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Algorithms and representations have been an important aspect of 

the work of mathematics, especially for understanding concepts and 

communicating ideas about concepts and mathematical relationships. 

They have played a key role in various mathematics standards 

documents, including the Common Core State Standards for 

Mathematics. However, there have been some public 

misunderstandings about the standards and the role that algorithms 

and representations have in the teaching and learning of 

mathematics. In this article, I will first look at how algorithms and 

representations are discussed in the standards, and then examine and 

unpack some of the public conceptions around algorithms and 

representations. 

“The ways in which mathematical ideas are represented are 

fundamental to how people can understand and use those 

ideas” (National Council of Teachers of Mathematics [NCTM], 

2000, p. 67). Representations play an important role in 

supporting students’ understandings of mathematical concepts, 

which can afford students opportunities to develop conceptual 

understandings of algorithms. Over the past few decades, a 

great deal of research has been conducted on the use of 

algorithms and representations in mathematics (Goldin, 2002; 

Lesh & Harel, 2003; Lesh, Post, & Behr, 1987; Orrill, Sexton, 

Lee, & Gerde, 2008). These studies illustrate the significance 

of being able to create and use different representations 

(pictures, drawings, tables, graphs, etc.) as a way of 

understanding mathematical relationships and supporting 

conceptual understanding of algorithms. As a result, both 
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representations and algorithms have played an important role in 

various sets of mathematics standards (NCTM, 2014; National 

Governors Association Center for Best Practices [NGA] & 

Council of Chief State School Officers [CCSSO], 2010; 

NCTM, 2000). In this article, I will first consider the role 

algorithms and representations such as the number line have in 

the Common Core State Standards for Mathematics (CCSSM; 

NGA & CCSSO, 2010) and then I will examine the public 

perceptions concerning the use of algorithms and number lines.  

Representations, algorithms, and strategies are all related 

constructs and will be discussed throughout this piece, so it is 

important to note how I distinguish between them. Strategies 

are the approaches that one takes when attempting to solve a 

problem, but these strategies are not pre-determined, formulaic, 

or outlined. In contrast, according to Mauer (1998), an 

algorithm is a “precise, systematic method for solving a class 

of problems…takes input, follows a determinate set of rules, 

and in a finite number of steps gives output that provides a 

conclusive answer” (p. 21). For instance, the standard 

algorithm for subtraction in the United States involves lining 

up the numbers to be subtracted, starting with the ones place, 

seeing if the subtraction can take place, and if not, involves 

taking a ten and then decomposing it into ten ones, and then the 

subtraction continues in this fashion. In this piece, representing 

shall refer to “the act of capturing a mathematical concept or 

relationship in some form and to the form itself” (NCTM, 

2000, p. 67) and representations shall align with Goldin and 

Shteingold’s (2001) use of external representations (e.g., 

figures, drawings, diagrams, graphs, charts, number lines, etc.). 

Representations are often used as ways of communicating 

mathematical ideas and help support the conceptual 

understanding of algorithms or are used in conjunction with 

strategies; but a representation by itself in isolation has no 

meaning. Formulas, equations, and Cartesian graphs are all 

specific representations that can only be analyzed in their 

respective contexts as they are part of “a wider system within 

which meanings and conventions have been established” 

(Goldin & Shteingold, 2001, p. 1). 
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Algorithms and Representations in the CCSSM 

 

Algorithms and representations played an important role in 

both sets of NCTM (1989, 2000) standards documents, and that 

tradition has been continued with the CCSSM. It is important 

to note that across all the standards, the first specific mention 

of a representation is in the second grade standards, which 

introduce the use of the number line as a way of representing 

whole numbers as lengths (NGA & CCSSO, 2010, p. 20). 

Beyond this specific use of a representation, there are 

numerous standards that require students to explore ideas 

through the use of multiple representations (e.g., drawings, 

equations, modeling with objects, graphs), especially when 

exploring and analyzing data, but the choice of representations 

is left for teachers and students to decide. Most often students 

and teachers will use number lines as a representation of choice 

because it supports the development of the concepts of number, 

place value, and even standard algorithms. However, there are 

many parents and other members of the public who believe that 

the CCSSM strictly require students to only use the number 

line (and no other representations) when operating with 

numbers. If students have good number sense, fluidity in 

constructing and deconstructing numbers, and the ability to 

recognize relationships with the aid of the number line, they 

will be able to understand the mathematics behind standard 

algorithms and will be able to use them in more powerful ways 

(McCallum, 2015). In the next section, using the standards 

from grades 2-4, I will demonstrate the relationship between 

the number line and standard algorithms and their role in the 

CCSSM. 

