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Previous research has documented schemes and operations that 

undergird students’ understanding of fractions. This prior research was 

based, in large part, on small-group teaching experiments. However, 

written assessments are needed in order for teachers and researchers to 

assess students’ ways of operating on a whole-class scale. In this study, 

scores from written instruments used to assess students’ fractions 

schemes and operations were examined for validity and reliability. 

Scores from the written assessments were correlated with scores from 

clinical interviews of 33 sixth graders. Results suggest that the written 

instruments provide reliable and valid measures for assessing the 

partitive unit fraction scheme and the splitting operation. However, there 

is no such evidence regarding the partitive fraction scheme. Implications 

for teachers and researchers are considered, and possible explanations 

for the scores from the written assessments related to the partitive 

fraction scheme are discussed. 

 In 2010, Steffe and Olive published Children’s Fractional 

Knowledge—a culmination of two decades of research on the 

schemes and operations that undergird students’ understanding of 

fractions. Their work specifies a hypothetical learning trajectory 

(Simon, 1995) for students’ progress from less sophisticated 

schemes, such as the part-whole scheme, toward superseding 

schemes that account for fractional sizes relative to the whole. The 
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part-whole scheme is a way of operating that supports students’ 

recognition and production of proper fractions as m parts in the 

fraction out of  n  equal  parts  in  the whole.  For example, when 

students working with a part-whole scheme assimilate the task as a 

request to partition the stick into five equal parts and pull out three 

of them. However, this way of operating is very limited, especially 

in situations involving improper fractions, as assimilating 7/5 as 7 

out of 5 makes little sense (Tzur, 1999). 

Whether in terms of schemes, concepts, or subconstructs, 

several researchers have noted the limitations of part-whole 

reasoning (e.g., Behr, Harel, Post, & Lesh, 1992; Mack, 2001; 

Olive & Vomvoridi, 2006; Streefland, 1993) and its prevalence in 

U.S. curriculum and instruction (Li, Chen, & An, 2009; Pitkethly 

& Hunting, 1996; Watanabe, 2007). Thus, finding ways to support 

students’ transcendence from part-whole reasoning is a significant 

problem for mathematics educators, especially in light of the new 

Common Core State Standards for Mathematics (CCSSM; 2010), 

which call for much more sophisticated conceptions as early as 

grade 4 (Norton & Boyce, in press). The learning trajectory 

specified by Steffe and Olive (2010) can provide this support, by 

helping teachers and researchers assess students’ ways of 

operating with fractions and suggesting tasks that might provoke 

new ways of operating. However, these assessments have been 

based on time-intensive, longitudinal, small-group teaching 

experiments (Steffe & Thompson, 2000), which might prove 

impractical for teachers and researchers conducting studies with 

larger numbers of students. 

The present study was motivated by the need for valid whole-

class assessments of students’ ways of operating. We have 

designed written instruments to do just that and to test, on a larger 

scale, many of the hypotheses arising out of the work begun by 

Steffe and Olive. In particular, we have tested whether the 

schemes identified through this work follow the specified 

hierarchy (Norton & Wilkins, 2009; Norton & Wilkins, 2012); we 

have tested whether operations, such as splitting, develop in the 

specified manner (Wilkins & Norton, 2011); and we have tested 

how such operations might be constructed (Norton & Wilkins, 

2013). However, arguments for the validity of our assessments 

were limited to the face validity of items included in the written 

instrument, and the degree of fit between theorized and measured 
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relationships between constructs. 

The purpose of this paper is to further establish the validity of 

our assessments, by correlating results from written assessments 

with those from more time-intensive clinical interviews. We test 

this validity for three schemes/operations in particular: the 

partitive unit fraction scheme (PUFS), the more general partitive 

fraction scheme (PFS), and the splitting operation. We begin by 

describing these theorized constructs; then we share our methods 

for quantitatively testing validity. Results from the study hold 

implications for teachers and researchers who are interested in 

assessing students’ ways of operating with fractions on a larger 

scale. 

 

Theoretical Framework 

 

Scheme Theory 

 

Following von Glaserfeld’s (1995) interpretation of the 

Piagetian concept of scheme, we define a cognitive scheme as an 

individual’s established way of experiencing and operating in a 

particular situation. A cognitive scheme consists of three 

sequential components: a recognition template, operation(s), and 

an expected result (see Figure 1). In the sections below, we define 

these terms and exemplify them within the context of a part-whole 

scheme. We then elaborate on three operations (partitioning, 

iterating, and splitting), and two fractions schemes (PUFS and 

PFS) that pertain directly to the validation of our written 

assessments. 

 

 
Figure 1. The three parts of a scheme.  

