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The emerging field of mathematics educational neuroscience provides 

researchers with new approaches to understanding mathematical 
development, as well mathematics itself. This paper focuses on the role of 

the hand in constructing mathematics through activity. We rely on 

Piaget’s distinction of three kinds of activity: sensorimotor activity, 

internalized actions, and interiorized operations—to review results from 
neuroscience studies. These distinctions and related neuroscience 

findings contribute to a new sense of mathematical embodiment. They 

also provide implications for mathematics instruction. 

In a scene atop the Sistine Chapel, Adam languidly 

gestures a finger toward an eager God, who rides a cloaked 

wave of cherubim to meet his touch (see Figure 1). Aside from 

theological implications of the work, scholars have speculated 

Michelangelo’s intentions to convey insights into the human 

anatomy. Specifically, physician Frank Meshberger (1990) 

conjectured that “The Creation of Adam” depicts the human 

brain within God’s cloak and that the small gap between the 

fingers of Adam and his maker represent a synapse within the 

brain—a conjecture supported by striking similarities between 

the human brain and the outline of the cloak, as well as the fact 

that Michelangelo rigorously studied the neural anatomy of 

cadavers. The manner in which God delivers the spark seems 

especially appropriate in light of modern day neuroscience and 
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findings related the emerging field of mathematics educational 

neuroscience (Campbell, 2006). 

 

 
Figure 1. Michelangelo’s “The Creation of Adam” (from Wikipedia, 

retrieved November 29, 2015, from 

https://en.wikipedia.org/wiki/The_Creation_of_Adam). 

 

Number theorist Leopold Kronecker (1634) famously 

quipped, “God made the integers, man did the rest” (as cited in 

Hamming, 1980, p. 84). However, research on children’s 

mathematical development has revealed that the construction of 

integers requires years of human labor that relies on the 

coordination of acts of pointing with number words (Baroody, 

2004; Piaget, 1942; Steffe, 1992; Ulrich, 2015). As such, we 

find a connection between the construction of number and 

activity with the hand, and it is not merely coincidence that 

binds fingers and numbers within the same word, “digits.” We 

can attribute the proliferation of base-10 number systems, 

across millennia and continents, to the fact that Homo sapiens 

have ten fingers on which to count. Even the base-20 of the 

Mayans had a sub-base of 10 (not to mention their toes), and 

although the number system of the Oksapmin people in Papua 

New Guinea is not base-10, it nevertheless relies on counting 

fingers, in addition to other locations on the body (Saxe, 2012). 

This connection between fingers and numbers persists in the 

neural anatomy of humans long after adults stop relying on 

their fingers to count. As evidence for this lasting connection, 

https://en.wikipedia.org/wiki/The_Creation_of_Adam
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Rusconi, Walsh, and Butterworth (2005) found that both finger 

recognition (gnosis) and number magnitude processing were 

impaired among adults when a disruption was introduced to the 

neural functioning of their left angular gyrus (an areas of the 

brain within the parietal lobe, discussed later in this paper). 

The purpose of this paper is to elaborate on the role of the 

hand in mathematical development by drawing upon 

neuroscience findings (cf. Norton & Bell, 2017). We introduce 

a neo-Piagetian interpretation of embodiment to assimilate 

these findings, accounting for the role of activity in 

constructing mathematical objects. Following Piaget (1972), 

we distinguish three kinds of activity: sensorimotor activity, 

internalized actions, and interiorized operations (see Table 1). 

We use these distinctions to frame current perspectives on 

mathematical development and its neural correlates (Ansari, 

2008; Gallistel & Gelman, 1992). 

