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Multiplicative reasoning is essential for students’ engagement with 

various mathematical concepts. Although the field’s understanding of 
children’s multiplicative concepts has grown over the past 30 years, 

relatively few studies have examined the development of multiplicative 

concepts with whole numbers, and even fewer have studied this 
phenomenon at scale. The present study reports on the development of an 

assessment of elementary students’ multiplicative concepts with whole 

numbers that can be used at a large scale. Findings suggest the initial 

version of the assessment has sufficient reliability and validity. Further, 
less than 20% of second grade students and approximately 50% of third 

grade students participating in the study engage in tasks with at least the 

first multiplicative concept.  

Multiplicative reasoning is essential for students’ 

development of a meaningful understanding of rational number 

(Confrey & Harel, 1994; Hackenberg & Tillema, 2009). In 

addition to other frameworks, it is often described in reference 

to Hackenberg’s (2010) work on three multiplicative concepts in 

which each subsequent multiplicative concept is characterized 

by more sophisticated unit coordination. Multiplicative concepts 

are researchers’ models for schemes constructed by students as 

a product of their prior counting schemes (Steffe, 1994). Each 

multiplicative concept is associated with a particular way of 

engaging in activities involving multiplicative relationships. For 

example, students who have constructed the third multiplicative 
concept (MC3) are generally more successful in working with 
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more sophisticated fraction tasks than students who have 

constructed the second (MC2) or first (MC1) multiplicative 

concepts (Hackenberg & Tillema, 2009; Norton & Hackenberg, 

2010). 

Although research on multiplicative reasoning since the 

1980s has seen many advances in the field’s understanding of 

this topic (Confrey & Harel, 1994), the authors of the present 

study struggled to find an assessment that allowed for studying, 

at a larger scale, elementary students’ holding of various 

multiplicative concepts (particularly with whole numbers). 

Specifically, there are studies examining whether, and in what 

ways, students respond to canonical representations of school-

based mathematics such as word problems and symbolic 

representations (Brickwedde, 2011; English, 1991; Mulligan & 

Mitchelmore, 1997; Smith & Smith, 2006). Yet, such 

assessments generally require interviews with students to gauge 

multiplicative reasoning. Other assessments of unit coordination 

and/or multiplicative reasoning are being developed but 

typically have been used with middle grades students (i.e., 

Norton, Boyce, Phillips, et al., 2015). The lack of an instrument 

that can assess larger groups of elementary students leads to a 

lack of understanding the prevalence of different forms of 

multiplicative reasoning among students in these particular 

grade levels, as well as assessing such reasoning in relation to 

other mathematical constructs. To meet these needs, the present 

study reports on the development and initial piloting of an 

assessment of second- and third-grade students’ unit 

coordination in association with demonstrated schemes for 

multiplicative reasoning in activity. Therefore, it is the purpose 

of the present study to report on efforts to create and validate an 

initial version of an assessment of elementary children’s unit 

coordination with tasks eliciting multiplicative reasoning 

(hereafter, multiplicative tasks), and provide initial statistics 

regarding the prevalence of the different multiplicative concepts 

in elementary grades. 
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Theoretical Framework 

Schemes, Operations, and Concepts 

The present study is situated in scheme theory, with 

particular attention to students’ whole number multiplicative 

concepts (Olive, 2001; Steffe, 1992, Steffe, 1994). A scheme is 

a set of mental actions, or operations, with a specific goal-

oriented purpose (von Glasersfeld, 1995). For the purposes of 

the present study, the operations of unitizing, iterating, 

partitioning, and disembedding are of particular focus. Unitizing 

in multiplicative contexts involves conveying a collection or set 

of discrete countable objects as a countable unit in its own right 

(Steffe, 1994). Iterating involves the repetition of a unit, while 

partitioning involves the separation of a unit into iterable parts. 

Disembedding involves taking a composite unit (unit of units) 

from another larger unit in such a way as considering it as part 

of that larger unit (Confrey & Harel, 1994; Hackenberg, 2010; 

Steffe, 1992). According to Steffe (1992; 1994) the coordination 

of these actions in counting schemes can lead to the construction 

of schemes that are multiplicative in nature. When such schemes 

are reversible, in that an individual is able to return to the starting 

point of a scheme either by inversion or compensation, they are 

said to have become interiorized (Steffe, 1992; Hackenberg, 

2010). Schemes that are interiorized are generally used in an 

anticipatory manner (i.e., anticipatory schemes) that allows for 

aspects of the constructed scheme to be taken as given and 

operated on without need for reconstruction in a similar context.  
Multiplicative concepts involve the anticipatory use of 

multiplicative schemes (Hackenberg, 2010). Although schemes 

are not necessarily anticipatory, a multiplicative concept uses the 

taken-as-given involvement of prior constructed schemes and 

the application of such schemes to specific situations they are 

called for. Specifically, “concepts involve reversibility in that 

from the interiorized results of a scheme, one can always go back 

to the situation or activity of that scheme” (Hackenberg, 2010, 

p. 389). In this manner, concepts are considered an abstraction 

of an anticipatory scheme. 
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Multiplicative Concepts 

Steffe (1994) noted that various pre-multiplication schemes 

may be used, in activity, prior to students’ construction of 

multiplicative schemes. Such schemes include variations of 

count-by-1s strategies, in which abstracting a set of singular 

objects as representing countable composite units has not yet 

been done successfully (i.e., the schemes are not used in an 

anticipatory manner). Students may be able to solve problems 

considered as multiplicative by constructing such schemes in 

activity. Steffe (1994) described one such student who 

demonstrated counting a group of 18 by considering it as having 

six groups of three, but effectively counting by 1s in doing so. 