 

Algorithms and Representations in the Content Standards 

 

As mentioned earlier, the first time the CCSSM names the 

use of a specific representation is in the second grade in the 

Measurement and Data strand, but it is important to note that 

representations do appear as early as the kindergarten 

standards. According to Standard 2.MD.B.6, students are to 

relate addition and subtraction to length. The standard reads, 
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“Represent whole numbers as lengths from 0 on a number line 

diagram with equally spaced points corresponding to the 

numbers 0, 1, 2…, and represent whole-number sums and 

differences within 100 on a number line diagram” (NGA & 

CCSSO, 2010, p. 20). This standard attempts to develop the 

concept of a number as a length; each point on a number line 

represents a different magnitude and these magnitudes 

accumulate to create larger or smaller magnitudes. The points 

on the number line then are not numbers themselves, but rather 

labels of the lengths from 0. This standard also relates the 

operations of addition and subtraction with the concept of 

length and distance on the number line. Furthermore, students 

in second grade are expected to understand place value. The 

use of the number line to represent operations with numbers, 

such as addition and subtraction, necessitates a strong 

understanding of place value. Thus it is appropriate that the 

number line would be introduced in this grade before 

introducing the standard algorithms for addition and 

subtraction (Otten & De Araujo, 2015).  

Although the number line is the only representation 

explicitly named in the second grade standards, the standards 

indicate that it should not be the only representation students 

see. For example, in the Number and Operations in Base Ten 

strand for second grade 2.NBT.B.7, students are to “add and 

subtract within 1000 using concrete models or drawings and 

strategies based on place value, properties of operations, and/or 

the relationship between addition and subtraction” (NGA & 

CCSSO, 2010, p. 19). Drawings, concrete models, and 

strategies could include a wide array of approaches aside from 

the standard algorithm or the number line, and phrases such as 

this one appear in standards for later grades as well.  

In third grade, the Number and Operations strand expands 

on the standards from second grade by focusing on multi-digit 

arithmetic. For example, standard 3.NBT.A.2 of this strand 

states, “[F]luently add and subtract within 1000 using strategies 

and algorithms based on place value, properties of operations, 

and/or the relationship between addition and subtraction” 

(NGA & CCSSO, 2010, p. 24). This standard builds on the 

standards from second grade with additional emphasis on 
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fluency. Specifically, instead of focusing on concrete models or 

drawings, it refers to the use of strategies and algorithms. The 

standards encourage teachers to push students to have a more-

developed number sense to determine which strategies and 

algorithms are more efficient.   

Additionally, number lines are expanded in third grade to 

include fractions. Students are expected to develop an 

understanding of fractions in relation to the number line: 

 

 3.NF.A.2.A: Represent a fraction 1/b on a number line 

diagram by defining the interval from 0 to 1 as the 

whole and partitioning it into b equal parts. Recognize 

that each part has size 1/b and that the endpoint of the 

part based at 0 locates the number 1/b on the number 

line. 
 

 3.NF.A.2.B: Represent a fraction a/b on a number line 

diagram by marking off a lengths 1/b from 0. 

Recognize that the resulting interval has size a/b and 

that its endpoint locates the number a/b on the number 

line (NGA & CCSSO, 2010, p. 24). 

 

Figures 1 and 2 illustrate what both of the standards above 

describe. In figure 1, to place 1/2 on the number line, the 

interval from 0 to 1 is partitioned into two (or generally b) 

equal parts, each part of size 1/2. The endpoint of the part 

based at 0 locates 1/2 (depicted as 1/b) on the number line. 

