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Knowledge, and Self-Regulation in a Large 
Lecture College Algebra Class  

David Miller and Matthew Schraeder 

At a research University near the east coast, researchers restructured 
a College Algebra course by formatting the course into two large 
lectures a week, an active recitation size laboratory class once a 
week, and an extra day devoted to active group work called 
Supplemental Practice (SP). SP was added as an extra day of class 
where the SP leader has students work in groups on a worksheet of 
examples and problems, based off of worked-example research, that 
were covered in the previous week’s class material. Two sections of 
the course were randomly chosen to be the experimental group and 
the other section was the control group. The experimental group was 
given the SP worksheets and the control group was given a question-
and-answer session. The experimental group's performance was 
statistically significant compared to the control on a variety of 
components in the course, particularly when prior knowledge was 
factored into the data.   

The enrollment in College Algebra has grown recently to 
the point that nationally there are an estimated 650,000 to 
750,000 students per year (Haver, 2007) and has surpassed the 
enrollment in Calculus. In A Commitment to America's Future: 
Responding to the Crisis in Mathematics and Science 
Education (2005), the authors write that “nationally 22% of all 
college freshman fail to meet the performance levels required 
for entry level mathematics courses and must begin their 
college experience in remedial courses'' (p. 6). Although there 
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are almost three fourths of 1 million students enrolling in 
College Algebra, it is estimated that 45%, and as high as 60% 
at some institutions, of College Algebra students fail to receive 
a grade of A, B, or C (Haver, 2007). To address this non-
success of students at a large research university in the eastern 
part of the United States, faculty members teaching College 
Algebra implemented a new structure in the course that 
emphasized active learning through Supplemental Practice.  

 
The Interactive, Compensatory Model of Learning 

 
The Interactive, Compensatory Model of Learning (ICML) 

provides a framework for understanding and improving 
classroom learning (Schraw & Brooks, 1999). Schraw and 
Brooks (1999) referred to a wide range of literature that 
reinforced ICML. Figure 1 shows ICML, which consists of five 
main components that affect learning: cognitive ability, 
knowledge, metacognition, strategies, and motivation. Schraw, 
Brooks, and Crippen (2005) defined cognitive abilities as “a 
general capacity to learn” and knowledge base as “individuals 
organized domain-specific and general knowledge in long-term 
memory” (p. 637). In other words, cognitive ability is the 
ability to learn (how much an individual can learn).  
Knowledge base is what the individual “knows.” This 
“knowing” includes both correct and incorrect information.  

Schraw et al. (2005) also stated that metacognition 
“includes knowledge about oneself as a learner and how to 
regulate one’s learning” (p. 637). Metacognition refers then to 
what students know about how they think (how information is 
organized, stored, and retrieved in their minds, how 
connections between ideas are formed) and learn (what 
strategies or techniques they use). Strategies “refer to 
procedures that enable learners to solve specific problems” (p. 
637). Simply put, strategies can be defined as what the students 
do. Finally Schraw et al. claimed motivation referred to the 
beliefs one has about their potential success at a given task. 
Motivation also included the goals set by the learner. If a 
student feels that he or she can succeed, but needs to work at it, 
then the student will put forth the effort. Conversely, if the 
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student does not need to put forth an effort or does not believe 
that he or she can succeed, then the student will not do the 
work. The key to motivation, based on this definition, is to 
increase the student’s self-confidence in his or her abilities, but 
still provide a challenge. 

Cognitive ability impacts the knowledge base, and 
influences metacognition and the strategies that are used. 
Because knowledge, metacognition, and strategies are closely 
connected, they are combined together into one area (See 
Figure 1). A more in depth discussion of the empirical research 
that justified combining these three areas into one can be found 
in Schraw and Brooks (1999). This combined area is referred to 
as the knowledge-regulation component. The ICML captures 
the interactions between these four components (Cognitive 
Ability, Cognition, Regulation, and Motivation) that affect 
learning and describes how one component can compensate for 
deficiencies in others. The ICML model shows that learning 
can be affected directly by cognitive ability, motivation, and 
the knowledge-regulation components, and indirectly through 
the knowledge-regulation and motivation components.  

Based on this model, learning can be affected by 
knowledge-regulation, which is shown by the arrow going from 
knowledge-regulation to learning. Learning can also be 
indirectly affected by knowledge-regulation through the 
motivation component, which is shown in the model by the 
arrow to motivation and the arrow from motivation to learning. 
Schraw and Brooks (1999) established and gave reasons for the 
direct and indirect connections between the components. 
Schraw and Brooks claimed ICML “is an empirically-based 
model that provides a comprehensive approach to learning. It 
includes all of the main components known [from the 
literature] to affect learning. More important, it provides a 
tentative basis for evaluating the relationships among these 
components” (p. 8, emphasis added). Therefore, the ICML 
framework provided insight on the components that affect 
learning, how they are connected, and how one stronger area in 
the ICML framework can compensate for a weaker area. 
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Figure 1. Interactive, Compensatory Model of Learning (with 
correlation coefficients) 
 

