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Does 0.999… Really Equal 1?  

Anderson Norton and Michael Baldwin 

This article confronts the issue of why secondary and post-

secondary students resist accepting the equality of 0.999… and 1, 

even after they have seen and understood logical arguments for the 

equality. In some sense, we might say that the equality holds by 

definition of 0.999…, but this definition depends upon accepting 

properties of the real number system, especially the Archimedean 

property and formal definitions of limits. Students may be justified in 

rejecting the equality if they decide to work in another system—

namely the non-standard analysis of hyperreal numbers—but then 

they need to understand the consequences of that decision. This 

review of arguments and consequences holds implications for how we 

introduce real numbers in secondary school mathematics.  

Whenever the equality of 0.999…  and 1 arises, teachers 

can expect a high degree of disbelief from students, and proofs 

may do little to abate their skepticism (Sierpinska, 1994). This 

equality challenges students’ conceptions of the real line, 

limits, and decimal representation, but students have a strong 

historical and intuitive basis for their resistance. The purpose of 

this paper is to investigate the reasons students reject the 

equality and to consider the consequences of this rejection. 

With this purpose in mind, we have organized the paper in the 

following way: We begin by outlining various arguments 

supporting the equality and then review some of the 

pedagogical struggles noted in research that explain students’ 

resistance. Next, we justify students’ intuitive resistance by 

presenting a system of hyperreal numbers in which the equality 
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does not necessarily hold. Finally, we consider the implications 

of adopting such a system, which forces students to choose 

between conflicting properties; we offer as an example the 

conflict between the Archimedean property for real numbers 

and the existence of infinitesimals. 

Arguments for the Equality 

There are many arguments that support the equality of 

0.999… and 1. Here we present four of these arguments. 

Relying on the Decimal Expansion for 1/3 

A common argument for the equality goes as follows: If 

0.333…= 1/3 then digit-wise multiplication by 3 would imply 

that 0.999…= 1. Of course, this argument relies on students’ 

acceptance of the equality of 0.333… and 1/3. Research has 

shown that students generally accept this equality, even while 

rejecting the equality of 0.999… and 1 (Fischbein, 2001). 

Students might resolve this tension by asserting, “Well, then, 

maybe 0.333… doesn’t equal 1/3.” 

Subtracting Off the Infinite Sequence 

Figure 1 outlines a more formal argument that does not 

depend on similar equalities. Yet students might still object.  

If 999.0=x  then 
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Therefore 1=x  

Figure 1. A proof of the equality. 

The issue with this argument is whether x can be canceled. 

Richman (1999) asserted that skeptics might reject the equality 

by claiming that not all numbers can be subtracted from one 

another! Moreover, if we consider 0.999… as the limit of the 
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sequence 0.9, 0.99, 0.999, … then we see that the 

corresponding products, using the standard algorithm for 

multiplication of 9 by 0.999… produces a limit of 8.999…, 

which leads back to the same central issue that x might not be 1 

after all. 

Generating a Contradiction 

A third argument for the equality works by contradiction: 

If 1 and 0.9  are not equal, then we should be able to find a 

distinct number in between them (their average), but what 

could that number be other than 0.9  itself? Still, students 

might argue that some pairs of distinct numbers simply do not 

have averages; some students have even argued that there are 

numbers between 1 and0.9 —namely, ones represented by a 

decimal expansion that begins with an infinite string of 9’s and 

then ends in some other number (Ely, 2010). Even when 

students cannot find fault with the argument, they still might 

not believe the result. After reproducing the proof illustrated in 

Figure 1, one frustrated student sought help from Ask Doctor 

Math (www.mathforum.com): “The problem I have is that I 

can't logically believe this is true, and I don't see an error with 

the math, so what am I missing or forgetting to resolve this?” 

Defining the Decimal Expansion with Limits 

Since Balzano formalized the definition of limits in the 

early 19th century, Calculus has been grounded in the formal 

definitions of limits that we teach in Precalculus and many 

college-level mathematics courses. Figure 2 lays out Balzano’s 

formal ε − N  definition for limits of sequences. 