Steffe argued, however, that the student did not coordinate the 

unit of 3 in a multiplicative manner. Rather, the student created 

the composite unit of 3 in activity such that he did not anticipate 

or act upon 3 as a composite unit to find 18. According to Steffe 

(1994), this student’s scheme is pre-multiplicative because, 

although he accounted for groups of 3 in his counting, he 

effectively counted by 1s in doing so. A second student 

described by Steffe (1994) also included what might appear as 

count-by-1 strategies, but did so in considering the composite 

unit as an organizing feature of how they counted (1, 2, 3; 

4, 5, 6; 7, 8, 9; …and so on). Such coordination anticipates a unit 

of units (i.e., two levels of units) and is therefore multiplicative.  

The first multiplicative concept (MC1) involves the 

coordination of two levels of units in activity (Hackenberg & 

Tillema, 2009). Specifically, students can take a composite unit 

as given and coordinate between two levels of units (Norton, 

Boyce, Ulrich, & Phillips, 2015). Solving 4 × 5, a student at 

MC1 may count by 1s to 20 by keeping track of how many 

counts to 5 they made (e.g., “1, 2, 3, 4, 5; 6, 7, 8, 9, 10; …”). 

Alternatively, some students may use skip counting approaches 

to count “5, 10, 15, 20” (Steffe, 1994). In both instances, the unit 

of 5 is taken as given and operated on, in activity, to coordinate 

these composite units.  

MC2 involves the coordination of three levels of units in 

activity (Hackenberg & Tillema, 2009), in which students can 

take two levels of units as given and coordinate between three 
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levels of units in activity (Norton, Boyce, Ulrich, et al., 2015). 

Students at MC2 are able to operate upon composite units to 

form a unit of units of units and can disembed parts of a unit to 

operate on smaller units within a larger composite unit (Tillema, 

2013). Students at MC2 can solve tasks similar to asking how 

many more sets of 5 does 50 have than 20. A student at MC2 

may disembed 5 from 20, in activity, and operate on the 

remaining 30 (50 − 20) to determine there are six more groups 

of 5 in 50 than 20. This manipulation of the composite unit 5 

takes as given at least two levels of units (coordinated between 

three levels of units). Specifically, MC2 is characterized by the 

anticipatory use of two levels of units. Although they can 

construct schemes in activity for coordination of three levels of 

units, as with any scheme constructed “in activity,” such 

schemes are not guaranteed to be constructed by a student at 

MC2 (i.e., they are probable). 

MC3 involves the coordination of three levels of units, as 

does MC2 (Hackenberg & Tillema, 2009; Olive, 2001). 

However, all levels of units are interiorized. This allows for 

greater flexibility. For example, students may recognize, via 

anticipatory schemes, that 20 includes 4 groups of 5, and connect 

this with 60 making 12 groups of 5, or 3 groups of 4 groups of 5 

units. Such flexibility enables students at MC3 to consider more 

than one composite unit to be used in given circumstances (i.e., 

is it more useful to consider 60 from the perspective of the 4 unit 

or the 12 unit?). A summary of all multiplicative concepts is 

provided in Table 1. 

Each multiplicative concept involves reversibility of 

interiorized schemes (Hackenberg, 2010). However, students 

who have not interiorized schemes are capable of solving tasks 

via reversible schemes constructed in activity. For example, 

Steffe (1992) observed that Maya, a student able to count 

upwards by 3s (i.e., MC1), was able to use a counting-down-

from strategy to determine how many 3s were in 12. Yet, this 

latter strategy was constructed in activity. Similarly, Hackenberg 

(2010) noticed that a sample of students at MC2 and MC3 were 

both able to solve reversible multiplicative tasks, but students at 

MC3 did so with anticipatory schemes while some students at 

MC2 did so by constructing schemes within the activity. By 
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accounting for whether such schemes are anticipatory or 

constructed in activity, various qualitative studies have 

distinguished between specific multiplicative schemes and 

concepts (Hackenberg, 2010; Norton, Boyce, Ulrich, et al., 

2015; Steffe, 1992; Steffe, 1994). Given the focus of the present 

study (i.e., piloting a one-time written assessment at scale), the 

ability to distinguish between whether demonstrated schemes 

were anticipatory or constructed in activity could not be assessed 

directly or in as nuanced a manner as has been done in various 

teaching experiments. This issue is discussed in some detail in 

descriptions of item design. 

 
Table 1 

Levels of multiplicative reasoning aligned with multiplicative concepts 

and scheme theory 

Construct Description 

Pre-multiplicative 

Schemes 

Students rely on count-by-1s strategies and do 

not coordinate two levels of units in activity. 

First Multiplicative 

Concept (MC1) 

Students coordinate two levels of units in 

activity by anticipating one level of units (either 

via skip-counting or count-by-1s strategies). 

Second Multiplicative 

Concept (MC2) 

Students coordinate three levels of units in 

activity, but anticipate two levels of units. 

Third Multiplicative 

Concept (MC3) 

Students coordinate three levels of units via 

anticipatory schemes. 

Need for and Needs of a Written Assessment 

Conceptualization for Item Design 

Unit coordination is fundamental for interpreting students’ 

multiplicative concepts (Hackenberg, 2010; Steffe, 1994). 