The numbers in the figure refer to the estimated correlation 
coefficient between two components. Each correlation 
coefficient is the estimated value of what has been measured in 
a number of empirical studies (Alexander, Carr, & 
Schwanenflugel, 1995; Brody, 1992; Garner, 1987; Glenberg 
& Epstein, 1987; Graham & Weiner, 1996; Herrnstein & 
Murray, 1994; Schunk, 1996; Zimmerman, Greenberg, & 
Weinstein, 1994). For example, cognitive ability is correlated 
to learning with correlation coefficients ranging from 0.3 to 
0.4. Hence, the correlation coefficient of 0.3 relates these 
components. The other correlation coefficients are shown in 
Figure 1. Schraw and Brooks (1999) stated, “most experts 
agree that knowledge and regulation exert a strong direct effect 
on learning that is greater than the effects of either ability or 
motivational beliefs” (p. 9). This connection is the strongest 
correlation with correlation coefficient of 0.6. 

The compensatory part of the model refers to how students 
can compensate for a weakness in one component with the 
strength of another component. For example, students who 
have weaker cognitive abilities (also referred to as intelligence) 
can compensate by having a stronger knowledge-regulation 
component. That is, students can regulate their learning while 
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they work diligently to increase their knowledge about a 
particular topic. Through this iterative process, as they go from 
one topic to another topic in the course to gain knowledge, they 
successfully compensate for their weaker knowledge in a 
subject as compared to other students. The notion of 
compensatory processes is supported by other literature 
(Gardner, 1983; Perkins, Segal, & Voss, 1987; Steinberg & 
Wagner, 1988). Schraw and Brooks (1999) state the following 
compensations may occur: 

(i) Ability compensates in part for knowledge and 
regulation 
(ii) Knowledge and regulation compensate for cognitive 
ability and motivation, and 
(iii) Motivation compensates for ability, knowledge, and 
regulation. 
The compensation part of the ICML could explain why we 

see some students do better in a course than other stronger 
students, even though it would appear from earlier performance 
that they should not. Through hard work, the students 
strengthen their knowledge-regulation component and become 
more motivated as they become more successful, compensating 
for their weaknesses. The compensation component of the 
ICML becomes a powerful lens to view student learning in a 
course (or numerous courses). The next section discusses the 
history of Supplemental Practice and briefly covers literature 
on worked examples. 

 
Background and Literature Review 

 
Supplemental Practice Structure 
 

At our institution, we first implemented Supplemental 
Practice (SP) during the Fall 2004 and originally modeled it 
after Supplemental Instruction (SI) (Arendale, 1994). The prior 
structure of the college algebra class consisted of three lectures 
a week morphed into a structure of two lectures a week in a 
large lecture room, and an active laboratory class once a week 
in computer classrooms where students met in smaller groups. 
The lab class, which was overseen by the instructor and several 
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teaching assistants, was held on Tuesdays while the lecture 
class was held on Mondays and Fridays. The SP days on 
Wednesdays were originally added to the schedule to help 
lower-achieving students. Lower-achieving students (those 
who scored lower than an 80 on a placement exam or scored 
lower than a 70 on any regular exam) were required to attend 
the SP sessions. Starting in the Fall 2006 semester, the SP 
sessions have morphed into active problem-session days 
modeled after the cognitive science “worked-out example” 
research (Carroll, 1994; Cooper & Sweller, 1985; Tarmizi & 
Sweller, 1988; Ward & Sweller, 1990; Zhu & Simon, 1987). .  

The worked-out example research, henceforth denoted as 
worked examples, has students study a worked example for a 
particular topic, ask questions about anything in the example 
that they do not understand, and finally work a similar example 
without reference to the worked example, nor other outside 
sources. The SP sessions and worksheets have been developed 
based on the worked example research. The literature on 
worked example has shown many benefits including: (a) 
reduces cognitive load and in turn allows cognitive resources to 
be employed towards problem solving (Atkinson et al., 2000; 
Cooper & Sweller, 1987; Sweller, 1988), (b) builds problem 
solving knowledge and schema (Sweller & Cooper, 1985; 
Sweller, 1988), (c) helps with rule automation (Cooper & 
Sweller, 1987), (d) helps with flexible problem solving transfer 
to different problems (Catrambone & Holyoak, 1990; Reed & 
Bolstad, 1991), and (e) students are more likely to focus on 
deep structures and more sophisticated problem solving  
strategies (Atkinson et al., 2000) . 

  
Worked Example Research 
 

The discipline of cognitive science deals with the mental 
processes of learning, memory, and problem solving. Worked 
example research was developed based from Sweller’s (1988) 
cognitive load theory. The total load on working memory at 
any moment in time is referred as the cognitive load. Most 
people can retain about seven “chunks” of information in their 
working memory and when they exceed that limit, there will be 
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a loss of information in the working memory. In other words, if 
there is an overflow of information in the working memory, 
then consequently a cognitive overload occurs. Cognitive 
overload can be thwarted if one limits information so that it 
does not exceed the students’ working memory. One way this 
can be done is to transfer information from working memory to 
long-term memory as information is being processed (or soon 
after). According to Sweller (1988), optimum learning occurs 
in humans when one minimizes the load on working memory, 
which in turn facilitates changes in long-term memory.  