Formally, a sequence
n

S converges to a the limit S 

SS n
n

=
→∞

lim  

if for any 0>ε  there exists an N such that  

ε<− SS n  for Nn >  

Figure 2. Definition of the limit of a sequence (Weisstein, 

2011) 
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This definition amounts to a kind of choosing game: Assuming 

S is the limit of a sequence, {Sn}, for any positive distance, ε, 

you choose, I can find a natural number, N, so that whenever 

the sequence goes beyond the Nth term, the distance between 

any of those terms and S is less than ε. The definition says that 

if the tail of a sequence gets arbitrarily close to a number, then 

that number is the limit of the sequence. 

We can think about the decimal representation, 0.999…, as 

the limit of an infinite series:  

9/10 + 99/100 + 999/1000 + … 

Thus, we arrive at the following conclusion:  

0.9 =
9

10k
= lim

n→∞

9

10k
= 1

k=1

n

∑
k=1

∞

∑ . 

The equality holds because for any real value of ε that you 

choose, I can find a natural number N such that 1 is within ε of  

9

10k
k=1

n

∑  whenever n > N. 

This means that we have devised a way to answer the question, 

“How close is close enough?” The answer is that we are close 

enough to the number 1 if, when given an ε neighborhood 

extending some distance about the number 1, we can find a 

number N such that the terms at the tail end of the series are 

inside that neighborhood. When this happens, we no longer 

distinguish between the terms of the series and the number 1.  

Why Students Remain Skeptical 

There is a historical basis for students’ skepticism in 

accepting any of the arguments above, and researchers have 

found several underlying reasons for why students reject the 

equality—some more logical than others (Ely, 2010; Fischbein, 

2001; Oehrtman, 2009; Tall & Schwarzenberger, 1978). For 

example, many students conceive of 0.999… dynamically 

rather than as a static point; they interpret the decimal 

expansion as representing a point that is moving closer and 

closer to 1 without ever reaching 1 (Tall & Schwarzenberger, 

1978). Starting from 0, the point gets nine-tenths of the way to 

1, then another nine-tenths of the remaining distance, and so 
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on, but there is always some distance remaining (cf. Zeno’s 

paradox). This conception aligns with Aristotle’s idea of 

potential infinity and his rejection of an actual infinity: 0.999… 

is a process that never ends, producing a decimal expansion 

that is only potentially infinite and not actually an infinite 

string of 9’s (see Dubinsky, Weller, McDonald, & Brown, 

2005, for an excellent discussion of historical struggles with 

infinity and related paradoxes). This issue points to a confusion 

between numbers and their decimal representations: Would 

students be inclined to say that one-third is a process that never 

ends simply because its decimal expansion is 0.333…? 

Tall and Schwarzenberger (1978) analyzed student reasons 

for accepting or rejecting the equality and found that they 

generally fit into the following categories: 

• Sameness by proximity: The values are the same 

because a student might think, “The difference 

between them is infinitely small,” or “At infinity it 

comes so close to 1 it can be considered the same” (p. 

44). 

• Infinitesimal Difference: The values are different 

because a student might think “0.999… is the nearest 

you can get to 1 without actually saying it is 1,” or 

“The difference between them is infinitely small” (p. 

44). 

It is interesting that students in the two categories draw 

different conclusions using the same argument. Each uses a 

non-standard, non-Archimedean distance from the number one 

as an argument in their favor. In other words, each believes that 

there is some unmeasurable space between the two numbers, as 

in the number “next to” one. 

In his research involving 120 university students, 

Oehrtman (2009) found that mathematical metaphors had 

significant impact on claims and justifications. With regard to 

the mathematical equality, 0.999… = 1, Oehrtman found that 

students were likely to use what he called an “approximation 

metaphor.” Student comments referred to “approximations that 

could be made as accurate as you wanted” and the 

“irrelevance” of “negligible differences” or “infinitely small 

errors that don’t matter” (p. 415). Although the students were 
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asked to explain why 0.999… = 1, most students disagreed 

with the equality. Many students referred to 0.999… as the 

number next to 1, or as a number touching 1.  

