
The Mathematics Educator 
2019 Vol. 28, No. 1, 3–26 

A Preliminary Genetic Decomposition of 

Probabilistic Independence 

Karen Zwanch 

The purpose of this research is to construct a preliminary genetic 

decomposition delineating the mental constructions underlying 

probabilistic independence. This delineation is considered within the 

framework of APOS theory. While the use of the term independence in 

probability is often conflated with causation, the definition relies instead 

upon an understanding of conditional probability. I hypothesize that the 

concept of independence is only fully available to students by constructing 

at least an object conception of probability. I offer additional hypotheses, 

supported by literature and anecdotal teaching experience, regarding 

students’ quantification of probability and construction of combinatorial 

reasoning.   

Many researchers have documented the overwhelming 

difficulty students experience in trying to construct appropriate 

understandings of probabilistic tasks (Jones, Langrall, Thornton, 

& Mogill, 1997; Tarr & Jones, 1997). In particular, the concept 

of independence and dependence of events is problematic. 

Shaughnessy (2003) indicates that “students have difficulty just 

sorting out the mathematics of whether events are statistically 

dependent or independent in probability problems” (p. 221). 

Many researchers (D’Amelio, 2009; Nabbout-Cheiban, 2017; 

Ollerton, 2015) agree that this is due to a disconnect between an 

intuitive sense of the terms as they are generally used in the 

English language and the mathematically correct definitions.  

The conditional definition for independence is at times 

problematic for students as it occasionally works in contrast to 

the students’ colloquial sense of the word. The definition is as 

follows: Two events, A and B, are independent if and only if the 

occurrence of event B has no effect on the probability of the 

occurrence of event A. That is, 𝑃(𝐴)  =  𝑃(𝐴|𝐵) and 𝑃(𝐵)  =
 𝑃(𝐵|𝐴) (Grinstead & Snell, 1997). Dependent events are 
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defined as events that are not independent; two events, A and B, 

are dependent if and only if 𝑃(𝐴)  ≠ 𝑃(𝐴|𝐵). 

Students’ abilities to correctly interpret this definition have 

implications for their use of probabilistic formulas in a variety 

of situations (Ollerton, 2015). One such situation is that if two 

events, A and B, are independent, then 𝑃(𝐴 ∩ 𝐵)  =  𝑃(𝐴) ∙
𝑃(𝐵). This theorem results from the conditional definition 

(Grinstead & Snell, 1997), as demonstrated below. 

 𝑃(𝐴 ∩ 𝐵)  =  𝑃(𝐴) ∙ 𝑃(𝐵|𝐴) (1) 

This is true for all events, regardless of independence 

 

 𝑃(𝐵)  =  𝑃(𝐵|𝐴) (2) 

Definition of independent events 

 

 𝑃(𝐴 ∩ 𝐵)  =  𝑃(𝐴) ∙ 𝑃(𝐵) (3) 

Result of substituting (2) into (1) 

The resulting theorem in Equation 3 is mathematically preferred 

in some situations and can be used to test for independence. Its 

use in instruction to replace the conditional definition, however, 

may be a confounding factor in students’ difficulties with 

probabilistic independence by redirecting focus from conceptual 

understanding to completing calculations. 

One particular difficulty students have with independence is 

a reliance on their intuitive sense of the concept. D’amelio 

(2009) found that undergraduates persistently apply their 

intuitions regarding independence. Forty-six students out of 54 

in her research study responded to the question of two events 

being independent intuitively by indicating, for example, that the 

events had no connection. Similarly, Nabbout-Cheiban (2017) 

found that for preservice teachers, intuition and colloquial 

interpretations of the term independence were common and 

problematic. For instance, preservice teachers commonly 

considered independent events to be a “one-way relation of one 

event to another” (p. 273), rather than to be a property describing 

the relationship between the two events. This is attributed to the 

application of a colloquial definition of independence because 

of the assumption that one event is not dependent on the other, 

for instance. Furthermore, when the preservice teachers solved 
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problems involving independent events, they frequently gave 

intuitive responses in place of completing calculations.  