It has been suggested that worked examples reduce the 
cognitive load on a student and might optimize schema 
acquisition (Sweller & Owen, 1989; Sweller & Cooper, 1985). 
In addition, worked examples have been researched in a variety 
of subjects: mathematics (Cooper & Sweller, 1985; Zhu & 
Simon, 1987), engineering (Chi, Bassok, Lewis, Reimann, & 
Glaser, 1989), physics (Ward & Sweller, 1990), computer 
science (Catrambone & Yuasa, 2006), chemistry (Crippen & 
Boyd, 2007), and education (Hilbert, Schworm, & Renkl, 
2004). We highlight a few of these at the end of this section. 

Sweller and Cooper (1985) conducted one of the first 
studies on worked examples with high school-level Algebra 
students. Through five experiments, they examined the use of 
worked examples as a substitute for problem solving. Sweller 
and Cooper's first experiment found that more experienced 
students had a better cognitive representation of algebraic 
equations than less experienced students as measured by their 
ability to recall equations and distinguish between perceptually 
similar equations. Sweller and Cooper (1985) concluded that 
there was “evidence that expertise in solving algebra 
manipulations problems is, at least in part, schema based.” (p. 
67). During this experiment, the students were asked to read 
and to make sure they understood the worked examples.  

The other experiments integrated an alternating pattern 
between worked-out examples and conventional problems. The 
alternating pattern increased the motivation of the students to 
read and understand the worked example if they had to solve a 
conventional problem immediately after the worked example. 
Throughout their experiments, Swellers and Cooper also found 
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that worked examples aided in reducing the acquisition time 
and improved achievement on the test phase of the 
experiments. However, when it came to dissimilar problems, 
the students in both the control and experiment groups 
struggled. As Sweller and Cooper (1985) concluded, “worked 
examples are of assistance to students when faced with similar 
problems, the advantage does not extend to dissimilar 
problems” (p. 83). 

Zhu and Simon (1987) demonstrated the feasibility and 
effectiveness of teaching Chinese middle school students 
mathematical skills through chosen sequences of worked 
examples. In the first experiment, 20 Chinese middle school 
students were chosen for the experimental group where half of 
the students learned using ten worked examples and the other 
half learned by working a sequence of ten carefully arranged 
problems on factoring quadratics. After students spent 
approximately thirty minutes working examples or completing 
problems, they worked through the test questions.  All 20 
experimental participants solved the test questions correctly. 

 In subsequent experiments, Zhu and Simon (1987) 
replicated the results of their first experiment on factoring with 
another group of students and expanded the research to other 
tasks devoted to various topics: exponents, geometry, and 
ratios and fractions. This was followed up with retesting the 
students after a year on two of the tasks. Zhu and Simon found 
that students retained the material at a very high level and the 
experimental groups retained material at a slightly higher 
percentage than the control group.  

Chi, Bassok, Lewis, Reimann, & Glaser (1989) 
investigated how 10 students studied worked examples on 
applications of Newton’s laws of motion and how this learning 
transferred. The study was broken down into two phases: a 
knowledge acquisition phase and problem solving phase. 
During the problem solving phase the students needed to 
transfer what they had learned from the worked examples. Chi 
et al. (1989) found the more successful students, labeled as 
good students, (a) verbally generated more self-explanations 
while studying the worked examples, (b) verbally generated 
more accurate self-monitoring statements while studying the 
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worked examples, (c) referred to the worked examples less 
during the problem solving phase, and (d) reviewed only 
specific parts of the worked examples when they referenced 
worked examples, when compared to less successful students 
(labeled as poor). Chi et al. (1989) demonstrated that while 
students studied worked examples, “good” students generally 
monitored their own understanding and misunderstanding 
through self-explanations, while “poor” students did not 
generate sufficient self-explanations or monitored their 
learning inaccurately. 

Ward and Sweller (1990) examined the effect that worked 
examples would have on high school physics students in 
Australia when the worked examples required students to 
simultaneously attend to multiple sources of information at a 
time (coined split-attention). Ward and Sweller (1990) 
established that students who used worked examples, formatted 
to reduce split-attention, achieved test performances superior to 
those exposed to worked examples that required split-attention. 
The worked examples that required split-attention, forced a 
higher cognitive load on students and therefore less working 
memory to process the examples. Therefore, worked examples 
that do not require students to integrate multiple sources of 
information are optimal during learning. 

Excluding Zhu and Simon (2007), the research on worked 
examples in mathematics has been conducted in a laboratory 
setting. The research was not done on a particular course in 
high school or college, but students volunteered to be part of 
the study and meet with the researchers in a designated space. 
The current research was conducted in a large lecture 
classroom setting and concentrated on determining if worked 
examples helped promote success in the course. In addition, 
past worked example research has dealt very little with college 
mathematics courses (Sweller & Cooper, 1985; Ward & 
Sweller, 1990; Zhu & Simon, 1987). In addition, the previous 
studies have not investigated how worked examples can help 
students learn mathematics in large lecture classes, or during a 
supplemental day of class.  