Researchers studying elementary students’ unit coordination in 

multiplicative tasks have found that most third- and fourth-grade 

students use variations of skip-counting strategies (Brickwedde, 

2011; English, 1991; Mulligan & Mitchelmore, 1997). Further, 

Steffe (2017) has estimated that perhaps as many as half of 

students entering middle school operate with iterating 

multiplicative schemes. Such estimates are difficult to evaluate 
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because the vast majority of assessments for multiplicative 

reasoning include interview protocols, which are less likely to 

be administered to larger numbers of students (thereby 

excluding potential diverse populations with representative 

samples). Norton, Boyce, Phillips, et al. (2015) provide one 

exception regarding sample size, but even their sample size is 

limited (n = 20). Such assessments (Brickwedde, 2011; English, 

1991; Mulligan & Mitchelmore, 1997; Smith & Smith, 2006) 

provide more information than a written assessment not 

incorporating an interview, but they are unable to collect data at 

scale pragmatically. A scalable, written assessment potentially 

allows for a more accurate estimate of the prevalence of students 

operating with particular schemes or concepts and enables 

researchers to examine effects associated with such operations 

at a larger scale. The latter was our own need, which led to the 

development of the present study. Specifically, we were 

interested in how elementary students’ multiplicative unit 

coordination associated with other observable mathematical 

activities such as their conception of the equals sign (Singh & 

Kosko, 2016) and their engagement in mathematical 

argumentative writing (Kosko & Singh, 2016). Finding no 

readily available instrument that could be administered at scale, 

we constructed and piloted the one described in this paper. Yet, 

construction of items, as well as an overall assessment, of 

multiplicative concepts holds specific challenges, and a 

discussion of what information such items can provide is 

warranted.  

The distinction of anticipatory schemes versus schemes 

constructed in activity allows for conceptually distinguishing 

between the multiplicative concepts (Hackenberg, 2010). Yet, 

such a distinction is less clear when examining students’ work 

from only a paper-based assessment. Within a written 

assessment, one can ask students to show their work, but such 

work acts as an artifact and does not allow for an accurate 

distinction between a scheme that is anticipatory versus one 

constructed in activity. Further, follow-up prompts that might be 

asked during a face-to-face interview to clarify written work are 

necessarily absent from written assessments, and the detail 

provided by one child may not be provided by another. In the 
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end, the answer provided by various children completing a task 

on a written assessment administered at-scale is the most 

consistent indicator of their engagement with the mathematics in 

that task. If the tasks are designed properly, probabilistic 

indicators can estimate the schemes students most likely will 

have used. Further, when multiple tasks are provided that target 

specific schemes (similar to multiple sources of data), then the 

consistency of the child’s responses serve as an indicator of 

whether the tasks are reliably assessing the schemes targeted. A 

necessary assumption, and one taken in the present paper, is to 

assume that such indications represent at least a scheme 

constructed in activity for a given task/item, but not necessarily 

an anticipatory scheme. In other words, a student may complete 

certain items successfully, but this success is considered as 

evidence of at least constructing the targeted scheme in activity. 

Evidence of schemes being anticipatory is provided through 

response to other items (i.e., items assessing reversibility of the 

targeted scheme). Additional evidence towards the validity of 

these interpretations was examined through students’ written 

work and is discussed in depth in the methods section. 

Considering the response a child provides as an indicator of 

the scheme they used requires an assumption that some children 

who use schemes not targeted by a task may still find a correct 

solution. The literature on multiplicative reasoning implies that 

students at lower multiplicative concepts may solve tasks 

identified to align more with higher multiplicative concepts 

(Hackenberg, 2010; Steffe, 1994). This typically occurs with 

students that are at adjacent multiplicative concepts, in terms of 

hierarchy (i.e., a child at MC1 may successfully solve a task that 

targets MC2). In order to conceptualize the kinds of items 

needed for an assessment of multiplicative reasoning, we 

considered items in terms of whether students operating at 

different multiplicative concepts could, hypothetically, 

successfully solve particular tasks. Thus, we conceptualized that 

certain tasks should be successfully solvable using similar 

approaches by students at MC1, MC2, or MC3, but not all items 

solvable by a student at MC2 should be able to be solved by 

students at MC1, or not probabilistically so. For example, 

students at pre-multiplication or MC1 levels have generally not 
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been observed to disembed units (Hackenberg & Tillema, 2009). 

However, it is feasible that students at MC1 may enact strategies 

that allow them to solve tasks that are designed to include 

disembedding. While it may be possible for students at MC1 to 

solve such tasks, we hypothesize that it is less probable for a 

student at MC1 to do so than a student at MC2. Further, we 

consider such probabilistic tendencies to occur across 

multiplicative concepts regarding tasks of varying 

sophistication. 

Figure 1 illustrates a generalization of our conception across 

multiplicative concepts. The circles in Figure 1 qualitatively 

represent students at varying levels capable of solving tasks at 

those levels, in activity. In other words, students at pre-

multiplication levels of multiplicative reasoning may use counts 

of 1 in activity, and students at MC1 may coordinate two levels 

of units in activity. However, our conceptualization of items 

assesses students’ completion of items from the standpoint of 

viewing successful completion as evidence towards at least a 

constructed scheme in activity, but not necessarily an 

anticipatory scheme.   

 

 
Figure 1. Item conceptualizations for evidence of students’ 

multiplicative reasoning from particular concepts and/or schemes. 
 

The students at the highest level (i.e., MC3) are 

hypothesized to be able to successfully solve all tasks aligned at 

MC3 and lower in the hierarchy, with a high degree of 

probability. In other words, we hypothesize that such students 
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may answer an item incorrectly, but it is much less likely than 

for a student at MC2 or MC1. On the other hand, students at 

lower levels may construct schemes in activity to successfully 

determine a solution for a task at a higher level. This particular 

probability is represented by the lightly shaded conical regions 

originating from the smaller circles and extending to the larger 

ones (see Figure 1). The areas covered by the conical regions are 

representative of the hierarchy of the probability students from 

less sophisticated levels would successfully solve a task at a 

higher sophisticated level (i.e., students at MC1 are more likely 

to solve an MC2 designated task than students at pre-

multiplication).This conceptualization represents a growing 

body of evidence of how students might transition, or engage in 

tasks, across the multiplicative concepts (Norton, Boyce, Ulrich, 

et al., 2015; Tzur et al., 2012). 