 
Table 1 

Three kinds of activity 

Activity Description Example 

Sensorimotor Kinesthetic activity, which 

involves muscular 

movement, including 

movement of the eyes 

Fair sharing a whole, with 

the goal of producing equal 

parts while exhausting the 

whole 

Internalized Actions that are carried out 

in imagination, without the 

need for muscular movement 

Imagining a line segment 

partitioned into a specified 

number of equal parts 

Interiorized Operations that coordinate 

internalized actions all at 

once, with no need to run 

through the activity, even in 

imagination 

Conceptualizing fractions 

as numbers that can be 

acted upon and composed 

with other numbers, as in 

fraction multiplication 

 

We begin with an overview of Piagetian theory as an 

activity-based theory of cognition, which leads to our neo-

Piagetian interpretation of embodiment. Then we review 

neuroscience literature and interpret it through that framework. 

Finally, we consider instructional implications of mathematics 

educational neuroscience when framed in this way. 
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Piagetian Framework 

In a Piagetian theories of mathematical development build 

upon the idea that mathematical objects arise from coordinated 

activity, which becomes organized within structures for 

composing and reversing that activity (Piaget, 1970). Over the 

past four decades, Steffe and colleagues have carried out 

Piagetian research programs to elucidate children’s 

constructions of number (Steffe, 1992; Steffe & Olive, 2010). 

Even children’s initial conceptions of whole numbers, like 7, 

result from the coordination of at least three activities: the 

internalized action of unitizing (delineating individual items in 

the sensory field that will be counted as units of 1), the 

sensorimotor activity of pointing to (or otherwise noticing) 

each item in turn, and the sensorimotor activity of reciting (or 

otherwise running through) a verbal sequence (“one, two, three, 

four, five, six, seven”). As such, number is primarily a property 

of the counter’s activity and not the items themselves (Piaget, 

1942). Note that the internalized action of unitizing also arises 

through coordinated sensorimotor activity (resulting in the 

construction of units of 1) during early childhood, as described 

by von Glasersfeld (1981). 

Steffe and colleagues (e.g., Steffe & Olive, 2010) have 

demonstrated ways children build upon their whole number 

knowledge to construct fractions. This process involves 

reorganizing the internalized actions (which result from 

coordinated sensorimotor activity) used to construct whole 

numbers, such as unitizing and iterating, along with new 

actions, such as partitioning. Children construct fractions as 

numbers by coordinating actions of unitizing, partitioning, and 

iterating, where partitioning and iterating act as inverses of one 

another (Norton & Wilkins, 2012; Steffe & Olive, 2010).  

The unit fraction, 1/5, results from partitioning a 

continuous whole unit into five equal parts and unitizing one of 

those parts. Thus, the whole unit can be recreated from that unit 

fraction by iterating (making identical, connected copies of) it 

five times, thus establishing a 1-to-5 relationship between the 

two units. Once children have constructed unit fractions, they 

can begin to construct non-unit fractions as “numbers in their 
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own right” by iterating a unit fraction some number of times, 

while maintaining its partitive/iterative relationship with the 

whole (Hackenberg, 2007). For instance, 7/5 is the number 

created by iterating a 1/5 unit seven times, where 1/5 has a 1-

to-5 relationship with the whole unit. 

The internalized actions of partitioning and iterating are 

derived from sensorimotor activity. Partitioning gradually 

develops as children learn to coordinate sensorimotor activity 

to satisfy two competing goals: creating equal parts and 

exhausting the whole (Piaget, Inhelder, & Szeminska, 1960). 

Before children learn to coordinate that activity, they will 

sometimes break a whole into unequal parts, or produce a 

specified number of equal parts with an additional leftover part. 

After children learn to coordinate their activity, they can begin 

to perform partitioning in imagination without carrying out the 

associated sensorimotor activity.   

Piaget (1972) described further coordinations students 

could make, which he called interiorized operations, starting 

from internalized actions. Returning to the prior example, 

children learn to organize partitioning and iterating within a 

system for composing and reversing those actions (Wilkins & 

Norton, 2011). In that system, partitioning and iterating act as 

inverses of each other. For instance, partitioning a whole into 

five equal parts results in a part that, when iterated five times, 

reproduces the whole. This coordination provides a basis for 

constructing fractions as numbers, and as numbers, children 

can operate upon them further (Norton & Wilkins, 2012). For 

instance, children can learn to take fractions of fractions, as in 

fraction multiplication (Hackenberg & Tillema, 2009)—an 

instantiation of what Piaget (1972) referred to as “operations on 

operations.” 