Oehrtman (2009) went on to suggest that there is potential 

power in the approximation metaphor because this type of 

thinking closely resembles arguments for the formal definition 

of a limit. In fact, early definitions of limit by mathematicians 

such as D’Alembert included the language of approximation: 

“One magnitude is said to be the limit of another magnitude 

when the second may approach the first within any magnitude 

however small, though the first magnitude may never exceed 

the magnitude it approaches” (Burton, 2007, p. 603). Although 

the modern definition reflects an attempt to remove temporal 

aspects (see Figure 2), such ideas still underlie our conceptions 

of limit. And although students might make incorrect 

metaphorical statements, these metaphors often provide a 

gateway for deeper understanding of corresponding concepts. 

The Hyperreals 

The argument that 0.999… only approximates 1 has 

grounding in formal mathematics. In the 1960’s, a 

mathematician, Abraham Robinson, developed nonstandard 

analysis (Keisler, 1976). In contrast to standard analysis, which 

is what we normally teach in K–16 classrooms, nonstandard 

analysis posits the existence of infinitely small numbers 

(infinitesimals) and has no need for limits. In fact, until 

Balzano formalized the concept of limits, computing 

derivatives relied on the use of infinitesimals and related 

objects that Newton called “fluxions” (Burton, 2007). These 

initially shaky foundations for Calculus prompted the following 

whimsical remark from fellow Englishman, Bishop George 

Berkeley: “And what are these fluxions? … May we not call 

them ghosts of departed quantities?” (p. 525). Robinson’s work 

provided a solid foundation for infinitesimals that Newton 

lacked, by extending the field of real numbers to include an 

uncountably infinite collection of infinitesimals (Keisler, 

1976). This foundation (nonstandard analysis) requires that we 

treat infinite numbers like real numbers that can be added and 

multiplied. Nonstandard analysis provides a sound basis for 

treating infinitesimals like real numbers and for rejecting the 
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equality of 0.999… and 1 (Katz & Katz, 2010). However, we 

will see that it also contradicts accepted concepts, such as the 

Archimedean property.  

Consequences of Accepting Infinitesimals and Rejecting the 

Equality 

Consider the argument for equality that uses limits outlined 

in the previous section. What if you were allowed to choose ε 

to be infinitely small? Then the game is up; one cannot 

possibly hope to bring the sequence within such an intolerant 

tolerance! However, you should beware that, in order to win 

(i.e. choosing a value for ε that makes the limit argument fail, 

thus proving 0.999… does not equal 1), you have violated the 

Archimedean property.  

The Archimedean property states that, for any positive real 

number, r, we can choose a natural number, N, large enough so 

that their product is greater than 1. That means any real number 

is farther from 0 than 1/N for some N. To visualize what this 

means, consider the illustration in Figure 3. No matter how 

close r is to 0, if we zoom in on 0 enough, the two numbers 

will be visibly separate. In other words, there is no number 

“next to 0,” or infinitely close to 0. If r were allowed to be an 

infinitesimal, this would not be the case; r would be less than 

1/N for all N, or stay perpetually next to 0, which violates the 

Archimedean property. Thus, the only way to maintain this 

intuitive property of the real line is to reject infinitesimals, as 

we have done in the historical development of the real line 

(standard analysis).  

Ely (2010) described a case study of a college student who 

argued that there is no number next to zero but that there are 

numbers infinitely close to 0. This argument aligns with 

nonstandard analysis and presents the greatest challenge to the 

Archimedean property and other concepts from standard 

analysis. In particular, the student argued that one could zoom 

in infinitely to separate 0 from an infinitesimal number. Note, 

however, that the Archimedean property insists that positive 

real numbers be separable from 0 when zooming by a finite 

value, specified by the natural number N.  
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Figure 3. The Archimedean property. 

Conclusions and Implications 

The Archimedean property captures one of the most 

intuitive ideas about the real line (Brouwer, 1998). Starting 

from that property, we can use the definition of limits to show 

that the equality of 0.999… and 1 must hold. Thus, we can see 

that the Archimedean property and the formal definition of 

limits imply the equality. The only way to reject the equality is 

to reject the property or to reject our definition of limits. 