The results of our study could be valuable to other 
researchers that are working to promote student success in 
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large lecture classes. Our guiding research question was: Do 
students in the experimental group earn better grades on exams 
and quizzes and more points in the course than students in the 
control group? 

 
Prior Data 

 
Data has been generated for all students in College 

Algebra, including SP sessions attended since Spring 2007. 
Students have historically performed better in the class as the 
number of SP days they attended increases. Additionally, the 
success rates—the number of students that receive at least a C 
divided by the total number of students—exceeded 65% range 
for students that attended 9 or more SP days in a given 
semester. Figure 2 shows success rates versus number of SP 
days attended in the Spring 2007. 
 

 
Figure 2. Percentage of grades of C or above versus supplemental 
days attended 

 
The overall course averages in the spring 2007 College 

Algebra course are shown below (See Table 1). Table 1 gives 
the overall course average of students that attended 1 to 13 
supplemental days. We see that students that attended eight or 
more SP days earned overall course averages in the 70% range 
with a maximum course average of 77.8% for students that 
attended 12 SP days. Also, all but the students who attended 8 
and 11 SP days earned overall course averages above 75%. The 



Group Learning and Cognitive Science 

           37 

data looked very promising in showing that SP helps students 
in the course. However, another reading of the data could be 
suspect because students voluntarily attended the SP sessions 
and perhaps only the motivated students attended the majority 
of the sessions. To be able to investigate if SP sessions were 
beneficial to the students, the author designed an experiment 
prior to the Fall 2009 semester to give the experimental group 
the treatment (worked example worksheets) and the control 
group an alternative question-and-answer session. 
 
Table 1 
Course Averages and SP Attendance 

Number of Supplemental days 
attended 

Course 
Average 

Number of 
students 

0 10.615 2 

1 16.185 10 

2 22.615 4 

3 20.893 3 

4 35.630 3 

5 45.078 9 

6 63.376 22 
7 67.040 54 

8 71.746 34 

9 75.354 27 

10 74.963 29 

11 73.771 15 

12 77.838 19 

13 76.625 11 
14 75.579 7 

 
Methodology 

 
Course Description 
 

Three different arrangements of College Algebra courses 
were offered at the University. The first arrangement was a 3-
day large lecture College Algebra course that was comprised of 
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two lectures a week in a large classroom setting and one day a 
week in the lab where students actively work in smaller-group 
on mathematical tasks. The second type was a 4-day College 
Algebra course, which had the same format as the 3-day 
College Algebra course, except the fourth day is spent in SP. 
The final type was a 5-day College Algebra course was 
comprised of five lectures a week in a class size of 
approximately 40 students. All College Algebra courses 
required specific placement exams scores. A course 
coordinator was responsible for ensuring that all sections of the 
4-day College Algebra course's structure, labs, quizzes, and 
exams were the same from section to section. The same 
instructor taught all three sections during the semester the study 
was being conducted.  

The quizzes were given online outside of class and students 
were given up to three attempts on each quiz. Laboratories 
were completed during the lab day, once a week in groups of 
two or three students. The labs had interactive applets, mostly a 
graphing applet, that students worked on to complete the lab. 
The graphing applet could be used on the exams in place of a 
graphing calculator. The exams and final were common online 
exams consisting of 20 multiple-choice questions. They were 
administered through the online management system. The 
exams and final were taken during lab time approximately once 
every three or four weeks. Students were given a list of 
suggested homework problems, but no homework was 
collected. The quizzes and exams were based on the 
homework. The course consisted of 100 points for attendance, 
200 points for eight labs, 100 points for six online quizzes, 100 
points for each of four computerized exams, and a 200 point 
common online final.  
 
Participants and Setting 
 
The setting for the research was a large lecture 4-day College 
Algebra course with an annual enrollment of around 1000 
students at a research University near the east coast. The 
participants for this study were part of the 4-day College 
Algebra and in one of three sections. One section was taught in 
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the morning and the other two in the early afternoon. The 
Monday class was the SP class time where students worked in 
small groups on the worked example worksheets. There were 
497 students enrolled in college algebra with 177 students in 
the control group and 320 students in the experimental group, 
with the demographics shown in Table 2. Students were from a 
variety of majors due to College Algebra being a general 
elective course and many majors required it for their degree 
requirements.  
 
Table 2 
Demographics of the Control and Experimental Groups 
Demographic Control Experimental 
Male 58.19% 52.83% 
Female 41.81% 47.17% 

Freshman 68.93% 64.78% 
Sophomore 21.47% 27.04% 
Junior 7.34% 5.35% 
Senior 2.26% 2.52% 
Graduate 0% 0.31% 

 
Worked Example Worksheets 
 

During the SP days, worked example worksheets were 
handed out to the students to work on in groups. SP days were 
moved from Wednesdays to Mondays in Fall 2008 so that 
students would have SP days before the exams that occurred 
periodically on Tuesdays. Also it was decided that we would 
not do SP during the first week since students can add the class 
late and this would allow us to spend more time reviewing 
basic algebra. Students formed groups with peers near them as 
they saw fit because the class was in a large lecture classroom 
setting with theatre-seating structure. Usually, students worked 
with one to three other students seated close to them. The 
worked example worksheets consisted of a solution of a 
College Algebra problem followed by a problem for the 
students to work out. For example, the following worked 
examples (see Figure 3) were given on worksheets 3 and 11 
during the 5th and 13th SP sessions.  
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Figure 3. Sample Worked-out Examples from several Worked-out 
Example Worksheets 
 
The first SP occurred on the third Monday of the semester. 
These two problems are stated exactly as they were on the 
worksheet, which was always given to the students as one sheet 
in a two-column format with headings on all worked examples. 
Also, each of the examples were followed by the section in the 
textbook (Sullivan & Sullivan, 2006). Student could then 
reference the text outside of class. There were approximately 8 
to 10 worked examples and problems on each worksheet.  