A Neo-Piagetian Interpretation of Embodiment 

Theories of embodied cognition posit that cognition 

derives from our particular embodiment within the world, 

including our limbs, hands, and opposable thumbs. 

“Embodiment provides a deep understanding of what human 

ideas are, and how they are organized in vast (mostly 
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unconscious) conceptual systems grounded in physical, lived 

reality” (Núñez, Edwards, & Matos, 1999, p. 50). Embodied 

cognitionists do not usually make distinctions between 

sensorimotor, internalized, and interiorized activity, and some 

researchers argue that concepts are strictly sensorimotor: 

“Conceptions emerge in and through experience, never 

consisting of anything else but activated prior experiences” 

(Roth & Thom, 2009, p. 188), and “conceptual knowledge is 

embodied, that is, it is mapped within our sensory-motor 

system” (Gallese & Lakoff, 2005, p. 455). In line with other 

perspectives on embodiment (e.g., Nemirovsky & Ferrara, 

2009; Wilson, 2002), we frame internalized and interiorized 

activity as forms of embodiment essential to mathematical 

development that are further and further removed from 

sensorimotor activity—further removed in the sense that they 

pertain more to cognitive processes (still embodied in the 

brain) that regulate sensorimotor activity and pertain less to 

sensorimotor activity itself.   

Embodied cognition encompasses varied perspectives on 

cognition, but at their core, these perspectives all embrace the 

view that “cognitive processes are deeply rooted in the body’s 

interactions with the world” (Wilson, 2002, p. 625). In other 

words, sensorimotor experience provides the basis for thinking 

and learning—a view that fits squarely with Piagetian theories 

of mathematical development (Piaget, 1972). As an example of 

the importance of sensorimotor experience in mathematics, 

Roth and Thom (2009) demonstrated how children’s 

conceptions of geometric shapes, such as cubes, are grounded 

in bodily experiences, such as physically rotating figures and 

tracing their edges with their fingers.  

Embodied perspectives generally admit imagined activity 

as well, either as part of the sensorimotor system or closely 

related to it. Previous sensorimotor experiences can be re-

presented in imagination without enacting the associated 

physical activity. In fact, Nemirovsky and Ferrara (2009) 

equate mathematics with such re-presentations: “We view 

mathematics learning as the development of a particular kind of 

imagination” (p. 159). They insist that imagined activity must 

be included as part of the sensorimotor system in order to 
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explain mathematical development, even suggesting that 

sensorimotor activity be reframed as “perceptuo-motor-

imaginary activity” (p. 162). To demonstrate the importance of 

imagined activity, the authors share observational data from 

students interacting in a high school Algebra class. The authors 

argued that, in order to make sense of one another’s 

mathematical activity and utterances, students had to engage in 

imagined activity, which is often indicated through the 

sensorimotor activity of gesturing. Such imagined activity 

corresponds to what we call internalized action, not interiorized 

because the action is still carried out in the brain (especially the 

premotor cortex—the region of the frontal lobe adjacent to the 

motor cortex, discussed in the next section) and not 

sensorimotor because the action is not carried out in the rest of 

the body. 

In examining various perspectives of embodied cognition, 

Wilson (2002) considered the role of the body during “off-line 

cognition”; that is, cognitive activity “decoupled from the 

physical inputs and outputs that were their original purpose” (p. 

633). As an example of off-line cognition, Wilson sketched the 

developmental progression of counting, from sensorimotor 

activity that depends on finger movements, to imagined activity 

with no overt physical activity, to off-line activity: “Mental 

structures that originally evolved for perception or action 

appear to be co-opted and run ‘off-line’” (p. 633). When we 

refer to interiorized operations, we refer to a particular kind of 

off-line cognition that is not sensorimotor but is embodied 

nonetheless. In the next section, we relate the progression 

Wilson described to the distinctions Piaget (1972) made 

between sensorimotor, internalized, and interiorized activity, 

and we use those distinctions to interpret neuroscience 

findings. 