As our investigation affirms, “attempts to inculcate the 

equality in a teaching environment prior to the introduction of 

limits appear to be premature” (Katz & Katz, 2010, p. 3). Yet a 

meaningful introduction of limits at the K–12 level is 

problematic. Bezuidenhout (2001) discusses difficulties in 

introducing limits even at the college level. Similar issues arise 

with the introduction of irrational numbers in the K–12 

curriculum. It may be useful for students to recognize that 

some numbers (such as the length of the diagonal on the unit 

square) cannot be written as the ratio of two integers, but state 

standards demandmore. Consider the following example from 

the Common Core State Standards (National Governors’ 

Association and Council of Chief State School Officers, 2010): 

“In eighth grade, students extend this system once more, 

augmenting the rational numbers with the irrational numbers to 
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form the real numbers.” Are middle school teachers prepared to 

meaningfully address the formation of the real number system, 

and is this an important requirement for eighth graders? 

In the history of mathematics, the development of calculus 

prompted speculation about the existence of infinitesimals, 

while motivating the construction of limits (Burton, 2007). 

Even the Archimedean property arose from a pre-calculus 

concept—namely Archimedes’ method of exhaustion. If 

history is any guide for motivating and developing ideas in the 

classroom, then Katz and Katz (2010) draw a natural 

conclusion in suggesting that we delay the discussion of 

irrational numbers and infinite decimal expansions until after 

limits are formally addressed. An equally natural conclusion is 

that, when we do introduce students to limits, we should take 

advantage of intriguing problems, such as the (in)equality 

discussed here, so that students will understand why we might 

want to reject infinitesimals and, as a consequence, why we 

need limits.  

Whereas Common Core State Standards ask students to 

consider infinite decimal expansions as early as eighth grade, 

many students are never asked to seriously consider whether 

0.999… really does equal 1. Consideration of this equality 

might generate meaningful discussion about students’ intuitive 

concepts. Imagine a Precalculus classroom full of students who 

have studied decimal expansions but have never studied 

irrational numbers except to prove that some numbers (such as 

the square root of 2) cannot be expressed as a ratio of two 

integers. Some students might have wondered, but none had 

formally studied whether this property is related to repeating or 

terminating decimal expansions. On the first day of a unit on 

limits, the teacher could ask whether 0.999… equals 1. This 

paper outlines potential connections students might make 

through arguments about this equality—connections between 

decimal expansions, the real number system, and limits. It 

seems that this kind of discussion does not typically happen 

because we ask some questions too early and others not at all.  

 

 

Equality of 1 and 0.999… 

67 

References 

Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-

year students. International Journal of Mathematics Education in 

Science and Technology, 32, 487–500. 

Brouwer, L. E. J. (1998). The structure of the continuum. In P. Mancosu 

(Ed.), From Brouwer to Hilbert  (pp. 54-63). Oxford, England: Oxford 

University Press. 

Burton, D. M. (2007). The history of mathematics: An introduction (6th ed.). 

New York, NY: McGraw Hill. 

National Governors’ Association and Council of Chief State School Officers. 

(2010). Common core state standards for mathematics. Retrieved from 

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf 

Dubinsky, E., Weller, K., McDonald, M., & Brown, A. (2005). Some 

historical issues and paradoxes regarding the concept of infinity: An 

APOS-based analysis: Part I, Educational Studies in Mathematics, 58, 

335–359.  

Ely, R. (2010). Nonstandard student conceptions about infinitesimals. 

Journal for Research in Mathematics Education, 41, 117–146. 

Fischbein, E. (2001). Infinity: The never-ending struggle. Educational 

Studies in Mathematics, 48, 309–329. 

Katz, K. U., & Katz, M. G. (2010). When is .999… less than 1? The Montana 

Mathematics Enthusiast, 7, 3–30. 

Keisler, H. J. (1976). Foundations of infinitesimal calculus. Boston, MA: 

Prindle, Weber & Schmidt.  

Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other 

student metaphors for limit concepts. Journal for Research in 

Mathematics Education, 40, 396–426. 

Richman, F. (1999). Is 0.999… = 1? Mathematics Magazine, 72, 396–400. 

Sierpinska, A. (1994). Understanding in mathematics (Studies in 

Mathematics Education Series: 2). Bristol, PA: Falmer Press. 

Tall, D. O., & Schwarzenberger, R. L. E. (1978). Conflicts in the learning of 

real numbers and limits. Mathematics Teaching, 82, 44–49.  

Weisstein, E. W. (2011). Convergent Sequence. In Wolfram MathWorld. 

Retrieved from 

http://mathworld.wolfram.com/ConvergentSequence.html 

 

 

 