If students’ intuitive ideas about independence are 

disconnected from formal definitions or calculations, they will 

not likely develop conceptual insight, especially if taught 

Equation 3 without understanding its derivation. In this study, I 

examine the possibility of constructing the underlying 

conceptual structures necessary to accept the conditional 

definition before introducing the concept of independence. As a 

means of determining what the necessary conceptual structures 

might be, I will construct a preliminary genetic decomposition 

of the concept of independence of events. 

Theoretical Framework 

The theory supporting the genetic decomposition includes 

APOS theory and Piagetian stages. 

APOS Theory  

APOS Theory delineates the process by which individuals 

mentally construct mathematical schemas by constructing action 

(A), process (P), and object (O) conceptions of mathematical 

concepts (Dubinsky, 1991), the coordination of which 

formulates schemas (S). Schemas are “structures that contain the 

descriptions, organization, and exemplifications of the mental 

structures that an individual has constructed regarding a 

mathematical concept” (Arnon et al., 2014, p. 25). Schemas are 

dependent upon the mathematical ideas that an individual 

perceives to be interrelated. The transformations lead to more 

sophisticated conceptions and are explained by reflective 

abstraction (Piaget, 1977/2001), which entails reflection on 

concepts or operations being applied to the concept. Reflection 

leads to the advancement of the concept to a higher cognitive 

level that constitutes, from Piaget’s perspective, the learning of 

mathematical ideas, and in APOS theory, a more sophisticated 

conception. 

An action conception is the most rudimentary. With an 

action conception, completing mathematical tasks is procedural 
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(Arnon et al., 2014), and it is necessary for students to carry out 

the actions of solving because mental re-presentations are not 

yet available. Reflecting on actions leads to the interiorization of 

a process, with which students can assign meaning to mental re-

presentations of concepts. A process conception allows students 

to reflect upon, describe, and reverse mental processes (Asiala 

et al., 1996). Reflecting on mental processes can lead to the 

encapsulation of a process into an object, which implies that 

conceptual objects are entities in and of themselves that have 

properties, can be considered in totality, and to which actions 

can be applied (Asiala et al., 1996). Students’ conceptions are 

organized in a schema, which can itself be a conceptual object 

to which actions are applied; this enables less sophisticated 

schemas to be included within more sophisticated schemas 

(Arnon et al., 2014), creating a cyclical process by which 

interconnected schemas are constructed.  

Students’ applications of actions, processes, and objects are 

not strictly linear. Once actions are interiorized into processes, 

processes can be encapsulated into objects to which actions can 

be applied. However, objects can also be de-encapsulated into 

processes (Arnon et al., 2014). Thus, a student who has 

encapsulated a mathematical concept into an object can act in a 

manner that is consistent with having constructed only a process, 

for example.  

Piagetian Stages 

The research of Piaget and Inhelder (1951/1975) regarding 

students’ constructions of chance and probability is also 

included within this model. Piaget and Inhelder delineated 

students’ reasoning through three developmental stages. In stage 

I, the preoperational stage, children may use symbols but do not 

mentally manipulate objects or information; this aligns with 

Dubinsky’s (1991) actions, in which problem solving is 

procedural. Stage II is the concrete operational stage and is 

marked by the onset of inductive logic and reversibility. 

Reversibility, in particular, is also a marker for a process in 

APOS (Asiala et al., 1996). The final stage, stage III, is formal 

operational and supports abstract thought, thereby aligning 
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approximately with objects in APOS (Asiala et al., 1996). 

Although APOS theory and Piaget’s stages are distinct from one 

another, their similar epistemological foundations suggest 

compatibility. Piaget and Inhelder’s research contributes 

empirical findings that are relevant, and will therefore be 

integrated into this research to build a more robust, and 

integrated genetic decomposition. 