Neuroscience Findings Related to Mathematical 

Development 

The notion of mathematics educational neuroscience has 

arisen as a means to test and refine theories of mathematical 

development while extracting implications for improving 
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classroom instruction (Campbell, 2006). Beginning with the 

sensorimotor region, we quickly find connections to other areas 

of the brain where imagined or internalized activity may occur. 

We demonstrate that neuroscience provides for a subtle 

distinction between sensorimotor activity and internalized 

activity, based on inhibition of activity in the sensorimotor 

region of the brain. Interiorized activity points to a further 

distinction that is particular to mathematics and logic (Piaget, 

1970). 

Sensorimotor Activity 

Mathematical activity differentially activates the frontal 

and parietal lobes within the neocortex (Ansari, 2008; Emerson 

& Cantlon, 2012)—the outer layer of the brain unique to 

mammals. The frontal and parietal lobes meet at the 

sensorimotor region of the brain, which includes the (primary) 

motor cortex at the back of the frontal lobe and the 

somatosensory cortex at the front of the parietal lobe (see 

Figure 2). While the motor cortex controls all voluntary bodily 

movements through neural signals sent to muscles, the 

somatosensory cortex receives neural signals from the rest of 

the body through the spinal cord. The premotor cortex sits just 

in front of the motor cortex, between it and the prefrontal 

cortex (the foremost region of the frontal lobe). Along with the 

motor cortex, the premotor cortex is involved in bodily 

movement, but it is activated before the motor cortex, in 

preparing for bodily movement (Wise, 1985). 
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Figure 2. The sensorimotor region. 

 

Within each hemisphere of the brain, the sensorimotor 

region (including the premotor cortex, motor cortex, and 

somatosensory cortex) is mapped to the rest of the body as 

shown in Figure 3. Neuroimaging studies have demonstrated 

that the premotor cortex is activated even when imagining 

bodily activity or observing it in others (e.g., Arnstein, Cui, 

Keysers, Mauits, & Gazzola, 2011). One such study used 

functional magnetic resonance imaging (fMRI) with 12 young 

adults to locate specific areas within the participants’ frontal 

and parietal lobes that were activated during various observed 

activities (Buccino et al., 2001). fMRI provides precise spatial 

data that can identify very specific areas of activation. In 

particular, the researchers used the fMRI data to identify which 

areas of the participants’ premotor cortex were activated as 

they observed another person moving his mouth, hand, or foot. 

The researchers found that observation activated the specific 

area of the premotor cortex corresponding to moving the 

respective body part, as if the subject were planning to move 

that same part of the body. Moreover, if the observed subject 

were acting on a physical object, corresponding areas within 
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the participant’s parietal lobe were activated as well (Buccino 

et al., 2001). 

 

 
Figure 3. Body map within the sensorimotor region (from 

Anatomy & Physiology, http://cnx.org/content/col11496/1.6/). 

 

Researchers have drawn upon the identification of “mirror 

neurons” (Rizzolatti & Craighero, 2004) in the premotor cortex 

to argue for the sensorimotor basis of knowledge in general 

(Gallese & Lakoff, 2005; Koziol, Budding, & Chidekel, 2012; 
Nemirovsky & Ferrara, 2009; Roth & Thom, 2009). For 

example, Gallese (2007) argued that we understand the 

intentions of others by imitating their activity in imagination. 

There is no overt sensorimotor activity, but traces of the 

sensorimotor basis for knowledge are evident in the gestures 

people employ when attempting to communicate an idea 

(Alibali & Nathan, 2012; Hostetter & Alibali, 2008; 

Nemirovsky & Ferrara, 2009; Núñez, 2006). Further evidence 

for the sensorimotor basis of knowledge comes in the form of 

http://cnx.org/content/col11496/1.6/
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motor evoked potentials—electrical signals sent through the 

spinal cord despite inhibition of motor activity (Fadiga, 

Fogassi, Pavesi, & Rizzolatti, 1995). When inhibitory control is 

impaired (e.g., as can be the case with prefrontal lesions), 

people will compulsively imitate observed behavior, indicating 

that they may be “unable to generate motor imagery without 

immediately transferring the imagined action into motor 

output” (Jeannerod, 2001, p. S107). 