Important in conceptualizing how our items align with 

constructed schemes in activity, is the contexts associated with 

those items. We took inspiration from other written assessments 

of schemes and unit coordination (Izsàk, Jacobson, & de Araujo, 

2012; Norton, Boyce, Phillips, et al., 2015; Wilkins, Norton, & 

Boyce, 2013). Specifically, both Izsàk et al. (2012) and Wilkins 

et al. (2013) incorporated a number of different visual models 

for fractions (i.e., length models and area models). While Izsàk 

et al. (2012) and Wilkins et al. (2013) also included contexts 

with their tasks (e.g., drawing a fraction of a pie, or cutting a 

candy bar), we elected to design our multiplicative tasks without 

such contexts. Since our assessment targeted elementary aged 

students, we sought to create tasks that were as straightforward 

as possible. Similar to Norton, Boyce, Phillips, et al. (2015), we 

focused only on one particular visual representation: length 

models. However, the nature of our task prompts differ from 

Norton, Boyce, Phillips, et al.’s (2015) given the difference in 

targeted population (middle grades versus elementary grades 

students). I and Dougherty (2014) argued that length models 

representing continuous quantities allow for a multitude of 

multiplicative relationships and operations to be examined, thus 

allowing for versatile design of items assessing pre-

multiplicative schemes, MC1, and MC2. Furthermore, because 

incorporation of different models may lead to different enacted 
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schemes by students (Eliustaoglu, 2016), we viewed the use of a 

singular model in our assessment as limiting the amount of 

unnecessary variance in item responses. The tradeoff in focusing 

on length models is that the schemes assessed are currently 

limited to this particular model and additional models should be 

included at some point in the assessment’s development. Since 

we focused on the multiplicative concepts of second and third 

grade students, and the vast majority of studies have identified a 

high prevalence of iterating multiplicative approaches 

(Brickwedde, 2011; English, 1991; Mulligan & Mitchelmore, 

1997), we chose not to design many items for MC3 (although 

some were included to test assumptions regarding reversibility 

multiplication tasks).1 

Design of the Items 

The assessment was designed to determine if students 

demonstrated approaches to multiplication which were 

representative of certain concepts (i.e., pre-multiplication, MC1, 

MC2). We constructed six types of items to assess these 

concepts, with particular emphasis on assessing MC1 and MC2 

(12 items total). All items were open-response in that we asked 

students to provide the correct response given a blank space. The 

first type of item required participants to iterate units of 1 to find 

a composite (see Figure 2). Successful completion of these items 

was hypothesized to align with at least those students at pre-

multiplication who construct such schemes in activity (Steffe, 

1994). Specifically, students using pre-multiplicative schemes 
may be able to count by 1s to find a longer length, but they also 

may not. In the item presented in Figure 2, we hypothesized that 

a student need use only a pre-multiplicative scheme to iterate 1s 

to find the total length of 5 (but they may also use more 

sophisticated schemes). Further, we hypothesized that this 

particular pre-multiplicative scheme is a scheme that develops 

prior to development of schemes for MC1. 

                                                 
1 As a reminder to the reader, our focus on second and third grade relates to a 

separate study, for which the present assessment was designed. 
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The second item type involved reversibility of the first item 

type by finding a unit of 1 from a composite length. Successful 

completion of the second item type was hypothesized to be 

evidence of students at MC1. Specifically, such a student would 

need to consider the item in Figure 2 as illustrating a length of 4 

(one unit) but also simultaneously illustrating a length of four 1s 

(second unit). We hypothesized Item Type 2 as eliciting an 

anticipatory scheme of one level of units (i.e., consider the given 

unit as a composite of 1s in order to partition it into 1s). The third 

item type was hypothesized as providing evidence of in-activity 

construction for students at least at MC1, as it requires taking a 

composite non-1 unit as given and iterating that unit to find the 

total length. Figure 2 illustrates the example task requiring the 

iteration of length 5 three times to find the total length of 15. A 

student could, hypothetically, consider five 1s for each length 5, 

but this is also considered as evidence towards MC1. It is also 

possible, but less likely, that a student could find the total length 

of 15 by using a pre-multiplicative scheme (not accounting for 

iterable 5s), and we account for this less probable possibility in 

our test design (see Figure 1).  

The fourth and fifth item types shown in Figure 2 were 

hypothesized as providing evidence for at least MC2. The 

reversibility variant (item type four) requires considering the 

given rod is 8 long as a unit of units that can be partitioned into 

parts with lengths other than 1 (i.e., partitioning into four parts 

to find length 2). We hypothesized this as requiring an 

anticipatory scheme for coordinating two levels of units, with 

coordination of three levels being potentially constructed in 

activity. The fifth item type example in Figure 2 allows for a 

student to successfully complete the item by disembedding a unit 

of 1 from 2 to find the total length of 3 for the second length. 

Specifically, we hypothesized that the student must anticipate 2 

as a unit, and also anticipate that 2 contains two 1s that can be 

operated on.  

The sixth item type was a variant of the disembedding item 

type for MC2 (Item Type 5). The example provided in Figure 2 

requires anticipating 24 as a unit that can contain units of units. 

Thus, one approach to solving the task is to partition 24 into two 

equal parts (12 and 12), and then compare the 12 partition to the 
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unshaded length. Recognizing that 12 is four parts of a five part 

length requires at least two levels of unit coordination 

(disembedding similar to Item Type 4), and therefore we 

hypothesized such items would require anticipatory unit 

coordination of three levels of units. Although we were not 

seeking to assess MC3 with the present assessment, we included 

such items to determine the prevalence of students we 

hypothesized to be at MC2 (from responses to the assessment) 

able to successfully complete such items. Additionally, 

responses for MC3 items are useful in conceptualizing future 

versions of the assessment for higher grade levels that would 

assess MC3. Two forms (A and B) of the assessment were 

created with the only difference being the order of the items 

presented. 
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Figure 2. Example item types for the assessment following the prompt: 

“Given how long the shaded shape is, tell how much the unshaded 

shape is.” 
 