 

The recognition template of a scheme is its assimilatory 

structure (Steffe, 2002). This structure is obtained from the 

sensory motor pattern awareness or mental imagery associated 

with an activity. Assimilation involves modification of perceptual 
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input so that it fits into an individual’s existing conceptual 

structures, and excludes characteristics of an individual’s 

perception that are not part of those structures (von Glasersfeld, 

1995). Thus, the recognition template functions as a guide for 

assimilation that triggers mental action from which satisfactory 

results are expected. 

In the context of a cognitive scheme, an operation is an 

interiorized mental action. As mental actions, an individual’s 

operations cannot be directly observed, but they might be inferred 

from accompanying verbal descriptions or physical actions (Tzur, 

2007). Operations are abstractions of actions that “can be carried 

out through representation and not through actually being acted 

out” (Piaget, 1971, p. 14). This abstraction is what allows an 

operation to become coordinated with other operations (Piaget, 

1971).   

The expected result of a scheme is the anticipated product of 

operating according to that scheme (Steffe & Olive, 2010). Upon 

an individual’s activation of a scheme, if an experiential result 

does not satisfy this expectation, then the individual experiences a 

perturbation. Resolving perturbations is the primary impetus for 

the accommodation of a scheme, which is a modification of one or 

more of the scheme’s three components. Accommodations occur 

through the development of more powerful or efficient operations, 

or through a satisfactory assimilation of a novel situation into an 

existing scheme—a modification of the recognition template (von 

Glasersfeld, 1995). 

To illustrate the components of a cognitive scheme, we 

describe a contextual situation, observable behavior, and 

hypothesized mental actions that we consider demonstrative of a 

student’s part-whole fraction scheme. Two rectangular pieces of 

paper that have been previously segmented, one nearly white and 

one nearly black, are placed in a student’s field of vision as 

depicted in Figure 2. A teacher says, “What fraction is the white 

bar out of the black bar?” Without hesitation, the student silently 

counts the number of parts in the white bar, moving her finger on 

each piece from left to right as she mouths the number words. 

After repeating this process with the black bar, she responds “three 

out of five.” 

For students who have constructed a part-whole fraction 

scheme, situations like the one illustrated in Figure 2 are likely to    
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Figure 2. Part-whole fraction task. 

 

activate (or trigger) the scheme: The part and the whole are visibly 

partitioned into equally sized pieces, and the part-whole fraction 

scheme involves a whole number comparison of such pieces. 

Although the scheme includes partitioning, in this case that 

operation does not need to be carried out because the student can 

simply assimilate the existing partitions into the structure of the 

scheme, further supporting the likelihood that the situation would 

activate the scheme. Operating begins with the student 

disembedding the white rod from that black rod. That is, the white 

rod is mentally removed from (or taken “out of”) the black rod 

without destroying the integrity of the black rod (Steffe & Olive, 

2010). Now the two rods can be treated as collections of discrete 

uniform items, which leads to the use of a counting scheme and 

the forming of a fractional name (i.e., “three out of five”) using the 

results of counting. The fractional name verbalized by the student 

fits the expected result of operating; hence, she does not 

experience perturbation, and no accommodation to the scheme is 

necessary. 

 

Partitioning, Iterating, and Splitting Operations 

 

The mental action of partitioning a continuous item might be 

inferred via an individual’s placement of markings to indicate a 

separation of a whole into equal pieces. Partitioning involves the 

projection of a composite unit structure into a continuous whole
1
. 

By projection of a composite unit structure, we mean that a child 

uses her understanding of a composite number as a template. 

Before partitioning, the conception of the continuous item is of a 

single unit, and after partitioning, it is of a composite whole that 

contains equal parts. At first, the composite whole might not retain 

the entirety of the structure of the template (Steffe & Olive, 2010). 

For example, a child might conceive of a composite unit, n, as the 

result of iterating n ones, and the structure of such iteration might 
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include a notion of nestedness of integers less than n. The child 

might project n into a continuous whole and use the structure to 

separate the whole into n equal parts that can subsequently be 

adjoined together, and this might result in a conception of a whole 

consisting of n 1/n parts. However, the result of this reuniting 

might not include a conception that 1/n is contained in 2/n, is 

contained in 3/n, … is contained in n/n. 

The mental action of iterating requires the assimilation of an 

iterable unit—an object that can stand in for counting acts that 

have yet to be carried out (Steffe & Olive, 2010, p. 42). In the 

context of length, iteration might be indicated by the use of marks 

that correspond with the length of an iterable unit. Like 

partitioning, the structure of the result of iterating is only partially 

determined by the counting sequence by which it was constructed. 