Similarly, to place 3/4 on the number line (see Figure 2), three 

(or generally a) lengths of 1/4 are marked off from 0, and the 

resulting interval is now of length 3/4, with the endpoint of the 

interval being where 3/4 is located (depicted as a/b). In second 

grade, students are expected to use the number line to represent 

whole numbers as lengths and the operations of addition and 

subtraction as finding distances between numbers. In third 

grade, students expand the concept of number to include 

fractions, and as such, need to be able to use the number line 

representation with fractions. 
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Figure 1. Number line partitioned into two equal parts 

representing the location of 1/2 on the number line. 

 

 

 
Figure 2. Number line marked by fourths representing 3/4 on 

the number line. 

 

Standard algorithms first appear in the fourth grade 

standards. In the Numbers and Operations in Base Ten strand, 

under using place value understanding and properties of 

operations to perform multi-digit arithmetic, standard 

4.NBT.B.4 states, “[F]luently add and subtract multi-digit 

numbers using the standard algorithm” (NGA & CCSSO, 2010, 

p. 29). Figure 3 offers an example of the standard algorithms 

for addition and subtraction to which this standard refers. In the 

addition algorithm (shown on the left in Figure 3), the two 

numbers 293 and 172 are aligned so that corresponding place 

values are in the same columns. Then, starting with the ones 

place on the far right and continuing to the left, the digits in 

each place value are added together and the total is recorded 

(e.g., 3 + 2 = 5). If the total in a column is greater than 10, the 

digit in the ones place is recorded and a 10 is regrouped with 

the place value to the left, as is the case in the tens column 

where 9 + 7 = 16. The 6 is recorded and 10 is regrouped in the 

hundred’s column (notated by the 1 above the 2 in the hundreds 

place). The subtraction algorithm (shown on the right in Figure 

3) functions in a similar manner except one subtracts instead of 

adds the digits in each column. If the top digit is smaller than 

the bottom digit, as is the case in the ones column (i.e., 5 is 

smaller than 8), a 10 is decomposed and added to the ones 

column so that the subtraction can be carried out (e.g., 5 

becomes 15 with the addition of 10 ones and 7 groups of 10 is 

reduced to 6 groups of 10). 
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Figure 3. Standard algorithms for addition and subtraction in 

the United States. 

 

Fourth grade students are also expected to expand their 

understanding of number to include decimal representations of 

fractions and to understand how these decimals can represent 

lengths as well as points on the number line (see standard 

4.NF.6; Figure 4). This use of the number line is also applied in 

the Measurement and Data strand of the fourth grade standards. 

Specifically, the second standard in the Measurement and Data 

strand requires solving a variety of word problems and 

representing quantities using diagrams such as a number line 

featuring a measurement scale (NGA & CCSSO, 2010, p. 31). 

For the operations of multiplication and division, the standards 

reference equations, rectangular arrays, and area models as 

possible representations and strategies (see Figure 5).  

 

 
Figure 4. Fractions and their decimal equivalents as 

represented on a number line. 

 
Figure 5. Rectangular arrays (left and middle) and an area 

model for multiplication (right). 
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The multiplication standard algorithm, however, is not 

explicitly introduced until fifth grade (NGA & CCSSO, 2010, 

p. 35) and the division standard algorithm is not explicitly 

introduced until sixth grade (NGA & CCSSO, 2010, p. 42). 

Figure 6 shows examples of the multiplication (i.e., 13 x 12) 

and division (i.e., 257 ÷ 6) standard algorithms in the United 

States. In the multiplication algorithm, (on the left in Figure 6) 

the two numbers are aligned in the same manner as in the 

addition and subtraction standard algorithms. Then, starting 

from the ones place in 12, 2 is multiplied by 3 above it, which 

equals 6, and then the 2 is multiplied by one 10, which results 

in two tens, combined resulting in 26, which is recorded. Next, 

the one ten in 12, multiplied by 3, is 30, and then the one 10 

multiplied by another one 10 results in 100, the combined 

result being 130. Lastly, the two values 26 and 130 are added 

together, giving a total of 156. In the division algorithm (on the 

right in Figure 6), start with the place value column farthest left 

in 257 and divide the 2 by 6, which does not result in a whole 

number. So, building on the 2 to include the next place value, 

makes the new value 25. The division of 25 by 6 results in 4 

with one left over (the 4 is recorded in the tens place above 

257). Then, multiple 4 times 6 to obtain 24. A zero is placed in 

the ones column to subtract 240 from 257, which results in 17. 