The design of the items and their hypothesized conceptual 

placements facilitate the purpose of the present study: to create 

and pilot an assessment of elementary children’s unit 
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coordination with multiplicative tasks. The design principles 

hold some similarities to other assessments that have examined 

unit coordination, such as Norton, Boyce, Phillips, et al.’s (2015) 

assessment of middle grades students’ multiplicative unit 

coordination, Wilkins et al.’s (2013) assessment of middle grade 

students’ unit coordination with fractions, and Izsàk et al.’s 

(2012) assessment of teachers’ unit coordination with fractions. 

Important in the framing of the present study is an understanding 

of how various projects on assessment development 

(particularly those which focus on unit coordination) have 

reported different stages of their work. For example, Izsàk et al. 

(2012) used mixture Rasch models for studying different 

subgroups within the targeted population. Izsàk et al.’s (2012) 

work built upon several prior studies of teachers’ mathematical 

knowledge for teaching, as well as a validated version of the 

instrument by Izsàk, Orrill, Cohen, and Brown (2010). By 

contrast, Norton, Boyce, Phillips, et al. (2015) report on the 

validation of a rubric to be used in scoring a written assessment, 

which is arguably an initial step before piloting with a larger 

sample. The present study is closer in stage of development to 

that of Norton, Boyce, Phillips, et al. (2015), with a focus on 

classical test theory. However, future work on the assessment 

will likely resemble the kinds of work done by others at later 

stages of development (i.e., Izsàk et al., 2012). In the next 

section, the work of initially examining validity and reliability 

of the assessment are discussed. 

Methods 

Sample 

In May 2015, 163 second- and third-grade students in two 

different school districts completed the assessment. Both 

suburban school districts are located in the Midwestern U.S. The 

sample is comparable regarding gender (49.1% male; 50.9% 

female), grade level (44.2% second-grade; 55.8% third-grade), 

and form administered (49.7% Form A; 50.3% Form B). Data 

for the assessment was coded in two ways. First, we coded 

student responses for correctness (0=incorrect; 1=correct). 
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Second, we coded students’ demonstrated written strategies so 

that we could examine how such demonstrated schemes 

corresponded to correct responses by item. In the next section, 

we describe the second coding in detail. 

Coded Schemes 

We used an iterative coding process to develop a rubric 

assessing the demonstrated work of students completing the 

assessment. Each author surveyed students’ responses 

independently to identify reoccurring student strategies in the 

data. The authors discussed identified strategies and created an 

initial rubric describing different applications of schemes. 

Although numerous specific strategies were identified through 

students’ written work, we consolidated several strategies as 

applying specific schemes and this resulted in eleven specific 

codes including six targeted schemes and five “other” 

categorized codings. All codings are listed in Table 2, with 

illustrated examples provided for the targeted schemes.  

Each code is considered as signifying at least a scheme 

constructed in activity, but not necessarily an anticipatory 

scheme (although such schemes are possibly anticipatory). 

Important to note is that while coding of schemes for individual 

items was considered evidence of it being constructed at least in 

activity, we describe the relation between different items as 

evidence towards establishing whether schemes are anticipatory 

later in this paper in our description of indices. Code 1 signifies 

a pre-multiplication scheme where students demonstrated 
iterating units of 1 n times to find a length/whole (a composite). 

As shown in Table 2, students might use such a scheme in a 

context more probable to result in a correct response (the first 

example), but may also apply it in cases where other strategies 

are more probable to lead to success. The second example for 

code 1 shows a child iterating 1 twelve times to find the total 

length. The length is actually 18, but the design of the item 

makes application of this pre-multiplication scheme have a less 

probable chance for success (in finding the correct length). 

Although we do not provide such examples for all codes, we 

noted such use of strategies for various items, and we discuss 



Elementary Children’s Multiplicative Concepts 

18 

their alignment (or non-alignment) with targeted strategies and 

schemes for items later in this paper. 

 
Table 2 

Examples of coding for demonstrated schemes 

Construct Code Example 

Pre-Mult   

 1. Iterating 1 units n 

times 

 
MC1   

 2. Partitioning into n 

parts to find 1 units 

 
 3. Iterating non-1 units 

n times 

 
MC2   

 4. Partitioning into n 

parts to find non-1 units 

 
 5. Disembedding a unit 

to iterate n times 

 
MC3   

 6. Decompose 

partitions into non-1 

units (may include 

coordination of 

partitions in both length 

models) 

 

Other   

 7. Finding a 1 unit 

 
 8. Using an 

inappropriate non-1 

unit  
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 9. Disembedding a unit 

but not iterating 

appropriately  

 10. Equipartitioning, 

halving, or doubling 

 
 11. Not enough 

information 

N/A 

 

For MC1, code 2 signifies reversibility of the scheme for 

code 1 where an individual demonstrated partitioning into n 

parts to find 1-units (i.e., partitioning a given length 8 into eight 

equal parts to designate a unit of 1). Code 3 designated iterating 

non-1 units n times (i.e., iterating 3 six times to find length 18). 

For MC2, code 4 designated partitioning into n parts to find non-

1 units (i.e., reversibility of code 3). Code 5 designated 

disembedding a unit from another unit and iterating it n times. 