For example, while the number n might stand in for the result of 

counting by ones n times, a child might not understand that to 

construct the number n + 1, she could simply apply n and then 

iterate one more. Similarly, the structure of the result of an 

iterating operation for fractions depends on the conception of the 

iterable unit and its relation with the whole. A child might iterate 

an object n times to make a whole, but attempting to iterate it 

another time to make an improper fraction, (n + 1) / n, might result 

in perturbation (Hackenberg, 2007; Olive & Steffe, 2001; Steffe & 

Olive, 2010; Tzur, 1999). 

The splitting
2
 operation is the simultaneous “composition of 

iterating and partitioning” (Steffe, 2004, p. 135). By simultaneous, 

we mean that the splitting operation is an interiorization of 

sequential partitioning and iterating. Previously the two operations 

might have been performed with concrete or mental re-

presentations of specific concrete objects as they were modified 

and operated upon, but splitting enables an individual to instantly 

conceive of a single object in a more general and powerful way. 

Upon splitting an object, it has the structure of the result of 

partitioning the object into n parts, disembedding one of those 

parts, and iterating the part n times
3
 (Steffe, 2002). The splitting 

operation enables the development of more powerful schemes 

because it allows this structure to become part of the recognition 

template for an existing scheme that previously involved 

sequential coordination of partitioning or iterating operations. 

Figure 3 illustrates four tasks designed to elicit splitting from 
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those students who have constructed the operation. Students who 

only coordinate partitioning and iterating sequentially would have 

difficulty assimilating the task into a scheme that would produce 

an appropriately sized piece. In other words, a student’s splitting 

operation likely constitutes the necessary and sufficient condition 

for successful completion of each task: Each task is iterative in 

nature (calling for the production of a piece that is “n times as 

long/big”) but requires partitioning to produce that piece; thus, to 

solve the tasks, students need to anticipate that partitioning and 

iterating act as inverse operations, the very criterion of splitting. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

 

Figure 3. Tasks designed to trigger a splitting operation and 

examples of student responses.  
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Partitive Fraction Schemes 

 

Steffe (2002) regards the partitive unit fraction scheme 

(PUFS) as the first genuine fraction scheme, because it includes 

fractional language in its recognition template and its operations 

include both iterating and partitioning (as well as disembedding). 

A student with a PUFS understands a unit fraction, such as 1/n, as 

an amount that, when iterated n times, would result in a whole. 

When given a whole and instruction to make 1/n of the whole, a 

child assimilating the situation to a PUFS performs the following 

actions in sequence: First the child partitions the whole into n 

equal parts; next the child disembeds one of those parts so that it is 

separate from the whole without changing the whole; finally the 

child iterates that part n times to reproduce the whole. If the result 

is too small or too big, the child adjusts the size of the partition. If 

the result of iterating is satisfactory (that is, if it seems close 

enough in size to the given whole), then the fractional piece that 

was disembedded and iterated becomes “1/n.” 

The tasks illustrated in Figure 4 should trigger the PUFS, for 

those students who have constructed it. Students might 

successfully resolve the first two tasks in precisely the manner 

described above. However, students might also resolve those tasks 

using a part-whole scheme. Thus, it is important for teachers and 

researchers to attend to students’ actions and infer from those 

actions the students’ particular ways of operating. In the case of 

written assessments, we have to further infer those unobserved 

actions from the inscriptions that students make. The first two 

tasks in Figure 4 might provide further indication of students’ 

ways of operating, to overcome this limitation. In particular, 

students operating with a PUFS can iterate the smaller piece 

within the whole to determine the fractional name of the piece. 

Students operating with a part-whole scheme do not perform such 

iterations. 

The partitive fraction scheme (PFS) generalizes the PUFS to 

include construction and naming of fractions of the form m/n, 

where 1 < m < n (Steffe, 2002). If a student is given a task of 

producing m/n of a given whole, she might assimilate it into a PFS 

by first producing 1/n using a PUFS. This involves iterating the 

correct part 1, 2, …, m, …,n times. One might generalize the 

PUFS by reflecting on the construction of the composite fractions 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
  

  
Figure 4. Tasks designed to trigger a partitive unit fraction scheme 

and examples of student responses  

 

in the process of iterating, so that after iterating the correct piece n 

times, the intermediate products, including the fraction m/n, 

become assimilated as parts of the structure of the n/n whole. 

However, the structure of the m/n fraction is not necessarily m 

iterations of the fractional unit 1/n, as this would be indicative of a 

more powerful iterative fraction scheme (IFS; Steffe, 2002). 