The process is repeated with 6 and 17. Afterwards, there are no 

numbers left to divide (5 divided by 6 does not result in a 

whole number), meaning that 257 divided by 6 equals 42 with 

a remainder of 5. 

      
Figure 6. Standard algorithms for multiplication and division in 

the United States. 

 

In summary, from the second through fourth grade 

standards, one gets a sense of the role that algorithms and 
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representations play throughout the standards. One of the 

common perceptions is that the number line is the only method 

required by the standards for solving problems involving 

operations with numbers and that no other representations nor 

algorithms are included. Although the number line is the only 

representation the standards explicitly require, that 

representation is carefully chosen for its connection to 

developing the concept of number as students are introduced to 

different types of numbers. Across the grade levels, 

representations help students explore and analyze relationships, 

and students have the freedom to choose the representations 

they wish to use. This setup allows the flexibility for them to 

develop their reasoning and thinking skills; for example, 

consider the problem 23 x 10. A student may at first need to 

draw out 23 objects iterated 10 times and count the total when 

they reason through the multiplication problem, but as they 

think about the relationships (particularly multiplying by 10), 

they can consider the relationships and ideas about grouping 

they have learned so that they can think of different, more 

efficient ways to solve the problem that do not rely on drawing 

out all of the objects. Children who are exposed to different 

representations, strategies, and algorithms will have a better 

time understanding certain mathematical concepts (e.g., 

multiplication and division of fractions) in later grades. 

 

Public Distortions Concerning Number Lines and 

Algorithms in the Common Core 

 

Recently there have been numerous public debates about 

various aspects of the CCSSM, one of which involves the role 

of number lines and algorithms in teaching and learning 

mathematics. There is some parental concern that the pacing of 

curricula is either too slow or that the curricula become very 

tedious as students spend more time focusing on understanding 

the arithmetic operations rather than learning to use standard 

algorithms for calculations (Rich, 2014). In other words, 

students and parents are being asked to move beyond simply 

knowing how, to understanding the why behind the 

mathematics. Researchers (e.g., Lesh & Harel, 2003; Mauer, 
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1998) have found that students need to be proficient at thinking 

and reasoning, not only at calculating, especially in the current 

digital era where computation is a trivial skill that can be easily 

performed with the aid of technology. However, there are 

people who disagree with this approach to mathematics; some 

are unsure how these new approaches are helpful for 

developing meaningful understandings. For example, the 

Internet hosts numerous examples of parents struggling to 

make sense of the types of problems that their children are 

bringing home from school (Nelson, 2014). These parents often 

believe that the way they learned mathematics is perhaps the 

best way for their children to learn mathematics, and in many 

cases, this perspective implies a greater focus on arithmetic, 

calculations and the use of standard algorithms, rather than on 

understanding the meaning behind these procedures (Otten & 

De Araujo, 2015). However, parents’ struggles can also be 

attributed to parents’ misunderstanding the values these new 

approaches offer. They may only able to compare their 

children’s current experiences with their own past experiences 

in mathematics and may not understand the reasons and intent 

for how they were taught or how their children are currently 

being taught. This concern may be related to broader issues of 

the CCSSM involving their implementation: lack of 

communication with the public and the misalignment of 

curricula to these standards. As a result, moving forward 

requires textbook publishers to focus more on the alignment of 

curricula to the CCSSM and mathematics educators and 

researchers on communicating to parents and teachers the 

benefits of using algorithms and representations to develop a 

deeper understanding of mathematics. In the next section, I will 

explore and attempt to address the issue of lack of 

communication. 

 

The Case of Jack and the Number Line 

One large-scale example of the debate surrounding the 

CCSSM occurred when a frustrated parent posted a picture of 

one of his child’s homework problem (Figure 7; Patriot Post, 

2014) on a social media website; it sparked immediate 
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responses from the public and even garnered news coverage 

across the nation (Heitin, 2014). The problem reads, “Jack used 

the number line below to solve 427 - 316. Find his error. Then 

write a letter to Jack telling him what he did right, and what he 

should do to fix his mistake.” 