The reversibility of code 5 was designated as code 6 and 

hypothesized to align with MC3. Code 6 designated 

disembedding partitions into non-1 units that would match a 

whole. Additional schemes observed included: identifying a 

length as 1, regardless of partitioning or iterating (code 7); 

identifying a non-1 unit that was used in a previous item (code 

8); disembedding to find an appropriate unit, but not iterating 

appropriately (code 9); variations of equipartitioning approaches 

(code 10); and a general code for when no, or insufficient, 

student work was provided to assign a code (code 11). Although 

strategies considered to be associated with schemes for specific 

items were often observed along with correct responses (i.e., 

code 5 with items I and J), it was not necessary for a correct 

solution to be associated with evidence for a scheme to be coded.  

Both authors coded 10% of the data together to improve the 

rubric and solicit examples such as the ones presented in Table 

2 for each identified scheme. Next, the remaining 90% of data 

were coded independently to determine interrater reliability. A 

Cohen’s Kappa statistic was calculated (K = 0.70, p < 0.001), 

indicating substantial reliability (see Landis & Koch, 1977). 

Following this result, both authors reconciled codes before 

continuing with data analysis. 
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Results and Findings 

Overall Test Validity and Reliability 

We used classical item analysis (CIA) to examine response 

data (correct/incorrect) as well as the coded schemes (see 

Crocker & Algina, 2006). CIA uses traditional statistical 

measures and approaches (associated with classical test theory) 

to examine the reliability and validity of items within an 

assessment and the overall assessment score. For the response 

data, CIA involved determining item difficulty (mean of correct 

responses), item discrimination (how well the item 

discriminated between lower and higher scoring participants), 

and the overall statistical reliability of the responses for 

measuring the test score (via Cronbach’s alpha). A Cronbach’s 

alpha coefficient of .79 was calculated for the overall response 

score for all 12 items (M = 4.88, SD = 2.88, Range = 0 – 11). All 

items had sufficient item-total correlations of .30 or higher, 

indicating that, for each item, a correct response had a 

meaningful correlation with a higher overall score, and vice 

versa. Next, we examined the discrimination statistic for each 

item. We used point-biserial correlation statistics to determine 

how well each item discriminated between lower and higher 

scoring participants. An item discrimination correlation of at 

least .30 is generally considered satisfactory, while .40 or higher 

is considered to have very good discriminatory power (Crocker 

& Algina, 2006). Presented in Table 3, all items were found to 

have sufficient discriminatory power, as designated by the D 
statistic in the Item Response Statistics. Also, presented in the 

Item Response Statistics column of Table 3 are the item 

difficulty statistics. In general, it is good practice to have a range 

of difficulty among items in an assessment. For this particular 

assessment, we further expected item difficulty to increase from 

pre-multiplication to MC1 items to MC2 items in a manner that 

aligned with our item conceptualizations (see Figure 1). As 

hypothesized, item difficulty appeared to generally increase 

from one classification of items to another. This, along with the 

reliability coefficient and various discrimination statistics 
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reported, suggests that students’ correct/incorrect responses to 

the assessment have sufficient statistical reliability. 

 
Table 3 

Item Statistics for the Assessment Response Data and Coded Schemes 

 Response Statistics 
 

 

Student Work  

Targeted 

Scheme Coded 

 

 

Correlation  

Response & 

Scheme 

Item M (SD) D  M (SD)  φ n 

Pre-Mult.        

     A .65 (.48) .41  .97 (.18)  .12 149 

     B .86 (.35) .38  .95 (.22)  .23** 147 

MC1        

     Cα .61 (.49) .49  .57 (.50)  .81*** 143 

     Dα .61 (.49) .47  .60 (.49)  .91*** 143 

     E .29 (.46) .39  .60 (.49)  .55*** 138 

     F .46 (.50) .52  .56 (.50)  .83*** 140 

MC2        

     Gα .33 (.47) .61  36 (.48)  .91*** 137 

     Hα .40 (49) .35  .33 (.47)  .74*** 137 

     I .14 (34) .44  18 (.39)  .90*** 128 

     J .30 (.46) .46  .32 (.47)  .82*** 125 

MC3        

     Kα .09 (.28) .31  .17 (.38)  .65*** 108 

     Lα .15 (.36) .37  .18 (.39)  .72*** 106 

Note: Lower sample size for correlations is due to insufficient student evidence 

for schemes. 
αTargeted scheme for this item is the reversibility for item set targeted concept. 

*p < .05, **p < .01, ***p < .001 
 

Our next step was to examine the construct validity of our 

items. To do this, we examined the relationship between 

response score per item (correct/incorrect) and whether students’ 

demonstrated work on the item was coded as the targeted 

scheme for that item or not. As shown in Table 2, code 1 aligns 

with items PreMult_A and PreMult_B in Table 3, code 2 aligns 

with items MC1_C and MC1_D, and so forth. To examine 

whether a correct response to an item generally corresponded to 

the targeted scheme for that item, we dichotomized the coding 

for each items (0 = strategies do not correspond to targeted item 

scheme; 1 = strategies correspond to targeted item scheme). The 
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means for each item are shown in the Student Work column of 

Table 3. We examined correlations between presence of targeted 

schemes and correct responses using the φ statistic, shown in the 

last column of Table 3. The vast majority of these correlations 

were found to be strong and were statistically significant from 

chance (a strong correlation is considered above .50). This 

indicates that students who provided the correct solution for 

specific items tended to also show evidence (via their written 

work on the task) demonstrating the scheme hypothesized to 

lead to a correct response. We do not claim that correct solutions 

were necessarily or always the result of the use of a targeted 

scheme for a particular item, but that it is much more probable 

than not. These findings provide support for our hypothesized 

relationship between the design of an item eliciting specific 

schemes and associating with a correct item response for MC1, 

MC2, and the two MC3 items. However, the pre-multiplication 

items appeared to have lower associations between correct 

response and targeted scheme. Closer inspection of these items 

revealed that this was primarily due to incorrect responses that 

were associated with attempts to use the targeted scheme (i.e., 

iterating 1s to form a composite unit). Specifically, students who 

provided incorrect responses typically attempted to count by 1s, 

but did so adding onto the already presented length.  