Genetic Decomposition 

Within the frame of APOS theory, “a new mathematical 

concept frequently arises as a transformation of an existing 

concept” (Arnon et al., 2014, p. 28). Thus, a genetic 

decomposition is a trajectory of concepts and the 

transformations of those concepts that result in the construction 

of new or more sophisticated concepts. Arnon et al. (2014) state 

that a genetic decomposition “explains whatever is known about 

students’ expected performances that indicate differences in the 

development of students’ constructions. … [and] include[s] a 

description of prerequisite structures an individual needs to have 

constructed previously” (p. 28). They further explain that 

designing a genetic decomposition can include self-reflection, 

reflection on work with students, or extant literature on student 

thinking. Finally, while a genetic decomposition may inform 

instructional decisions, it is not a teaching sequence.  

This study is a preliminary genetic decomposition of 

probabilistic independence; it is preliminary in the sense that it 

has yet to be empirically tested and refined (Arnon et al., 2014). 

Accordingly, analysis included reflections on the concept of 

independence, reflections on related teaching experiences, and 

existing literature on student thinking. The resulting model 

includes mental constructs that support the construction of 

independence, transformations that occur to these mental 

constructs in service of constructing independence, and 

descriptions of student performances that may provide 

indications of the existence of such mental constructs. I created 

the model through a comparison of reflections and literature 

aimed at detailing the constructs that support a sophisticated 

concept of probabilistic independence.  
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Some analytic choices guided the construction of this 

specific model. The model culminates in the conceptualization 

of the conditional definition of probabilistic independence. That 

is not to discount other possible conceptualizations, only to 

suggest that the conditional definition is a basis upon which 

other conceptualizations of independence can be built. This 

model also focuses on discrete as opposed to continuous sample 

spaces. While the resulting model could apply to continuous 

sample spaces, probabilistic independence involving continuous 

spaces does not require combinatorial reasoning. This model 

incorporated combinatorial reasoning for discrete sample spaces 

so as to build a more comprehensive model. Genetic 

decompositions are not unique (Arnon et al., 2014), which 

implies the possibility of other models, and other models may 

include a more narrow or wide scope than what is presently 

defined. The model constructed in this research, which is based 

on a systematic comparison of literature and reflections on 

probabilistic independence, resulted in a hypothetical model for 

students’ construction of the conditional definition of 

probabilistic independence. 

Conceptual Analysis 

Thompson (2008) describes a conceptual analysis as 

relevant to “describing ways of knowing that might be propitious 

for students’ mathematical learning, and … that might be 

deleterious to students’ understanding of important ideas” (p. 

46). Both students’ favorable and unfavorable ways of 

understanding probabilistic independence will be central to the 

construction of this genetic decomposition. To illustrate the 

conceptual analysis, I will focus on a problem of tossing three 

dice. The problem has two parts: (a) If three dice are tossed 

simultaneously, what is the probability of rolling a triple? (b) If 

three dice are tossed in succession, what is the probability of 

rolling a triple? Actually, these questions are equivalent and both 

represent independent events; however, many students view 

them as being different and may interpret the second question to 

be an example of dependent events. As a result of the belief that 

the events in the second situation are dependent, they may view 
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the result as having either a higher or a lower probability than 

that of the first situation.  

Students relying on a colloquial interpretation of 

independence may indicate that the events in part b of the dice 

problem are dependent because after the first die is rolled, the 

number that must result on the second and third dice is set 

because the outcome of the second and third dice generating a 

triple is dependent on it being the same as the outcome of the 

first die. As the number that each die must land on is now 

predetermined, students may further engage in subjective 

reasoning to determine that the probability of the second and 

third dice landing on the same number as the first is less likely 

than was the probability of the first die rolling any number. 

According to Jones, Langrall, and Mooney (2007), this type of 

causal or deterministic reasoning is a common cause of 

misconceptions regarding probability.  