 

 
Figure 7. Common Core mathematics problem posted online 

by Jeff Severt (Patriot Post, 2014). 

 

The purpose of this problem is not only to calculate         

427 - 316 but also to analyze a hypothetical student’s work in 

solving the problem and to communicate appropriately the 

validity of said student’s approach. An accepted response to 

this problem could be that a student explains that Jack used the 

appropriate strategy of counting down on a number line from 

427 by 3 hundreds, but then he counted by 6 tens incorrectly; 

so after counting the 3 hundreds, he would need to count 1 ten, 

and then 6 ones. The parent who posted the problem (hereon 

referred to as the Jack problem) used his educational 

background in engineering as the focal point of his argument. 

He claimed that with all of the higher-level mathematics 

courses he had taken in his undergraduate degree, he could not 

make sense of this approach. Instead, he argued that Jack 

should have used the standard algorithm for subtraction, which 

after rapid calculation would have resulted in an answer. 

Stephen Colbert, best known for his satirical news program, 

The Colbert Report, supported this position claiming, “Folks, 

that word problem couldn’t be easier to solve. All you have to 

do is check the semicircles on the same-side arrow, put the two 

numbers up in it, and bing-bang math!” (Stewart, Purcell, & 

Colbert, 2014). However, what the parent, the comedian, and 
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thousands of others overlooked was the purpose of the 

problem. It was not only about calculating the difference 

between two numbers and using the number line to do so; it 

was also about analyzing another person’s mathematical 

reasoning, which attends to the ability to critique the reasoning 

of others as well as construct viable arguments, both of which 

together constitute one of the eight Standards for Mathematical 

Practice in the CCSSM (NGA & CCSSO, 2010). 

The Standards for Mathematical Practice in the CCSSM 

encompass the activities and behaviors that mathematicians and 

others who engage in mathematics employ. For example, 

professor Andrew Wiles was able to solve and prove Fermat’s 

Last Theorem, a problem that had been lacking a proof since 

1637. Wiles had to make sense of the theorem and persevere in 

solving it, trying many different ideas and following numerous 

strategies in order to come up with the proof, and make sure 

that his arguments in his proof were valid and viable. All of 

these practices are important because they help to foster more 

than just mathematical ability, but critical thinking and 

communication of mathematical ideas as well (Koestler, 

Felton, Bieda, & Otten, 2013). The Jack problem discussed in 

the previous paragraph is an example of a task that focuses on 

not only developing mathematical ability, but also analyzing 

another’s work and argument. Analyzing another person’s 

mathematics can be a difficult task because it requires one to 

not only determine if a mathematical approach is valid, but 

then also to determine the person’s thinking and reasoning 

behind their mathematics. Such a skill is powerful because it is 

not limited to mathematics; it is useful in almost every single 

discipline and even in daily life. For instance, computer 

programmers work together in teams, and people can be 

assigned different parts of the same program. If something does 

not function correctly in one person’s code, someone would 

need to analyze the code that came before theirs to see if there 

are different ways of approaching the task this program needs 

to execute or if they made any errors in the code. They can then 

suggest the modifications that need to be made to another 

member of the team in order to make the code function 

properly. 
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Even though much of the importance of this task is tied to 

its incorporation of the Standards for Mathematical Practice, it 

is worth considering the mathematical affordances of the 

number line model as well. According to Nelson (2014), “The 

idea behind using a number line for subtraction is that students 

get a visual representation of what subtraction is: figuring out 

the ‘distance’ between two numbers” (Can you teach number 

sense, para. 5). With this particular problem, she expressed that 

a clearer representation of the problem was needed (Figure 8 as 

described by Nelson, 2014), which to some degree addresses 

the parent’s concerns with the particular representation in 

Figure 7.  

 

 
Figure 8. Alternative use of the number line to model the 

problem 427 - 316. 

 

In this representation, the numbers in question, 316 and 

427, are at the ends of the number line. What Nelson (2014) 

proposes is that in this representation, one would start at 316 

and realize that the closest 10 is 320, which is 4 steps away. 