Multiplicative Concepts in Elementary Grades 

We examined whether the assessment distinguished 

between second and third grade students. Since multiplication is 
an emphasized topic in third grade, the test should show some 

differences in response scores and coded schemes. An 

independent samples t test found a statistically significant 

difference between grade-level scores (t = 4.20, p < .001) 

indicating that third grade students had more correct responses 

to items (M = 5.67, SD = 2.95) than second grade students (M = 

3.89, SD = 2.46). Thus, on average, third grade students gave the 

correct response to two additional items than the average second 

grade student. We interpreted these findings as evidence towards 

further supporting the validity of the assessment. To determine 

if these differences were due to potential differences in 
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multiplicative concepts, we examined the differences in 

percentages of demonstrated target schemes by item and item 

type (see Figure 3). Recall that the coded schemes for students 

did not necessarily translate into correct responses. With this in 

mind, two interesting trends are noticeable in Figure 3. First, 

there are similar percentages of using the identified pre-

multiplication scheme (iterating units of 1 to form a composite 

unit), as well as for code 2 on items MC1_C and MC1_D 

(partitioning a unit into 1s). However, third grade students were 

more likely than second grade students to construct schemes that 

involved iterating a non-1 unit (see items MC1_E & MC1_F in 

Figure 3). From these items onward, third grade students tended 

to use the targeted scheme more consistently than second grade 

students. The divergence in using this scheme is associated with 

the mean difference of two items in score between grades 

observed in the t test. 

 

 
Figure 3. Targeted schemes demonstrated per item and differentiated 

by grade. Grade level is differentiated by dark and light gray bars 

(grades 2 and 3 respectively). 

 

Following a comparison of item responses and coded 

schemes between grade levels, we constructed preliminary 

indices for pre-multiplication, MC1 and MC2. Each index was 

determined by completion of greater than 50% correct response 

for items targeting specific schemes or concepts, as well as 

greater than 50% correct response on any item sets of lower 

difficulty.2 For example, a student aligned with the MC1 index 

                                                 
2 The use of 50% as a benchmark was selected as a conservative threshold for 

success, loosely resembling interpretations of discrimination indices for IRT 

models. However, percentages representing mastery are often based on 
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would need to have more than half of the responses correct for 

PreMult items (PreMult_A and PreMult_B), as well as MC1 

items (MC1_C, MC1_D, MC1_E, and MC1_F). Since only one 

student in the sample completed more than half of the MC3 

items successfully, we exclude the classification in our report. 

The indices were meant to align with our item conceptualization 

(see Figure 3), as well as more general descriptions of 

multiplicative concepts in the literature. Thus, our indices 

represent the hypothesized minimum multiplicative concept 

with which a student is aligned. Next, the multiplication indices 

were cross-checked with coded multiplicative schemes for 

evidence of validity. Students classified at the pre-multiplication 

level tended to respond to items PreMult_A and PreMult_B with 

the targeted scheme (Table 4). However, these students used 

targeted schemes for MC1 items roughly 40% of the time, and 

such use was not consistent across students. In other words, on 

items MC1_C and MC1_D some students in the pre-

multiplication index likely constructed schemes in activity for 

partitioning a composite unit into 1s, and on items MC1_E and 

MC1_F, other pre-multiplication students demonstrated 

iterating by non-1 units with schemes likely constructed in 

activity. This is consistent with descriptions by Steffe (1992) 

that such students can, at times, complete more sophisticated 

tasks with schemes constructed in activity. However, the 

inconsistent application of such schemes suggests use of these 

schemes is probabilistically unlikely. We noticed similar trends 

for the other indices in regards to schemes not hypothesized to 

be constructed in activity for students at those levels (see Table 

4). Therefore, the descriptive statistics in Table 4 provide 

evidence that although students operating with less sophisticated 

concepts or schemes may successfully complete items 

hypothesized to align with more sophisticated concepts or 

                                                 
collective feedback from panels of teachers or other experts (Rupp, Templin, 

& Henson, 2010). Continued development of the assessment will require 

revision of this benchmark. Its use here should be interpreted as tentative 

pending further study.  
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schemes, it is less probable than for students with more 

sophisticated concepts. An additional facet of the statistics 

presented in Table 4 is that students who were assigned to a 

particular index based on their response scores had a high 

probability of demonstrating schemes aligned with that level and 

lower levels. We believe that this provides evidence of using 

anticipatory schemes and constructing schemes in activity that 

are described for those respective concepts (see Table 1). The 

descriptive statistics in Table 4 provide initial support for this 

relationship, additional support for the validity of the 

assessment, and support for our conceptualization of how 

students may generally respond to such items (see Figure 1). 

 
Table 4 

Percent of Students at Each Index using Targeted Schemes on Items 

  PreMult .              MC1           .               MC2             .     MC3  . 

Index A B C D E F G H I J K L 

PreM 99.0 96.8 40.9 45.2 40.7 36.0 14.9 12.1 6.2 15.4 7.2 8.5 

MC1 100 96.3 88.5 92.3 96.2 96.2 50.0 57.1 18.2 27.3 10.5 23.5 

MC2 100 100 100 100 100 100 100 90.5 65.0 90.5 50.0 60.0 

 

Table 5 presents the descriptive statistics for the constructed 

indices from the assessment. Apparent in the distribution are the 

differences between second and third grade students classified 

as demonstrating MC1 and MC2, and this was found to be 

statistically independent from chance (𝜒2(df=2) = 15.22, p < 
.001), providing support for the validity of these indices. These 

findings indicate that the assessment reliably discriminate 

between students at different grade levels, demonstrating 

operations with different multiplicative concepts. 
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Table 5 

Estimated Percent of Students Demonstrating Various Multiplicative 

Indices by Grade Level 

Grade n Pre-Multiplication MC1 MC2 

2 72 83.3 11.1 5.6 

3 91 54.3 23.9 20.7 

Total 163 67.5 18.4 14.1 

Note. With exception of pre-multiplication schemes, estimates are based on 

more than 50% of items completed successfully for item sets. 