Rather, with the PFS, the 1/n piece is treated as a unit of 1, which 

does not maintain its 1-to-n relationship with the whole when 

being iterated (Gray, 1993; Steffe, 2002). As a result, students 

operating with a PFS (and not an IFS) might produce an improper 
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fraction, such as 7/5, by iterating a 1/5 piece seven times, but they 

often name the result as “seven sevenths” (Tzur, 1999).  

Figure 5 illustrates four tasks designed to elicit students’ use 

of a PFS. As with the PUFS tasks, the first two tasks could be 

solved using a part-whole scheme, but the language used in the 

tasks (e.g., “as long as”) was crafted to trigger schemes relating to 

size, which the part-whole scheme does not. Moreover, the final 

two tasks call on students to name fractions on the basis of a size 

comparison. Students who have constructed a PFS might make 

such comparisons based on their iterations of a unit fractional 

piece, m times and n times, respectively. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
  

Figure 5. Tasks designed to trigger a partitive fraction scheme and 

examples of student responses. 
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Recent research has raised questions about the relationship 

between the construction of a splitting operation and the 

construction of a PFS (Norton & Wilkins, 2009; 2010). The PFS 

does not ostensibly require splitting
4
, but written assessments of a 

PFS and splitting indicate that students generally construct a 

splitting operation before constructing a PFS (Norton & Wilkins, 

2009, 2010; Wilkins & Norton, 2011). These findings highlight 

the difficulty of assessing the PFS. Students seem to have an 

established way of operating that includes the ability to solve some 

(but not all) tasks for which construction of a PFS is theoretically 

both necessary and sufficient. 

 

Methods 

 

Participants 

 

Our study involved 66 students from three sixth-grade 

classrooms, all taught by the same teacher. The school is located 

in the rural Southeast, with 57% of its students eligible for free-

and-reduced lunch programs. These 66 students participated in a 

written assessment of fractions schemes and operations; of these 

66, 34 also agreed to participate in a clinical interview (Clement, 

2000). Of these 34 students, after watching the video of the 

interviews, one student indicated that she did not feel well, and 

otherwise did not seem engaged in the tasks, making it difficult for 

the researchers to make meaningful inferences about her fractions 

understanding. For this reason, this student’s data were removed 

from further analysis, resulting in a sample of 33 students from the 

clinical interviews. 

 

Written Assessment 

 

We administered a 20-item assessment to the 66 participants. 

The 20 items included four items for the splitting operation (see 

Figure 3), the PUFS (see Figure 4), and the PFS (see Figure 5). 

The eight additional items were not analyzed in this study. 

We designed individual items to provoke responses that might 

indicate a particular scheme or operation. In other words, each 

item provided students with a situation in which to enact particular 

ways of operating. The first and second authors independently 
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rated student responses for each item. These ratings were based on 

all of the written work associated with the item and not solely on 

whether they had the “correct” answer. From this assessment, we 

inferred whether there was sufficient indication that the student 

had operated in a way that was consistent with a particular scheme 

or operation.  

Following Norton and Wilkins (2009, p. 156; see also Wilkins 

& Norton, 2011), we scored responses to each item in the 

following way: 

0: There was counterindication that the student could operate 

in a manner compatible with the theorized scheme or 

operation. Counter indication might include incorrect 

responses and markings that are incompatible with actions 

that would fit the scheme.  

1: There was strong indication that the student operated in a 

manner compatible with the theorized scheme or operation. 

Indications might include correct responses, partitions and 

iterations 

For item responses that represented some indication that a student 

operated in a manner compatible with the theorized scheme or 

operation, but nonetheless, did not show strong indication, we 

gave a score of .5. Initially, we also used scores of .4 or .6 to 

indicate a leaning, one way or the other. We used these scores to 

aid in the overall inferences about the schemes or operations. 

Inferences were based on overall scheme or operation scores 

created from the item scores. We discuss this procedure at the end 

of the section.  

Here we provide some explanation of the types of student 

responses that would represent indication and counterindication of 

a particular scheme or operation and the scores associated with 

some of the responses. Referring to Figure 3, student response (a) 

shows a strong indication of a splitting operation (coded 1), 

whereas, in response (b) the student iterated the stick to create a 

stick three times as long as the given stick, representing strong 

counterindication that the student had a splitting operation 

available (coded 0). Student responses (c) and (d) represent weak 

counterindication (coded .4) and weak indication (coded .6), 

respectively. In response (c), the student partitioned the stick into 

five parts, but failed to identify the size of the stick. In response 

(d), based on the difference in the uneven partitions, it appears that 
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the student divided the area into five parts and then realized that 

six parts were needed and drew in the squiggly partition. Although 

the resulting partitions were uneven, the student identified an 

appropriately sized piece—one that could be iterated six times to 

reproduce the given amount of pizza. 