Then, it is 100 steps away from 320 to 420, and finally it is 7 

steps from 420 to 427. So, the distance between 316 and 427 is 

4 + 100 + 7, which results in 111. Her proposal for this 

representation (Figure 8) attempts to resolve the issues in how 

Jack’s number line was used not only to represent the distance 

between two numbers, but also to emphasize place value. Her 

representation encourages the use of making tens and hundreds 

when adding, which are numbers that young children are 

generally familiar with early on and help to solidify the 

foundation of place value.  

The Jack problem is an issue that William McCallum and 

Jason Zimba, two lead writers of the CCSSM, discussed in an 
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article of The Hechinger Report (Garland, 2014). According to 

Garland (2014), both McCallum and Zimba claim that the Jack 

problem is not what the CCSSM requires and not something 

that they would include in any curricular materials they would 

write. The standards that this Jack problem attempts to address 

are from second grade (NGA & CCSSO, 2010): 

 

 2NBT.A.1-A.4: Understand place value (e.g., 100 can 

be thought of as ten tens). 
 

 2NBT.B.5-B.9: Use place value understanding and 

properties of operations to add and subtract (e.g., 

explain why addition and subtraction strategies work). 
 

 2MD.B.5-MD.B.7: Relate addition and subtraction to 

length (e.g., represent whole numbers as lengths on the 

number line, and represent whole-number sums and 

differences on the number line). 
 

In the interview reported in Garland (2014), McCallum claims 

that in the problem a student is supposed to recognize that the 

issue was around confusion of place value, and Zimba claims 

that attempting to combine standards dealing with place value 

and the number line simultaneously can be confusing. Both 

mathematicians assert that this particular task does not reflect 

any issues with the CCSSM themselves. Instead, they assert 

that this task is the byproduct of a lack of quality control for 

educational materials created in the name of the CCSSM. 

Without a mechanism for quality control, some materials will 

inevitably be more aligned to the standards and of a high 

quality, and many other materials will be loosely or not aligned 

at all to the standards and of low quality. This sentiment was 

echoed by Schoenfeld (2014) who argued, “the Common Core 

is not a curriculum…the vast majority of materials currently 

labeled ‘Common Core’ don’t come close to that standard” 

(What do Common Core curricula look like, para. 1). The Jack 

problem provides an example of this; just because a problem 

was taken from curricular materials that claimed to be aligned 

to the CCSSM does not necessarily mean that it actually 

adheres to the standards and is a well-developed problem. 
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Thus, there needs to be more attention focused towards the 

connection between the CCSSM and the problems in curricular 

materials that are aligned to said standards, specifically the role 

that representations play in curricular materials and whether or 

not these representations are used in mathematically 

meaningful ways that help to develop students’ understanding 

of the concepts underlying them. 

 

Algorithms vs. Number Line: The Case of Number Sense 

 

Since the Jack problem surfaced, many other parents and 

teachers have taken to the Internet as an outlet for sharing 

mathematics problems that claim to be CCSSM problems with 

which they have serious concerns. What seems to be 

underlying the debates surrounding these problems is the issue 

of including representations, such as the number line, before 

exposing students to the standard algorithms in the CCSSM. 

When parents see their children bringing mathematics 

problems home requiring them to use methods other than the 

standard algorithms with which they are not familiar, they are 

frustrated because they may not understand these other 

methods or the merit of using such methods. For instance, one 

of the common arguments is that standard algorithms are much 

easier and faster to use and that some of the other methods are 

more cumbersome and time-consuming. However, this 

argument fails to consider that standard algorithms are more 

complicated than they appear. According to Samuel Otten 

(2014), adults who claim standard algorithms are easier have 

the benefit of having already learned the algorithms, but this is 

not the case for students who are seeing the algorithms for the 

first time. Additionally, these adults may have learned the 

algorithms through memorization or rote drill, and while some 

are able to use the algorithms, may not have a conceptual 

understanding of the algorithms (e.g., how the standard 

algorithm for subtraction tends to hide or obscure the 

regrouping of numbers that occurs during subtraction; Otten, 

2014).  

Recently, NBC News (2014) aired a segment on the 

Common Core, that specifically focused on the example of 34 - 
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9. They discuss solving the problem in two ways, the first using 

the standard algorithm for subtraction and the second using the 

number line. The side-by-side comparison of the two methods 

is illustrated in Figure 9.  