Discussion 

The findings from this study provide useful information for 

those interested in studying the multiplicative reasoning of 

elementary students in the realm of multiplication with whole 

numbers. Results from the pilot of this assessment suggest a 

sound and useful metric for second and third grade students’ 

multiplicative reasoning. Items show statistical reliability and 

ability to discriminate between lower and higher scorers. 

Additionally, evidence from coding of student work suggests a 

strong correlation between hypothesized multiplicative schemes 

and successfully completing specific items (MC1, MC2, MC3). 

Results provide evidence towards the assessments’ validity from 

multiple perspectives, including alignment between response 

scores and coded schemes, validity associated with differences 

in second and third grade, and verification of qualitative work 

on schemes that suggests individuals operating at lower 

multiplicative concepts can sometimes successfully complete 

more complex tasks (though probabilistically less likely).   

Our results suggest clear differences between second- and 

third-grade students’ demonstrated multiplicative concepts. 

Recall that the indices represent a minimum threshold (i.e., some 

students designated as at MC1 may have used anticipatory 

schemes that suggest they are at MC2). Although it is not 

expected that most second grade students would demonstrate 

MC1 or MC2, our findings indicate that roughly half of third 

grade students may be operating with variations of pre-
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multiplication schemes on the assessment. These findings 

should be considered preliminary, given both the stage of 

development of the assessment and that the sample may not be 

representative of the population of U.S. second- and third-grade 

students at large. However, should similar findings be replicated 

at a larger scale with a more representative sample, then there 

are some clear and troubling implications. Specifically, the body 

of research examining multiplicative concepts has focused on its 

relationship to developing understandings of, and operations 

with, fractions (Hackenberg, 2010; Hackenberg & Tillema, 

2009; Norton et al., 2015). According to the Common Core 

Standards for Mathematics (CCSSI, 2010), third grade is when 

fractions are first formally introduced. If nearly half of third 

grade students in this study are not using multiplicative 

reasoning in specific tasks such as those included in the 

assessment, then it is likely that their understanding of, and 

operations with, fractions is similarly restricted. Yet, as 

discussed earlier, these findings are preliminary with regard to 

the prevalence of multiplicative reasoning in these grade levels, 

and further study is needed to examine the potential relationships 

that scores on this assessment may have on other activities in 

school mathematics. 

The assessment presented in this paper provides a useful and 

reliable instrument for assessing elementary students’ 

multiplicative reasoning up to operating at least at MC2. 

Although the present version of the assessment shows both 

sufficient reliability and validity, additional work is needed to 

further improve the assessment, both for its use in second and 

third grade, as well as its potential use in later grades. First, the 

correlation between demonstrated strategy and correct response 

for the pre-multiplication items, as well as the pattern of 

responses for these students throughout the assessment, suggests 

that a small portion of students may not have interpreted the 

directions for the assessment as we intended. Inclusion of 

sample items with revised instructions for facilitating the 

assessment may reduce this. Another issue identified through 

comparison of coded strategies and response was that some 

students demonstrated appropriate schemes but, due to slight 

misjudgments of length, provided an incorrect response. 
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Although minimal, a potential means of reducing this error may 

be to include reference lines for each item. For example, a 

reference line shown for a potential revision of Item MC3_L is 

presented in Figure 4. The interval spacing for the reference line 

suggests a potential partition of length 24, but to successfully 

apply this partition a student must still engage in disembedding 

with composite numbers. In making such a revisions, one would 

need to be mindful of the intervals for the reference line given 

the targeted scheme for specific items. 

Present Version 

 

Potential Revised Version 

 
Figure 4. Potential revision of items using Item L as an example. 

 

A critical revision for future versions of the assessment is to 

include additional items, particularly in regards to assessing 

MC3. Further, it may be useful to include additional items for 

each scheme to further examine the reliability of the item design 

criteria. For example, Item MC2_I performed statistically in 

ways similar to MC3 items. Although we believe inclusion of a 

reference line may help alleviate this trend, additional items of 

the same format may help illustrate potential traits of items 

currently not observed. Finally, additional means of validating 

the assessment are needed including clinical interviews with 

students following their completion of the assessment, and also 

examination of how responses to this assessment correspond 

with responses to other kinds of multiplicative tasks. Such 

efforts at validation are not likely to signify the assessment as 



Karl W. Kosko and Rashmi Singh 

29 

“good” or “bad” but will likely allow for more appropriate 

interpretations of what various scores on the assessment mean in 

regards to a child’s mathematical activity. 

This study represents the initial piloting of an assessment of 

multiplicative reasoning. As such, it represents a successful 

effort at building an explanatory model of students’ responses to 

multiplicative tasks based upon prior qualitative work on this 

topic. Further, the study moves towards answering a call made 

by Kilpatrick (2001) for connecting qualitative and quantitative 

approaches to researching similar phenomenon to build a body 

of evidence. As stated here, further study is necessary to both 

confirm and extend the findings of the present analysis, and to 

improve the assessment. In such manner, assessments similar to 

the one discussed in the present study may be modified in 

presentation to provide useful diagnostic feedback for teachers 

and researchers, and inform those making practical decisions to 

improve the mathematics education of children. Lastly, the 

process for developing, aligning, and initially piloting an 

assessment based on data from prior qualitative work may be 

useful for others endeavoring to design such assessments. 
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