In Figure 4, student responses (a) and (b) provide strong 

indication of a PUFS (coded 1). In both examples the students 

appear to iterate the given piece within the given whole and, based 

on the resulting partitions, determine the fractional name for the 

piece. In response (c) the student begins by dividing the circle in 

half and then erases the line. Then the student fails to partition the 

area into the appropriate number of pieces. However, given that 

one part was identified, this represented weak counterindication of 

a PUFS (coded .4). In student response (d), the stick was first 

partitioned into eight pieces, but then the student seemed to catch 

the mistake and erased the last partition mark. The student did not 

adjust the other marks but identified one of the seven (unequal) 

parts. The lack of adjustment suggests a weak indication of the 

PUFS for this item (coded .6). 

In Figure 5, student responses (b) and (d) provide strong 

indication of a PFS (coded 1). In response (b) the student 

partitioned the area into five parts, and then recognized that four of 

the pieces would create the desired piece of pie. However, based 

on the markings, it is not clear whether the student iterated a 1/5 

piece (in accord with PFS) or whether the student used a part-

whole scheme instead. In response (d), the student was able to 

partition the small stick into a piece that could be iterated to create 

the whole. Then the student was able to iterate the piece seven 

times within the whole and name the smaller stick. In response (a), 

the student partitioned the stick into five parts, but instead of 

iterating one of those parts three times, the student seemed to 

create a stick that was three more parts than the five-part whole. 

We considered this a weak counterindicaiton of a PFS (coded .4) 

because it is possible that the student interpreted the task as calling 

for a stick that is 3/5 longer than the given stick. Finally, student 

response (c) provides a counterindication of a PFS (coded 0) 

because the student named the fraction 2/4 despite the fact that the 

four pieces were clearly unequal and that the given piece was 

clearly bigger than 1/2. 

For each set of four items representing a particular scheme or 
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operation, the two raters independently summed the four 

individual item scores resulting in an overall raw score for each 

scheme between 0 and 4. These raw scores were then used to 

further infer whether the student had a particular scheme (coded as 

1) or not (coded as 0). If a student’s overall raw score for a given 

scheme or operation was greater than or equal to 3, it was inferred 

that the student’s actions were consistent with the particular 

scheme or operation. If a student’s overall score was less than or 

equal to 2, it was inferred that the student’s actions were not 

consistent with the particular scheme or operation. For students 

whose overall score for a scheme was between 2 and 3, the 

individual raters considered the student’s work on all four 

individual items and inferred from all of the work whether there 

was indication that the student had operated in a way that was 

compatible with the particular scheme or operation. For cases in 

which there was disagreement the two raters re-examined the 

cases together to come to a consensus. 

 

Clinical Interviews 

 

We conducted clinical interviews (Clement, 2000) with 34 

students (one student’s data were removed from the analysis). The 

clinical interviews were conducted by the three authors. The 

interviews involved eight tasks, with two tasks each for the PUFS, 

PFS, and splitting operation. The additional two tasks were not 

analyzed in this study. 

Similar to the written assessments, we designed these tasks 

(see Table 1) to provoke student responses that might indicate a 

particular scheme or operation. Tasks were modified from 

Hackenberg and Lee (2012). The clinical interviews provided the 

interviewer the opportunity to ask clarifying questions and note 

actions that might not be apparent from a written assessment. For 

this reason, it was felt that the interviews would provide a more 

accurate assessment of students’ fractions schemes and operations. 

Thus, the inferences from these interviews as to students’ 

construction of a scheme or operation will serve as the criterion 

measure for evaluating the validity of the written assessments.  

Each participant was interviewed by one of the three 

researchers for approximately 15-20 minutes, and interviews were 

videotaped and audio recorded. While the researcher followed the 
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interview protocol (see Table 1), clarifying questions were asked 

when needed and notes were taken to document students’ actions. 

Students’ drawings were also collected as an additional artifact to 

support video analysis. Based on the interview, preliminary 

inferences of students’ schemes and operations were noted by the 

interviewer. 

 

Table 1. 

Tasks and interview protocol for clinical interviews. 

  

Splitting Tasks 

(1) [Provide 1 copy of the orange (8.5 cm) bar and a purple crayon]   

Suppose the orange bar is 5 times as long as a purple bar. Can you draw the purple bar? 

(a) If hesitant: Imagine what the purple bar would look like so that the orange bar would be 5 times as long as 

the purple bar.  Can you draw the purple bar?    

(b) After some guess: Can you show for sure that the orange bar is 5 times as long as the purple bar?  

 
(2) [Provide 1 copy of the red (4 cm) bar and a grey crayon]   

Suppose the red bar is 3 times as long as a grey bar. Can you draw the grey bar? 