The material on the worksheets reviewed some of the 
content covered during the previous weeks lecture. Due to time 
constraints, not all of the topics from the previous week’s 
lecture were covered on the worksheets. The worksheets 
comprised of problems directly from or derived from the 
problems in the textbook with no new material being presented. 
Finally, the worksheets were modeled after worked example 
research (Cooper & Sweller, 1985) because it presented an 
expert’s solution to a problem followed by a problem for the 
student to work out. Unlike previous worked example research, 
it was not plausible to ask the students not to reference the 
worked example while completing another problem. 
Furthermore, most studies on worked examples stated that the 
student should be given a similar problem. However, the SP 
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problems varied in how similar they were to the worked 
examples. 
 
Experiment 

 
Of the three 4-day College Algebra courses, the researchers 

randomly designated one course section as the control group (n 
= 177) and the other two as the experimental group (n = 320). 
In the experimental group, the students were given a “worked-
out example” worksheet at the beginning of each of the 13 SP 
days and asked to work in groups to complete the worksheet. 
Two to three undergraduate class assistants and one graduate 
student circulated around the room to answer any student 
questions about the worksheet. In the control group, a graduate 
student organized a question-and-answer session during the 
extra day instead of giving a worksheet to the students. 
Students were able to get any question answered, but the 
graduate student only answered student questions. Quantitative 
data including course scores on exams and quizzes, 
supplemental days attended, class attendance, and total points 
were collected for all students, and analyzed at the end of the 
semester. There were similar demographics in both the control 
and experimental groups. 
 

Data and Results 
 

In this section, we will compare the control and 
experimental groups as whole groups and in terms of levels of 
prior knowledge. We will then go into more detail by 
comparing the control group versus groups of students that 
were extremely motivated, as measured by attendance of SP 
days, and comparing specific groups in the experimental group. 
We begin by looking at the control and experimental groups as 
a whole. 
 
Control and Experimental Groups 

 
Data from the experimental and control groups were 

compared on a variety of levels by using a t-test with equal 
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variances. This test (t-test with equal variances vs. t-test with 
unequal variances) was deemed appropriate because the F-test 
used to measure unequal variances resulted in p-values that 
were greater than 0.05, meaning that the variances were not 
significantly different. There was one occurrence where the p-
value was close to 0.05 and we have made a note of this in 
Table 4. The control and experimental groups had similar 
levels of retention, the number of students that completed the 
course, at 84% and 80.5% for the control group and 
experimental group, respectively.  

At the beginning of the semester, all students were given 
an old ACT math exam (ACT, 2002-2003) that consisted of 60 
questions. Students were given extra credit points for the ACT 
exam on a sliding scale. This ensured that the better a student 
performed, the more extra credit, up to 10 points, he or she 
earned. The ACT exam provided a measure of students’ prior 
mathematical knowledge. Students were given 60 minutes to 
complete the ACT exam, with each question graded as right or 
wrong. The number of correct answers out of 60 was recorded. 
Table 3 shows the topics covered by the ACT, what section of 
the course's textbook covered those topics, and the number of 
questions related to those topics. There was some overlap 
among the sections. For example, laws of exponents were 
covered in both the review and sixth chapter. 

Table 2 shows that 27 out of 60 questions are on review 
topics that students should have covered in high school algebra. 
An additional 17 questions would be more than likely covered 
in high school algebra (linear equations, inequalities, absolute 
value, distance, midpoint, basic graphing, and slope). 
Furthermore, one could argue that the Chapter 3 topics on the 
ACT dealing with the concept of functions are covered in high 
school algebra. Therefore, around 75% of the ACT questions 
address concepts that are covered in typical high school 
algebra, so it was seen as a valid measure of students’ prior 
knowledge entering the class. This estimate is conservative 
because there are also questions on the ACT that come from 
Chapter 6 (composition of functions) and Chapter 12 (systems 
of equations), topics that are covered in many high school 
algebra classes. Butler, Pyzdrowski, Walker, and Butler (2012) 
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reported the same breakdown (75%) after analyzing the ACT 
on topics covered in the Sullivan and Sullivan (2006) College 
Algebra textbook. With all of this information and the fact that 
ACT is used for college admission, we believe the ACT 
provided a good assessment of prior knowledge and was a 
valid assessment for this purpose.  
 