Internalized Actions 

Here, we focus on mirror neurons related to the hand and 

their contribution to the development of mathematical 

knowledge. Mirror neurons help explain an important shift in 

mathematical development—the shift from strictly 

sensorimotor activity to internalized actions that are based in 

sensorimotor experience. Buccino and colleagues (2004) 

identified a “mirror neuron circuit” associated with internalized 

activity during imitative learning. Research participants 

observed a video of someone playing a chord on the guitar and, 

following a pause, these participants were asked to imitate the 

chord. This mirror neuron circuit—active during observation, 

pause, and execution—included the premotor area associated 

with the hand and the intraparietal sulcus (IPS).  

The IPS (see Figure 4) lies between the upper (superior) 

and lower (inferior) lobules within the parietal lobe and aligns 

with the area of the somatosensory cortex that is associated 

with the hand. Buccino and colleagues (2001) found that when 
participants observed an individual acting on an object with his 

hand, the IPS was the differentially activated area of the 

parietal lobe. Subsequent studies have demonstrated that the 

IPS is also activated when participants observe tools and 

graspable objects, even when no one is using or grasping them 

(Mruczek, von Loga, & Kastner, 2013; Valyear, Cavina-

Pretesi, Stiglick, & Culham, 2007). More specifically, 

observing a graspable object (e.g., a doll) evokes stronger 

activation of the IPS than observing a non-graspable object (a 

large animal), and observing a tool (e.g., a spoon) evokes even 

stronger activation within the IPS, especially in the left anterior 
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area (the part of the IPS closest to the sensorimotor region in 

the left hemisphere of the brain). Because all participants in the 

studies were right-handed and the left hemisphere of the brain 

controls the right hand, these findings suggest that simply 

observing tools calls to mind learned activities in manipulating 

them with the hand, which may be organized in the left anterior 

IPS. 

 

 
Figure 4. Acting on objects with the hand. 

 

The common association between acting on an object with 

one’s hands and mathematical activity should come as no 

surprise; after all, children learn to count with their fingers, and 

providing opportunities for students to manipulate objects with 

their hands is the pedagogical basis for many learning tools 

used in mathematics education (Novack, Congdon, Hemani-

Lopez, & Goldin-Meadow, 2014; Raje, Krach, & Kaplan, 

2013). Research in mathematics education contains an 

abundance of evidence that children begin to construct 

mathematical objects through sensorimotor activity, especially 
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involving the hand (Baroody, 2004; Piaget, 1942), which is 

why manipulatives (e.g., counters) are useful in elementary 

school classrooms (Carbonneau, Marley, & Selig, 2013). A 

handful of neuroscience studies explicitly address this 

connection. 

Sato, Cattaneo, Rizzolatti, and Gallese (2007) found motor 

evoked potentials among fingers in the right hand of right-

handed adults as they determined whether a given numeral (1–

9) was odd or even. Other studies reveal a neurological 

connection between finger recognition and mathematical 

ability (e.g., Fayol, Barrouillet, & Marinthe, 1998; Noël, 2005). 

Crollen and Noël (2015) investigated this connection by 

engaging children in counting and addition tasks while they 

moved either their hands or feet: “In both tasks, the hand 

movements caused more disruption [in solving the tasks] than 

the foot movements, suggesting that finger-counting plays a 

functional role in the development of counting and arithmetic” 

(p. 37). Penner-Wilger and Anderson (2013) attribute the 

connection to a repurposing of areas of the brain that had 

evolved for tool use, now adapted for the purpose of registering 

numbers.   

