we suggest that teachers promote and allow 

various types of reasoning and methods of proof. We believe 

that this is important because adherence to a specific proof 

format may elevate focus on form over function. A focus on 

form potentially obstructs the creative mix of reasoning habits 

and ultimately hinders students' chances of successfully 

understanding the mathematical consequences of the 

arguments.  

As Lakatos (1976) described using the dialectic of 

proofs and refutations, mathematicians do not just prove 

statements given to them, they also use proof to come up with 

those statements. Teaching practices that involve students in 

solving problems, conjecturing, writing conditional statements 

to prove, and then explaining and verifying their conjectures 

can provide students with more authentic opportunities to 

engage in mathematics. 
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B

D C

A

APPENDIX 

Proof Representations 

THEOREM: If a parallelogram is a rectangle, then 

the diagonals are congruent.  

 
Given: Rectangle ABCD  

with diagonals  

AC and BD . 

Prove: AC BD≅  

A two-column proof lists the numbered statements in the left column 

and a reason for each statement in the right column. 

Statements Reasons 

1. Rectangle ABCD with 

diagonals AC and BD  

2. BCAD ≅  

 

3. DCDC ≅  

4. ADC∠  and BCD∠  are right 

angles. 

5. BCDADC ∠≅∠  

6. BCDADC ∆≅∆  

7. BDAC ≅  

1. Given 

 

2. Opposite sides of a rectangle 

are congruent. 

3. Reflexive Postulate 

4. All angles of a rectangle are 

right angles.  

5. All right angles are congruent.  

6. Side-Angle-Side ≅ Side-Angle-Side

7. Corresponding Parts of Congruent 

Triangles are Congruent (CPCTC) 

A paragraph proof describes the logical argument with sentences. It 

is more conversational than a two-column proof. 

Since ABCD is a rectangle with diagonals AC and, BD  then 

BCAD ≅ because opposite sides of a rectangle are congruent. By the 

reflexive postulate DCDC ≅ . Since all angles in a rectangle are right 

angles, then ADC∠ and BCD∠  are right angles. Thus, 

BCDADC ∠≅∠ . By Side-Angle-Side, BCDADC ∆≅∆ . Thus, 

BDAC ≅
.
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A proof tree is an outline or plan of action that specifies a set of 

geometric rules that allows students to get from the givens of the 

problem, through intermediate levels of statements, to the to-be-proven 

statement.  

(Adapted from Anderson, 1983) 

 

A flow proof uses the same statements and reasons as a two-column 

proof, but the logical flow connecting the statements is indicated by 

arrows. Depending on whether it is the plan or the proof itself, students 

may or may not choose to write the reasons beneath the statements.  

 