Table 3 
Breakdown of the ACT  

Chapter of the 
Textbook (Sullivan & 
Sullivan, 2006)/Other 

Topics 

Topics from Chapter on ACT Number of 
Questions 

Review Number Systems, Evaluating 
Algebraic Expressions, using laws of 
exponents, perimeter 

27 

1 Linear equations, application using 
linear equations, absolute value 
inequalities, inequalities, midpoint, 
application of slope, absolute value, 
basic graphing, distance 

11 

2 Lines  6 

3 Properties of Functions 1 

6 Composite functions, Logarithms, 
and Exponential and Logistic 
Growth and Decay Models 

3 

12 System of Equations 2 

Probability and 
Statistics 

Average, Probability, Median, 
Weighted Average 

5 

Trigonometry Definition & Graphs of Trig 
functions, Trig Identities, angles, arc 
length 

5 

 
Figure 4 shows the control and experimental groups’ prior 

and post mathematical knowledge measured by the old ACT 
exam. At the beginning of the semester, the mean control and 
experimental groups’ ACT scores were 28.40 and 26.91 with 
standard deviations of 6.41 and 6.86, respectively. The 
difference between the control and experimental groups were 
statistically significant (p = 0.012) on the (pre) ACT test. 
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Figure 4. Prior and Post Mathematical Knowledge measured 
by an old ACT exam 

 
At the end of the semester, the control and experimental 

groups earned mean ACT scores were 32.81 and 32.16, with 
standard deviation of 6.46 and 7.22, respectively. There was no 
significant difference between the mean post-ACT scores of 
the two groups. Therefore, the experimental groups were able 
to close the gap on the control group. 
 
Table 4  
Means and Standard Deviations for Tests 
 Test 1 Test 2 Test 3 Test 4 Final Quizzes Current 

Pts 
Control 
Group 
(n=177) 

68.84 
(16.21) 

66.86 
(19.93) 

66.58 
(19.61) 

67.23 
(22.67) 

112.20 
(48.04) 

71.52 
(18.89) 

453.24 
(120.04) 

Experiment 
Group 
(n=320) 

67.52 
(16.18) 

69.38 
(17.99) 

70.05 
(19.76) 

68.66 
(23.88) 

120.66 
(47.28) 

74.57 
(20.65) 

470.82 
(119.49) 

 
The two groups were compared with respect to each exam, 

the final, quizzes, and current points (without any attendance or 
lab grade). Table 4 shows the exact scores, with standard 
deviation in parentheses. The experimental groups 
outperformance on test 3 (p = 0.031) and the final exam (p = 
0.029) was statistically significant. The experimental groups 
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scores outperformed, but not statistically significant, the 
control group on test 2 (p = 0.076), quizzes (p = 0.052) and 
current points (p = 0.059). There was no difference between the 
control and experimental groups with respect to test 1 or test 4. 
We note that the experimental group outperformed the control 
group on everything except test 1. There were only two SP 
days before the first exam and the students were getting used to 
the worked example worksheets, so it is reasonable that there 
were no significance on exam 1. For all other exams and the 
quizzes, the group of students that used the worked example 
worksheets outperformed the group of students who did not. 

Course grade point average was calculated to compare the 
two groups on the average course grade earned. This was 
accomplished by assigning a quantitative score for the final 
grade that each student earned in the course (A = 4, B = 3, C = 
2, D = 1, and F = 0). The course grade point average for control 
group was 1.97 and the experimental group was 2.13 with 
standard deviations of 1.17 and 1.27, respectively. The 
experimental group outperformed the control group, although 
this was not statistically significant (p = 0.080). 
 
Experimental Group versus Control Group Based on 
Levels of Prior Knowledge 

 
Through the ICML framework students can compensate for 

weaker knowledge by having stronger knowledge-regulation 
and motivation components. To investigate this, the researcher 
examined the difference between the control and experimental 
groups based on levels of prior knowledge. The high prior 
mathematical knowledge group was defined to be all students 
with a score of 31 or more out of 60 on the old ACT math 
exam. The high prior mathematical knowledge control (n = 54) 
and experimental (n = 88) groups were denoted as high control 
and high experimental. The medium prior mathematical 
knowledge group was defined to be all students with an old 
ACT math exam score from 26 to 30. The middle prior 
mathematical knowledge control (n = 59) and experimental (n 
= 89) groups were denoted as middle control and middle 
experimental. The low prior mathematical knowledge group 
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was defined to be all students with an old ACT math exam 
score of 25 or below. The low prior mathematical knowledge 
control (n = 49) and experimental (n = 119) groups were 
denoted as low control and low experimental. These ranges in 
scores resulted from the researchers dividing the control and 
experiment participants in similar size groups of students with 
higher, average, and lower scores. The n values in each group 
would change quite a bit if the range was changed and hence 
the chosen ranges yielded approximately similar groups. 

Figure 5 shows the prior/post mathematical knowledge for 
the control and experimental groups based on the level of prior 
knowledge groups. Comparing prior, there was no statistically 
significant difference in mathematical knowledge for the high 
control, 35.26, and high experimental, 34.84. Similarly, no 
statistical significance was seen in the low control, 21.14, and 
low experimental, 20.45. However, for the prior knowledge 
score differences between the middle control, 28.14, and the 
middle experimental, 27.71, was statistically significant (p = 
0.041), with standard deviations of 1.48 and 1.43, respectively. 
Comparing post, there was no statistically significant 
difference in mathematical knowledge for the high, middle, and 
low groups. 