 

 
Figure 9. Side-by-side comparison of two methods of solving 

the subtraction problem 34 - 9. Recreated from “Nightly News 

with Brian Williams,” NBC News (2014). 

 

The broadcaster discussing the problem claimed that the 

standard algorithm requires fewer steps to complete the 

subtraction than the use of a number line, and as a result is a 

faster and easier method. If one carefully considers what is 

required to use the standard algorithm in this problem, there are 

really six steps involved. First, 9 cannot be subtracted from 4, 

so the 3 is crossed out, leaving a 2. Then the 4 becomes a 14. 

Fourteen minus 9 is 5. Then the 2 is brought down, resulting in 

25. As Otten (2014) discusses in his response video to the NBC 

News (2014) segment, there is a lot happening behind the 

standard algorithm that cannot be seen, because the algorithm 

itself is meant to be more efficient. A 10 is not “borrowed” 

from the 30, rather regrouping is taking place; the 34 is 

regrouped into 20 + 14. This deconstruction of numbers is 

developed earlier on in the CCSSM so that this type of thinking 

can be applied when students are introduced to the standard 

algorithm. Additionally, deconstruction of numbers does not 

reduce the algorithm to a simple series of steps that students 

memorize and follow. Instead, students are building their 

number sense and deeper understanding of operations with 

numbers. For instance, if students were asked to subtract 199 
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from 4004, the use of the standard algorithm would be 

cumbersome and time consuming (each place value in 4004 

would have to be regrouped, which is a lot of crossing out). 

Alternatively, the student could use their number sense to 

realize that 199 is 1 away from 200, and that 1 should also be 

added to 4004 to become 4005, resulting in the problem 4005 - 

200, which is likely much simpler to solve (see Figure 10). 

 

 
Figure 10. Using the standard algorithm to solve 4004 - 199, 

and using number sense to solve an easier problem, 4005 - 200. 

 

In contrast, using the number line helps to situate the 

numbers visually in relation to one another and can aid in 

construction and deconstruction of numbers alongside the 

standard algorithm. In Figure 9, a student would place 9 and 34 

on a number line. Second, the student would start at 9 and 

notice that it is 1 away from 10. Next, to get from 10 to 30 is 

20 (these numbers are benchmark numbers). Then, to get from 

30 to 34 is another 4. The student then sums together 1, 20, and 

4 to get 25. Using the number line for this problem required 

five steps, as opposed to the six steps that the standard 

algorithm used, and also builds number sense (e.g., grouping 

with tens and relationships between numbers). The subtraction 

problem is unpacked in terms of addition from one number to 

another by exploiting groupings of tens, whereas the number 

line helps students to understand the concept of subtraction as 

distances and the connection of addition and subtraction as 

inverse operations. It is important to mention that the last two 

lines below the number line, 9 + 25 = 34 and 34 - 9 = 25, are 

included in order to emphasize the additive strategy used to 

determine the answer to the subtraction problem. These lines 

were not just included as extraneous information but were 
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meant to emphasize the underlying number sense of the 

strategy. The broadcaster, though, does not make this point 

clear. 

In the NBC segment, the conclusion seemed to be that the 

standard algorithm was the superior method for solving the 

problem because it required fewer steps and used less space. A 

similar argument emerged after another image that widely 

spread among social media and websites across the Internet 

involved the subtraction problem 32 - 12 (see Figure 11; 

Common Core Math Memes, 2014). 

 

  
Figure 11. Standard algorithms vs. alternative approaches 

(Common Core Math Memes, 2014). On the left is the original 

image circulated on social media and the image on the right is a 

text recreation of the original for clarity. 