PFS Tasks 

(1) [Place blue bar (28 cm) and black bar (20 cm) in front of the student]  

What fraction is the black bar of the blue bar? 

(a) If the student is hesitant to answer the question, or if there is other indication that the student doesn’t know 

what the question is asking, then place the blue bar directly above the black bar (but not lined up) and say, 

“what fraction is the smaller bar of the larger bar?” 

(b) If student says a close fraction, e.g., ¾, ask how the student can be sure.  If the student realizes that their 

initial guess is incorrect, ask what else it might be. 

 
(2) [Provide 1 copy of the unpartitioned green bar and a brown crayon].   

A brown bar is 4/7 as long as the green bar.  Think about what the brown bar would look like. (Allow 
manipulation of the green bar if hesitant). Can you draw what you are thinking of?  Can you show 
for sure that the brown bar is 4/7 as long as the green bar?  

PUFS Tasks 

(1) [Place red bar (4 cm) and blue (28 cm) bar in front of the student] 

What fraction is the red bar of the blue bar? 

If the student is hesitant to answer the question, or if there is other indication that the student doesn’t 
know what the question is asking, then place the red bar directly above the blue bar (but not lined up), and 
say, “what fraction is the smaller bar out of the larger bar?” 

 

(2) [Provide 1 copy of the blue bar (28 cm) and a maroon crayon] 

The maroon bar is 1/9 as long as the blue bar. Draw the maroon bar. Explain how you can show for 
sure that the maroon bar you drew is 1/9 as long as the blue bar. 

  
Once all of the clinical interviews were completed, the three 

researchers met together and collectively analyzed each interview. 

Based on the viewing of the interviews, along with field notes and 
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student work, we inferred whether there was sufficient indication 

that the student had operated in a way that was consistent with a 

particular scheme or operation. Similar to the coding that was used 

for the written assessments, if there was strong indication that the 

student operated in a manner compatible with the theorized 

scheme or operation, we coded them as having constructed the 

scheme or operation (coded as 1). If there was counterindication 

that the student could operate in a manner compatible with the 

theorized scheme or operation, we coded them as having not 

constructed the scheme or operation (coded as 0). For those 

students that showed some indication of operating in a manner 

compatible with the theorized scheme or operation, but 

nonetheless, did not show strong indication, or counter indication, 

we used scores of .4 or .6. These scores represented a leaning, in 

which a code of 0 or 1 could be assigned, respectively, in the case 

that a decision was needed, but at the same time, represented a 

lack of sufficient information to make a strong inference one way 

or the other. 

We present the percentage of students that were determined to 

have constructed a PUFS, PFS, and a splitting operation in Table 2 

by the different assessments. 

 

Table 2.  

Percentage of Students determined to have constructed a Splitting 

operation, a PUFS, and a PFS by assessment. 

 

 Written Assessment Clinical Interview 

Splitting 48.5 54.6 

PUFS 51.5 69.7 

PFS 21.2 18.2 

Note: These percentages are for the 33 students who 
were involved in both the written assessment and the 
clinical interview. 

  
Evidence for the face validity of the scores associated with the 

written assessments has been presented previously (Norton & 

Wilkins, 2010; Wilkins & Norton, 2011). Here we present further 

evidence for the reliability and validity of the scores associated 

with the PUFS, PFS, and the splitting operation. We present an 

analysis of score reliability using measures of agreement (inter-

rater reliability) and internal consistency (Cronbach’s α). We then 
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proceed to an analysis of score validity by analyzing the 

relationship between the scores from the written assessments with 

the scores from the clinical interviews (criterion-related validity). 

In this case, we are interested in how well we can predict students’ 

clinical interview scores with the written assessments. 

To assess the inter-rater reliability of the written assessments 

of the splitting operation, the PUFS and the PFS, we computed the 

kappa statistics (K; Cohen, 1960) for the scores from the 66 

students from each rater (see Table 3). The kappa statistic for the 

splitting operation (K = .88, p < .05) and the PFS (K = .82, p < 

.05), represent “almost perfect” agreement (Landis & Koch, 1977, 

p. 165); and the kappa statistic for the PUFS (K = .76, p < .05) 

represents “substantial” agreement (Landis & Koch, 1977, p. 165). 

Overall the evidence suggests high inter-rater reliability for the 

scores. We discussed any differences in ratings and reconciled 

these differences to create one rating for each student. These 

resulting scores were used to compare to the findings from the 

clinical interviews. 