 

 
Figure 5. Prior/Post Mathematical Knowledge Based on Prior 
Knowledge Level 
 

Furthermore, there was no statistically significant 
difference between the performance of the high control group 
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and the high experimental, but the high experimental 
consistently outperformed the high control group on the exams, 
final, quizzes, course GPA, and total points (See Table 5). 
Similarly, the difference between the performance of the low 
control and low experimental was not statistically significant 
These results are expected because the high prior knowledge 
group comes into the class with a stronger mathematical 
background than many of the students in college algebra. The 
low prior knowledge group came into the class with a weaker 
mathematical background than other students in college algebra 
and has too much ground to make up to be proficient in college 
algebra. 

Unlike the high and low prior mathematical knowledge 
levels, the middle prior mathematical knowledge level was 
where the data was statistically significant. The middle 
experimental outperformed significantly the middle control on 
current points, test 3, final, quizzes, and course GPA. In 
addition, the middle experimental group outperformed the 
middle control group on test 1, 2, and 4 (See Table 6).  
 
Table 5  
Scores for the low and high prior knowledge group 
 High Prior Knowledge Group Low Prior Knowledge Group 

 

 

Mean 
Control 
(n=54) 

Mean 
Experimental 
(n=78) 

Mean 
Control 
(n=49) 

Mean 
Experimental 
(n=104) 

Current 
Points 

520.03 529.45 421.84 436.57 

Test 1 75.83 74.20 64.80 61.30 

Test 2 77.69 78.01 59.08 63.91 

Test 3 74.07 78.13 61.12 64.62 

Test 4 75.37 76.70 64.18 64.20 

Final  139.26 142.73 101.84 110.34 

Quizzes 77.72 79.68 70.82 72.20 

Course 
GPA 

2.52 2.72 1.61 1.80 
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Table 6 
Middle Prior Knowledge Mathematical Level 

 
 

Mean 
Control 
(n=59) 

Mean 
Experimental 
(n=89) 

Standard 
Deviation 
Control 

Standard 
Deviation 
Experimental 

P – Value 
(p < 0.05 is 
significant) 

Current 
Points 

431.33 474.89 131.46 110.62 0.016* 

Test 1 67.88 69.66 15.18 13.87 0.231 
Test 
2** 

64.41 69.49 22.32 15.45 0.065 

Test 3 66.19 72.53 19.94 17.44 0.021* 
Test 4 63.47 69.33 24.48 24.54 0.079 
Final  100.17 117.64 54.63 45.90 0.019* 
Quizzes 69.21 76.24 20.09 20.43 0.020* 
Course 
GPA 

1.85 2.19 1.26 1.22 0.050* 

** The variances were unequal according to the F-test, so the 
appropriate t-test was used. 
 

Discussion 
 

For the most part, prior anecdotal data had shown that the 
more days of SP that a student attended, the better the student 
performed overall in College Algebra. One could argue that the 
students that were motivated, as measured by SP attendance, 
came to the SP sessions 8 or more times. Possibly explaining 
why they were more successful. This research study was 
developed to investigate whether the SP sessions helped 
students be more successful on specific course components and 
overall course success.  

We see that the control group started with statistically 
significant higher prior mathematical knowledge than the 
experimental group. However, the control and experimental 
groups ended the semester with no statistically significant 
difference in post mathematical knowledge. The students in the 
experimental group added to their prior knowledge throughout 
the class. Consequently, they had similar post mathematical 
knowledge when assessed by an old ACT exam. On average 
students in the experimental group increased their ACT exam 
score by 5.15 points compared to an increase of 4.32 points for 
the control group, which was not significant (p = 0.089). Many 
of the students attended the SP days regularly. We took this as 
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evidence of their motivation to learn the college algebra 
content. We see the above data as showing the experimental 
group increased, notable but not significant, in their prior 
knowledge more than for the control group. One possible 
explanation for this would be that students in the experimental 
group had a stronger motivation component that compensated 
for a weaker prior knowledge component. This is very 
important because the ICML framework takes into 
consideration that students can compensate a weaker 
knowledge component with a stronger motivation component 

Examining things a little further, we see that the high and 
low level prior mathematical knowledge groups started with 
similar prior knowledge but the middle prior mathematical 
knowledge control group was higher than the middle prior 
mathematical knowledge experimental group. However, all 
three experimental groups (high, middle, and low) ended the 
semester with similar post mathematical knowledge as the 
three control groups. The middle group started with lower prior 
knowledge, but ended with similar post knowledge in the 
course. We can conclude that it was the middle group’s 
mathematical knowledge that was affected the most by the 
worked examples. An explanation for this is two-fold and 
based on the ICML framework. First, students compensated for 
a weaker prior knowledge component with a stronger 
motivation component. Second, the worked examples 
worksheets helped the students in the middle experimental 
group to accumulate the knowledge needed to bring their 
mathematical knowledge to a similar level of the middle 
control group. 