 

At the top of the image, the problem is solved using the 

standard algorithm for subtraction, which seems to be quite 
simple. However, a quick glance at the bottom reveals that this 

simple problem that was solved quickly is now solved through 

the use of four other problems. Anyone seeing this image for 

the first time would have a hard time understanding why one 

would solve the problem with the bottom approach when the 

top approach seems less involved and quicker (Mehta, 2014). A 

closer look, though, will reveal more about the mathematics 

underlying these approaches. The approach taken utilizes 
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benchmarks, recognizing that 12 is 3 away from 15, that 15 is 5 

away from 20, that 20 is 10 away from 30, and that 30 is 2 

away from 32. The important implications from problems 

presented in Figure 11 and others like it is that the CCSSM 

does not dictate methods for problem solving other than some 

attention to the standard algorithms and some attention to the 

number line. It is inaccurate to claim that the CCSSM require 

students to solve problems using the method shown at the 

bottom of Figure 11. For instance, an alternative solution using 

the number line is illustrated below in Figure 12, and this 

strategy would be an acceptable strategy that is aligned to the 

CCSSM. Using number sense, a student can first move from 32 

to the closest ten, which is 30, by moving two spaces left on a 

number line. Then, 12 - 2 = 10, so the student only has to move 

10 more spaces to the left, and going 10 left from 30 results in 

20. 

 
Figure 12. Alternative strategy for the problem 32 - 12 

presented in Figure 11. 

 

Oftentimes students can carry out procedures and calculate 

answers, but when asked about the mathematics behind their 

actions are unable to respond (Mehta, 2014). The CCSSM aim 

for students to develop number sense and alternative methods 

before learning the standard algorithms. The use of 

representations such as the number line is an important part of 

that development. Thus, Figure 11 has been widely 

misinterpreted as being representative of what strategies the 

CCSSM require students to use to solve problems. It is 

important to note that, the CCSSM do not dictate a specific 

way for teaching students to operate with numbers, and not 

only include exposure to alternative methods but include the 
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use of standard algorithms as well (e.g., NGA & CCSSO, 2010, 

p. 29). 

This section has explored some of the common public 

perceptions regarding the teaching of standard and alternative 

algorithms in conjunction with the use of representations. 

Underlying these perceptions is a larger issue regarding the 

implementation of the CCSSM with regards to communicating 

to parents the importance of algorithms and representations. 

Additionally, there are issues to be considered of curricula that 

appear to be aligned to the CCSSM when, in reality, are not 

(Schoenfeld, 2014). Some of the public perceptions arise 

because of misunderstandings about what the CCSSM are and 

what they are not. This article attempts to shed some light on 

these issues and also to provide a more holistic view regarding 

algorithms and representations such as the number line and 

their role in mathematics under the CCSSM.  

 

Conclusion 

 

Algorithms and representations are an important part of 

mathematics as their use affords students the opportunity for 

connection building among concepts and offers ways to 

communicate and organize mathematical ideas (Lesh & Harel, 

2003; Lesh et al., 1987; NCTM, 2000). As such, they have 

been an explicit part of past standards documents and the 

current CCSSM. However, the widespread (mis)use of 

algorithms and representations in curricular materials claiming 

to be aligned to the CCSSM have contributed to a public 

misconception that the CCSSM demand particular approaches 

to teaching and learning mathematics. Instead of being based 

on knowledge of the CCSSM, this assumption is based on 

parents’ perceptions from seeing their children’s homework 

problems that involve the number lines or alternative strategies 

and assuming that these representations are the only ways the 

CCSSM dictate mathematics be taught. The standards do 

include the use of the number line, which is explicitly 

discussed, but it is not the only representation to support the 

development of number sense. The CCSSM introduce students 

to both informal and formal ways of reasoning about 
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mathematics. Ideally, the learning is situated so that algorithms 

naturally follow the development of understanding (McCallum, 

2015). In each of the grades, there are standards that discuss 

exposing students to a variety of representations and strategies 

for operating with numbers and for exploring and analyzing 

data. Thus, algorithms and representations are a necessary part 

of the standards, and it is important to realize that the standards 

are goals and expectations for each grade level, but do not 

specify how to teach particular topics and what materials are to 

be used. Schoenfeld (2014) claims the major issue is not 

necessarily with the standards themselves but with the 

curricular materials that are supposed to be aligned to the 

standards. Ultimately, we need to ensure that parents 

understand that the CCSSM are built upon years of research 

and to help them see the benefits and importance of going 

beyond procedural computation and fostering a deeper 

understanding of the mathematics (Otten & De Araujo, 2015). 
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