In contrast, applying the conditional definition of 

independence leads to the conclusion that rolling the dice 

simultaneously or successively are statistically equivalent. 

Consider, for instance, rolling a three on the first and second dice 

as events A and B, respectively. The probability of rolling three 

on the first die is 1/6. The probability of rolling three on the 

second die, given the result of three on the first die, remains 1/6. 

Therefore, 𝑃(𝐵|𝐴) = 𝑃(𝐵) and thus events A and B are 

independent; the same result follows for the independence of the 

third roll. Because the simultaneous, and successive, rolls of 

three dice are independent, calculating the probability of rolling 

any set of triples can be done using the equation resulting from 

the definition of independence of events (Equation 3). In other 

words, 𝑃(𝑛 ∩  𝑛 ∩  𝑛) =  
1

6
∙

1

6
∙

1

6
=

1

216
, where n represents an 

arbitrary integer on the die. Therefore, the probability of rolling 

triples is the sum of the probabilities of rolling any specific 

triple: 𝑃(𝑡𝑟𝑖𝑝𝑙𝑒𝑠) = 6 (
1

216
) =

1

36
. 

The solution to this problem is demanding as it requires 

students to consider many different probabilistic components 

simultaneously, the first of these being the independence of 

events. Without an appropriate conceptualization of 

independence, students tend to rely on subjective reasoning 
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which creates confounding errors throughout their solution. 

Both simple and conditional probabilities are inherent within the 

conditional definition of independence. As conditional 

probability is necessarily dependent on simple probability, I will 

begin with the mental constructs necessary to conceptualize 

simple probability. I will then build to an understanding of 

conditional probability and, finally, independence of events. 

Mental Constructs Underlying Probability 

Simple probability is the calculation of the chance of the 

occurrence of a single event, which is represented as a ratio of 

favorable outcomes to total outcomes. Jones et al. (2007), in 

their synthesis of probability research, characterize probability 

in the following way: “Probability focuses directly on 

describing, quantifying, modeling, and illuminating random 

processes” (p. 910). In following with this characterization, 

students must accomplish significant mental constructions to 

engage in simple probabilistic reasoning. To begin, I will outline 

how understanding randomness, quantifying probability, and 

modeling probability contribute to simple probability. 

Following this outline, I will also consider how simple 

probability fits within the APOS framework with regard to 

probability as a whole. 

Randomness is one of the mental constructs that contribute 

to simple probability. Piaget and Inhelder (1951/1975) illustrate 

children’s construction of randomness by having them predict 

and explain the mixing of marbles in a box. At first children may 

anticipate that all marbles will return to their original position 

despite mixing. Children with more sophisticated reasoning 

explain that as the box is tilted more, the marbles will become 

increasingly and irreversibly mixed; however, these children 

often explain random mixtures to emulate a pattern. Thus, it is 

not until children demonstrate understanding that the 

arrangement of marbles does not emulate a pattern that they have 

constructed randomness. 

In addition to constructing randomness, children must 

construct the quantification of probability (Jones et al., 2007), 

which relies on their construction of the logical operation of 
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disjunction (Piaget & Inhelder, 1951/1975). Piaget and Inhelder 

(1951/1975) used the construct of disjunction to describe the 

child’s reasoning about the composition of a set. Consider, for 

instance, presenting a child with two bags of marbles. In the first 

bag are one red and one blue marble. In the second bag are two 

red and three blue marbles. Although the probability of selecting 

a red marble from the first bag is higher (1/2 compared to 2/5), 

a child who has not constructed disjunctive reasoning may 

indicate it is more likely to draw a red marble from the second 

bag because there are two reds. This is because the child is 

considering only the favorable outcomes (one red marble 

compared to two red marbles) and ignoring the composition of 

the set as a group of favorable and unfavorable outcomes 

combined (one red out of two marbles compared to two red out 

of five marbles). In summary, a child who has not yet 

constructed disjunctive reasoning may be unable to compare the 

favorable and unfavorable outcomes within a set to determine 

which is more likely. These children instead focus only on the 

favorable outcomes, ignoring the unfavorable outcomes 

altogether.  