Interiorized Operations 

We have argued that children construct number based 

largely on sensorimotor activity involving the hands and 

fingers. In sensorimotor activity, children perform activity on 

physical material, including tools and fingers. During 
internalized action, gestures and motor evoked potentials 

indicate traces of sensorimotor activity, but neural activity in 

the sensorimotor region is inhibited so that children exhibit 

little overt behavior (Fadiga, Fogassi, Pavesi, & Rizzolatti, 

1995; Hostetter & Alibali, 2008). We draw on additional 

neuroscience studies to make a further distinction, one between 

internalized actions and interiorized operations. Namely, 

internalized actions involve imagined transformations of 

physical material; interiorized operations act upon products of 

coordinated activity (Piaget, 1972). 
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We see traces of sensorimotor activity even among adults 

as they consider numbers or any ordered series (Andres, Seron, 

& Olivier, 2007). However, with increased age and expertise, 

we also see a shift away from sensorimotor activity and 

associated neural networks. For example, in the Crollen and 

Noël (2015) study, the disruptive effect of hand movements 

during counting and addition tasks was less pronounced among 

fourth-grade children, compared to first-grade children. This 

finding aligns with a general frontal-to-parietal shift that 

corresponds with mathematical development (e.g., Ansari & 

Dhital, 2006; Rivera, Reiss, Eckert, & Menon, 2005). 

Rivera, Reiss, Eckert, and Menon (2005) found 

developmental differences across participants from age 8 to age 

19 as they engaged in addition and subtraction tasks. When 

compared to younger students, older students relied less on 

neural resources in the prefrontal lobule (associated with 

attention and sensorimotor activity) and more on neural 

resources in the parietal lobe, especially the IPS. The 

researchers concluded, “our findings provide evidence for a 

process of increased functional specialization of the left 

inferior parietal cortex in mental arithmetic, a process that is 

accompanied by decreased dependence on memory and 

attentional resources with development” (p. 1779). Ansari and 

Dhital (2006) found similar age-related differences as 

participants engaged in non-symbolic magnitude tasks, 

comparing two collections of small squares.  

Decreased dependence on attentional resources indicates 

less reliance on sensory material. This cognitive change 

corresponds with mathematical development that Steffe (1992) 

documented in the context of children’s counting schemes: As 

children develop more and more sophisticated schemes for 

counting, they shift their attention from physical material, to 

figurative material, to the coordination of internalized actions 

themselves, with no further need for sensory material. The shift 

frees children’s attentional resources to act upon products of 

their counting activity, as objects (cf. Dubinsky, 1991); for 

example, in multiplying two whole numbers, they can focus on 

the internalized action of distributing one whole number across 

each unit of 1 within the second whole number (Steffe, 1992). 
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In other words, with counting activity interiorized, students can 

attend to internalized actions involving the products of that 

activity (composite units), as in multiplication. In this sense, 

we might say that mathematics is abstract and builds upon 

itself.  

In his reorganization hypothesis, Steffe (2002) described 

ways in which children build upon their whole number 

knowledge to construct fractions knowledge. At earlier stages 

in their development, children treat fractions as two whole 

numbers: part and whole (e.g., 1/5 as one part out of five equal 

parts in the whole). When they can coordinate the 1-to-5 

relationship between these whole numbers, as previously 

described, they can begin to understand fractions as measures, 

eventually conceptualizing improper fractions, such as 7/5, as 

numbers in their own right (Hackenberg, 2007). An fMRI 

investigation provides some indication of the neural correlates 

for this development and its implications for mathematical 

embodiment. 

Ischebeck, Schoke, and Delazer (2009) used fMRI to study 

the numerical distance effect as 20 adult participants compared 

two fractions. The numerical distance effect describes a well-

established phenomenon in studies involving the comparison of 

two whole numbers: comparisons are more difficult when the 

numbers are close together, and discernment usually relies on 

greater activation in the IPS. For example, Ansari and Dhital 

(2006) found a distance effect as participants compared two 

collections of objects—an effect that was associated with 

greater IPS activation among adults when compared to 

children. In the fractions study by Ischebeck, Schoke, and 

Delazer (2009), participants could focus on any of three 

distances: between the numerators in the two fractions, 

between the denominators in the two fractions, or between the 

two fractions as numbers themselves. All three distance effects 

were observed, but only the distance between the fractions as 

numbers themselves modulated neural activity in the IPS. This 

finding supports the idea that the IPS may be repurposed to 

accommodate fractions as numbers. 