We also found that, for the most part, the difference in the 
middle prior mathematical knowledge experimental group 
performance was greater than the middle prior mathematical 
knowledge control group was statistically significant. In fact, 
there were only three components where they only 
outperformed (not significantly) the control group. The non-
significance on test 1 for the middle groups is understandable. 
There were only two SP days before test 1 and students had to 
get comfortable with the worked example worksheets and the 
structure of the SP sessions. Both test 2 and test 4 showed that 
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the middle experimental group outperformed the middle 
control by a half letter grade and the difference was very close 
to being statistically significant. Exponential and Logarithmic 
Functions and Properties make up the majority of the topics on 
test four and we believe the students were less comfortable 
with these topics. Therefore, this presented a plausible reason 
why there was not significance on test four. Finally, the middle 
experimental group outperformed the middle control group on 
current points, test three, final exam, quizzes, and course GPA. 
We see that unlike the lower prior knowledge group, the 
middle prior knowledge experimental group was able to 
compensate for their lack of prior mathematical knowledge via 
motivation to become more successful in the course compared 
to the middle prior knowledge control group.  
 

Conclusion 
 
We found that the SP sessions benefited the middle 

experimental group the most. Using the ICML framework, SP 
sessions helped the students in the middle experimental utilize 
a stronger motivation component to compensate for a weaker 
knowledge component. In addition, as their stronger motivation 
compensated for weaker knowledge, they increased 
(strengthened) their knowledge through learning in an iterative 
process throughout the semester. This led to more learning 
directly from their knowledge-regulation component and 
indirectly through motivation. We propose that the high 
experimental group was not motivated any differently than the 
high control. That is, the high prior mathematical knowledge 
group would learn the material no matter what intervention was 
given in the class. Using the ICML perspective there are two 
components that can compensate for the knowledge-regulation 
component: ability and motivation. As such, the high prior 
knowledge group possessed the ability and did not need as 
much motivation.  

It is not completely clear why there was no statistically 
significant difference in the lower prior mathematical 
knowledge groups. The research by Chi et al. (1989) might 
shed some light on this. Perhaps the high prior mathematical 
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knowledge group was comprised of the “good” students that 
have sufficient self-regulation skills and the low prior 
mathematical knowledge group was comprised of the “poor” 
students that do not have sufficient self-regulation skills. We 
propose that the lower groups started the course with a low 
prior knowledge base, such that they were not able to 
compensate for this lack of knowledge through cognitive 
ability or motivation. 

It would be interesting to see if the higher cognitive ability 
students in the low prior mathematical knowledge group are 
able to compensate for the weak knowledge-regulation 
component. This would illuminate whether cognitive ability 
compensates for knowledge-regulation for the lower prior 
mathematical knowledge group. Future research will attempt to 
investigate this and why the middle group seemed to benefit 
the most from motivation.  
 

Implications for Teaching 
 
Many college instructors teach large lecture sections of 

introductory mathematics classes and struggle with high 
percentages of students that earn grades of D or F, or simply 
withdraw (DFW rate) from the class. It takes resources to offer 
recitation sessions, out-of-class sessions, or tutoring. These are 
familiar interventions colleges use to lower the DFW rate and 
help students be successful. This study demonstrated that 
carefully designed worksheets modeled after worked examples 
coupled with active group sessions can be very beneficial in 
helping students become more successful.  

The SP day each week allows an extra active session where 
students can work on comprehending material in groups. These 
SP days are like an extra day in class, however, they only 
emphasize material that has already been covered during the 
lecture days. Students benefit from asking questions when they 
do not understand a problem and get individual attention from 
a class assistant or the instructor. The obligation of the 
instructor is to have a group of class assistants ready to help 
students with the material. This extra day of class per week is 
also important because, for the most part, students will show up 
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for the extra day of class to actively participate compared to an 
out-of-class session. Because SP is part of their normal class 
schedules, students will not have any class or work conflicts, 
which they may have with out-of-class sessions. This 
eliminates one reason for not attending.  

Moreover, students are less likely to visit the instructor in 
his office during office hours, nor go to a mathematical tutoring 
center. For the instructor, SP days is the most efficient way to 
help many students at the same time and can be thought of as 
an office hour with the whole class. There would be no way for 
the instructor to help this many students during office visits and 
reduces the time needed to explain the material many different 
times to different students during office hours. The worked 
example worksheets act like a tutor by presenting students with 
a number of examples and problems to practice.  

We showed that the high and low prior mathematical 
knowledge groups did not benefit much. Therefore other modes 
or uses of worked example might be designed to help these 
students. For example, maybe a smaller group session using the 
worked example worksheets with a focus on helping the 
students more would benefit the low prior mathematical 
knowledge group. One would have to be more creative with the 
high prior mathematical knowledge group. The addition of 
more challenging problems or tasks in SP session could be 
beneficial for these students. Perhaps the high prior knowledge 
group could become peer mentors to help the low prior 
knowledge group. Both of these suggestions would challenge 
the high prior knowledge group and help improve their 
knowledge-regulation component. 
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