Internal consistency is a measure of reliability that considers 

how well a set of items designed to measure a particular construct 

consistently measures the construct. To assess internal 

consistency, we calculated Cronbach’s α (Cronbach, 1951) for the 

four items used to assess the PUFS, the PFS, and the spitting 

operation. Cronbach’s α ranges from 0 to 1, and values around .70 

and higher represent an acceptable level of reliability (Nunnally & 

Bernstein, 1994). Because the overall scores being evaluated were 

at the scheme and operation level, the individual items within a 

scheme or operation had different ratings by the two raters. For 

this reason we calculated Cronbach’s α for each rater (see Table 

3). The Cronbach’s α for the PUFS and splitting operation from 

the two raters (αR1 = .69 and αR2 = .72) represent an acceptable 

level of internal consistency for the measures; however, the 

internal consistency for the PFS was not found to be acceptable 

(αR1= .50 and αR2= .49). 

In order to assess the validity of the scores from the written 

assessments, we correlated these scores with those from the 

clinical interviews, to create validity coefficients, r. In the case of 

dichotomous scores, r represents a Phi coefficient. These validity 

coefficients provide a measure of criterion-related validity. Two 

validity coefficients were calculated for each scheme and 
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operation. The first coefficient, r1, was based on all 33 students. 

The second coefficient, r2, was based only on those students for 

which the researchers made a strong inference for the students’ 

schemes and operations based on the clinical interviews, that is, 

students coded with either a 1 or 0. 

 

Table 3. 

Measures of validity and reliability for the scores from the written 

assessments. 
 

 K R1 R2 r1 r2 

Splitting .88 .69 .72 .52** .58**  
(n = 32) 

PUFS .76 .69 .72 .42* .53**  
(n = 26) 

PFS .82 .50 .49 .14 .10  
(n = 22) 

Note: *p < .05; **p < .01; ***p < .001; r1 = validity coefficient for scores on 
assessments with all 33 scores from interviews; r2 = validity coefficient for the 
subset of scores on assessments with scores from interviews for which ratings 
were a 1 or 0. 

  
Considering the PUFS (see Table 3), based on the data from 

all 33 students, PUFS scores from the written assessments 

correlated .42 (p < .05) with the scores from the clinical 

interviews. When considering only the students who were coded 0 

or 1 (n = 26), the PUFS scores from the written assessments 

correlated .53 (p < .01) with the scores from the clinical 

interviews. These validity coefficients represent moderate to 

strong relationships between the scores from the written 

assessments and the scores from the clinical interviews (Cohen, 

1992), providing evidence for the predictive validity for the scores 

from the written assessments associated with the PUFS.  

Considering splitting (see Table 3), based on the data from all 

33 students, the scores from the written assessments correlated .52 

(p < .01) with the scores from the clinical interviews. Further, 

when considering only the students who were coded 0 or 1 (n = 

32), the scores from the written assessments correlated .58 (p < 

.01) with the scores from the clinical interviews. These validity 

coefficients represent strong relationships between the scores from 

the written assessments and the scores from the clinical interviews 

(Cohen, 1992), providing strong evidence for the predictive 
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validity for the scores from the written assessments associated 

with splitting. 

Considering the PFS (see Table 3), based on the data from all 

33 interviewed students, the scores from the written assessments 

correlated .14 (p > .05) with the scores from the clinical 

interviews. When considering only the students who were coded 0 

or 1 (n = 22), the scores from the written assessments correlated 

.10 (p > .05) with the scores from the clinical interviews. Based on 

these validity coefficients the scores from the written assessments 

are not good predictors of the scores from the clinical interviews 

(Cohen, 1992), suggesting that the scores from the written 

assessments may not be valid measures of the PFS. 

 

Conclusions and Implications 

 

The goal of this study was to provide evidence for the validity 

of scores from written instruments used to assess students’ fraction 

schemes and operations. Evidence presented here indicates that the 

written instruments provide reliable and valid measures for 

assessing the PUFS and splitting operation. However, we did not 

find sufficient evidence to suggest that they provide reliable and 

valid measures for assessing the PFS. Here, we consider two key 

implications from these conclusions. First, we consider the 

potential value of our results for teachers and researchers 

intending to use written instruments to assess students’ schemes 

and operations. Then, we consider possible explanations for why 

our assessments using the PFS instrument did not yield positive 

results. 

Scheme theory provides researchers with a framework for 

modeling students’ mathematical ways of operating (von 

Glasersfeld & Steffe, 1991). However, assessing these ways of 

operating has relied upon intensive interactions with one or two 

students, in the form of clinical interviews or teaching experiments 

(Steffe & Thompson, 2000). With valid and reliable methods for 

assessing students’ schemes and operations through the use of 

written instruments, researchers can more readily assess students’ 

ways of operating at the classroom level. They can also use these 

instruments, as we have (Norton & Wilkins, 2010; Wilkins & 

Norton, 2011; Norton & Wilkins, 2012; Norton & Wilkins, 2013), 

to quantitatively test hypotheses about these ways of operating and 
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the hypothetical learning trajectories related to them. Although 

written instruments provide relatively limited opportunity for 

observation from which to make inferences about students’ 

mathematics, our results demonstrate moderate to strong 

correlations between assessments using the written instrument and 

assessments using clinical interviews, for the PUFS and splitting. 