Recall that the IPS plays a primary role in tool use—even 

imagined tool use. It is also centrally involved in comparing 
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non-symbolic magnitudes (Ansari & Dhital, 2006) and in 

ordering series, even non-numerical series (Andres, Seron, & 

Olivier, 2007). Piaget (1942) demonstrated that children’s 

conceptions of number develop through coordinated activity 

that integrates magnitude (cardinality) and order. Now we see 

evidence that this development corresponds with less 

dependence on sensorimotor activity and greater specialization 

within the IPS, first with whole numbers (Ansari & Dhital, 

2006; Rivera, Reiss, Eckert, & Menon, 2005) and later with 

fractions (Ischebeck, Schoke, & Delazer, 2009). Thus, it 

appears that the IPS plays a recursive role in coordinating 

activity to construct number: It is involved in constructing 

whole numbers via coordinated sensorimotor activity involving 

the hands (e.g., fingers as tools); later, it is involved in 

constructing fractions via coordinated actions on whole 

numbers. This recursion may be the neurological sense in 

which mathematics builds upon itself. 

The Embodied Mathematical Mind 

Nemirovsky and Ferrera (2009) framed embodied 

cognition within perceptuo-motor-imaginary activity. That 

framework acknowledges the importance of activities that 

people do not physically perform. Wilson’s (2002) framing of 

embodied cognition opens the door for further distinction: 

“Mental structures that originally evolved for perception or 

action appear to be co-opted and run ‘off-line,’ decoupled from 

the physical inputs and outputs that were their original purpose, 
to assist in thinking and knowing” (p. 633). Neuroscience 

introduces opportunities for researchers to elucidate these 

distinctions.  

In the context of mathematical development, we find that 

sensorimotor activity serves as the basis for mathematical 

development but that children learn to coordinate internalized 

actions and then to act on the products of such coordinations in 

a hierarchical fashion. In this sense, coordinations of actions 

generate mathematical objects that we might call abstract 

(Piaget, 1970). Summarizing decades of mathematics education 

research within a Piagetian program, Steffe and Olive (2010) 
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describe how fractions arise through the coordination of 

internalized actions on whole numbers, which themselves arise 

through coordinated sensorimotor activity. We see neurological 

evidence for such development in the frontal-to-parietal shift 

that characterizes mathematical development in general (Ansari 

& Dhital, 2006; Rivera, Reiss, Eckert, & Menon, 2005; 

Ischebeck, Schoke, & Delazer, 2009). 

Specifically with regard to the hand, mathematical 

development seems to rely heavily on an area of brain evolved 

for tool use—the IPS (Mruczek, von Loga, & Kastner, 2013). It 

appears that the role of the IPS within the frontal-parietal 

network is to coordinate activity, beginning from sensorimotor 

activity involving tools, extending to sensorimotor activity 

involved in counting, and later involving the coordination of 

internalized actions like partitioning and iterating. In this way, 

the psychological construction of mathematical objects would 

depend heavily on coordinated activity beginning with the 

hands. Understanding mathematical objects as coordinated 

actions holds implications for instruction.   

Mathematics educators generally understand the 

importance of using manipulatives when working with children 

(e.g., NCTM, 2000) and the increased effectiveness of teaching 

with manipulatives has been supported by research (e.g., 

Carbonneau, Marley, & Selig, 2013). However, instruction 

with manipulatives does not result in increased student learning 

as consistently or as dramatically as we would like 

(Carbonneau, Marley, & Selig, 2013). A Piagetian perspective 

on embodiment, informed by neuroscience, can provide new 

insights into why the use of manipulatives can be useful and, 

therefore, how they can best be used.  