Teachers, too, can use the instruments to assess students’ ways 

of operating with fractions. This would require teachers, first, to 

become familiar with the targeted schemes and operations, which 

have been described in a pair of teacher journal articles (Norton & 

McCloskey, 2008; McCloskey & Norton, 2009). However, 

teachers would not necessarily need to use the instruments in the 

manner we have described here—which involved use of two raters 

and inference across multiple tasks. Instead, they might use 

student responses to individual items as initial indicators of 

students’ ways of operating with fractions, similar to the sample 

analysis described in the methods section. On the other hand, we 

warn that inferences based on single items provide an initial 

indication only, which might be used as a starting point for 

identifying students who have yet to develop more sophisticated 

fraction schemes. Moreover, teachers need to avoid the temptation 

to teach students how to respond to the items, lest they simply 

mask students’ underlying ways of operating.  

Having items and a reliable instrument for assessing the PUFS 

is particularly useful, given the importance of supporting students’ 

transcendence from part-whole conceptions of fractions (Mack, 

2001; Olive & Vomvoridi, 2006); likewise for the splitting 

operation, which plays a critical role in students’ construction of 

advanced fractions schemes, such as the iterative fraction scheme 

(Steffe & Olive, 2010). However, the precise role of the PFS in 

students’ development of fractions knowledge has proved 

problematic (Norton & Wilkins, 2010). In fact, teaching 

experiments on the construction of PFS have produced divergent 

characterizations of the scheme, so it is not surprising that our 

attempts to assess it with written instruments were unsuccessful. 

Researchers (Hackenberg, 2007; Steffe, 2004) agree that 

generalizing a PUFS to a PFS involves iterating unit fractional 

parts to produce proper fractions (e.g., students can produce 4/9 

from a 1/9 part by iterating the latter part four times). They also 

agree that the unit fractional part is iterated as if it were a unit of 1, 
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rather than as a true unit fraction, which would maintain it’s 1-to-n 

size relationship with the whole while being iterated (Tzur, 1999); 

as such, students still interpret the results of their iterations with 

their part-whole schemes. Hackenberg (2007) has argued that a 

partitive conception of, say, 3/5 derives from the part-whole 

conception alone, “not from it being a fraction that is three times 

one-fifth” (p. 30). However, Steffe (2004) claims that the partitive 

conceptions resulting from the PFS include considerations of size, 

wherein 7/10 refers to “the length of a stick produced by iterating 

a 1/10 stick seven times [emphasis added]” (p. 184). These 

contrasting perspectives raise questions about the nature of the 

PFS, its reversibility, and its relationship to conceptions of proper 

fractions as measures. 

On the one hand, the operations of the PFS include nothing 

beyond those of the PUFS—partitioning a continuous whole into 

n equal parts, disembedding one of those parts from the partitioned 

whole, and iterating that part—except that, now, the part (treated 

as a unit of 1) is iterated m times to produce the proper fraction, as 

well as n times to reproduce the whole. On the other hand, at some 

point students begin to understand proper fractions as measures of 

size relative to the whole (as assessed by the tasks in Figure 5). 

Because these schemes exist only in the minds of researchers 

attempting to build explanatory models of students’ mathematical 

activity, we need to decide whether it is useful to think of the PFS 

as a scheme at all, or whether some of what we attribute to the 

PFS is a simple extension of existing ways of operating, while 

other aspects of thinking attributed to the scheme involve more 

sophisticated ways of operating (e.g., the reversible partitive 

fraction scheme; Steffe & Olive, 2010). 
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1 Steffe and Olive (2010, chapter 4) refers to the distinctions between the two 
types of partitioning mentioned here as the third and fourth levels of 

fragmenting. At earlier, non-interiorized levels of fragmenting, children use 
strategies that are more empirical in nature. 

2 The definition of splitting we use here is more restrictive than Confrey’s (1994) 
definition in which splitting refers to a possibly recursive operation that results 

in the production of many parts simultaneously from a whole. 

3 These are the defining operations of an equipartitioning scheme, which is 
closely related to the PUFS (see Steffe, 2002). 

4 A reversible partitive fraction scheme is theorized to be the least powerful 

scheme that requires splitting (Hackenberg, 2007; Norton & Wilkins, 2010; 
Steffe & Olive, 2010).  

 