The current conventional wisdom, drawn from various 

theoretical perspectives, is that concrete manipulatives 

facilitate learning in four ways: 

…supporting the development of abstract reasoning, 

stimulating learners' real-world knowledge, providing the 

learner with an opportunity to enact the concept for 

improved encoding, and affording opportunities for 

learners to discover mathematical concepts through 
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learner-driven exploration. (Carbonneau, Marley, & Selig, 

2013, p. 381)  

Our embodied perspective emphasizes the first kind of 

facilitation (i.e., the development of abstract reasoning) and 

provides a more detailed landscape for the process of 

abstraction. Namely, we see a student's abilities to internalize 

and coordinate actions as the key to mathematical learning. Our 

embodied perspective, therefore, would have the following four 

broad implications for instruction using manipulatives: 

 

1. Manipulatives can be used to carry out and coordinate 

sensorimotor activity that has not yet been internalized. 

For example, students can engage in fair sharing 

activities, such as sharing a fraction strip (thin strip of 

construction paper) among seven people. Through 

repeated sensorimotor activity, they might learn to 

coordinate activity to satisfy two competing goals: 

creating seven equal parts and exhausting the whole 

strip. Thus, students might develop an internalized action 

of partitioning. 

2. Manipulatives and visual representations can also play a 

role in the coordination of internalized actions. For 

example, Olive and Vomvoridi (2006) demonstrated how 

teachers can use virtual manipulatives and visual 

representations—including student drawings—to support 

the coordination of partitioning and iterating. Through 

their coordinated activity with this figurative material, 

students began conceptualizing unit fractions, 1/n, as 

having a 1-to-n size relation with the whole, rather than 

simply conceptualizing them as 1 part shaded within an 

n-part whole. 

3. Some instructional practices will not be effective, such as 

when the teacher models a problem solution for the class 

using actions that students have not yet internalized. 

Observing a subject acting on an object activates areas of 

the brain associated with the observer planning to carry 

out that activity herself (Buccino et al., 2001), so we 

should not expect visual demonstrations of mathematical 



A. Norton, C. Ulrich, M. A. Bell, & A. Cate 

51 

procedures to convey any mathematical meaning for 

students until they have internalized the associated 

actions. On the other hand, if students have internalized 

the associated actions, teacher demonstrations might 

suggest ways that students can coordinate them, if given 

the opportunity to do so. 

4. Finally, knowing what kinds of actions students need to 

internalize and coordinate becomes an important 

consideration. We have suggested partitioning and 

iterating constitute fundamental internalized actions for 

constructing fractions. Research in mathematics 

education from action-based perspectives suggests the 

importance of numerous other internalized actions in 

students’ mathematical development (e.g., covariation, 

see Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). What 

kinds of manipulatives afford opportunities for 

sensorimotor activity, and coordinations thereof, that 

might induce internalized actions and interiorized 

operations? 

 

Coordinations of sensorimotor activity and internalized 

actions introduce unending possibilities for constructing new 

mathematical objects (Piaget, 1970). A hierarchy of 

mathematical objects develops by coordinating actions 

performed on existing objects so that new objects have a 

reduced dependence on attentional resources (Rivera, Reiss, 

Eckert, & Menon, 2005). These objects build, not from the 

integers, as Kronecker suggested, and they do not exist in some 

Platonic ideal. They begin at the touch of a finger and 

continually build through human activity (sensorimotor, 

internalized, and interiorized). 

For the mathematician it is, of course, tempting to believe 

in Ideas and to think of negative or imaginary numbers as 

lying in God’s lap for all eternity. But God himself has, 

since Gödel’s theorem, ceased to be motionless. He is the 

living God, more so than heretofore, because he is 

unceasingly constructing ever “stronger” systems. Passing 

from “abstract” to “real” or “natural” structures, the 
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problem of genesis becomes all the more acute. Only if we 

forget about biology can we be satisfied with Chomsky’s 

theory of innateness of human reason or with Lévi-Strauss’ 

thesis of the permanence of the human intellect. (Piaget, 

1970, p. 141) 
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