In their theoretical framework to understand young 

children’s quantification of probability, Jones et al. (1997, 1999) 

echo the importance Piaget and Inhelder (1951/1975) place on 

disjunctive reasoning by indicating that part-whole and part-part 

relationships are of great relevance in conceptualizing 

probability. Furthermore, they view children’s development of 

part-whole and part-part reasoning to be a critical factor in 

students’ probabilistic growth. Within Jones et al.’s (1997) 

framework, students progress through four levels of reasoning 

with regard to probability: (a) subjective, (b) transitional, (c) 

informal quantitative, and (d) numerical. Although the authors 

of this neo-Piagetian framework do not explicitly state the 

construction of disjunctive reasoning to be a predicating factor 

in a student’s construction of probability, they label the first two 

levels in such a way as to imply its importance as an underlying 

mental construct. In level one, judgments about probability are 

subjective, and in level two favorable and total outcomes are not 

considered in tandem (Jones et al., 1997). Both of these 
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characterizations point to students not having constructed 

disjunctive reasoning. 

The final component that Jones et al. (2007) identify is 

modeling probability. This includes the classical, or theoretical, 

and the frequentist, or experimental, view-points. The classical 

perspective involves quantifying the expectation that an event 

will occur whereas the frequentist perspective involves 

quantifying the occurrence of an event obtained through data 

collection (Shaughnessy, 1992). Although the frequentist 

perspective acts in support of the classical perspective, it 

necessarily represents a truncated quantification of the 

probability of an event. To construct an understanding of the 

relationship between these two perspectives requires students to 

construct the law of large numbers.1 Furthermore, Piaget and 

Inhelder (1951/1975) indicate that students do not include the 

law of large numbers appropriately in their reasoning until they 

have fully constructed randomness. Thus, Jones et al.’s (2007) 

final component of understanding of probability, modeling 

probability, is based on the reconciliation of classical and 

frequentist views of probability. This reconciliation is made 

possible by the law of large numbers which depends on the 

construction of randomness.  

Sample Space 

An additional consideration in modeling probability is 

sample space, which is the ability to determine the entire set of 

possible outcomes (Jones et al., 1997), and in simple probability, 

the outcomes are those from one event. With only one event, 

students’ difficulties with sample space are generally related to 

their subjective decision making (Jones et al., 1999), as opposed 

to difficulties constructing a list of outcomes. For example, 

while a child making subjective judgments about sample space 

likely understands that a single die can land on any integer 

between one and six, the child is unlikely to understand the 

implications of this sample space to be that any integer has a one 

 
1 Students’ construction of the law of large numbers is a discussion beyond the 

scope of this research. 
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in six chance of being rolled. This is representative of the child’s 

disinclination to connect sample space to probability (Jones et 

al., 2007), and aligns with Piaget and Inhelder’s (1951/1975) 

indication that children cannot reason about chance until they 

have constructed disjunctive reasoning because the logical 

operation of disjunction supports reasoning about the set of 

favorable and possible outcomes. Thus, when considering 

simple probability, the disconnect between sample space and 

probability is more so the cause for difficulty than the 

construction of the sample space itself.  

As probabilistic situations become more complex, however, 

the construction of sample space becomes more complex as 

well. The construction of sample space for multiple events 

involves various forms of combinatorial reasoning, including 

combinations and permutations. I argue that the ability to 

manipulate and combine combinations and permutations 

requires a schema that coordinates both. The following section 

delineates the constructions of such schemas. 

Permutations. When students consider multi-stage 

experiments, they must also consider permutations as a means 

of constructing sample space. Permutations may be more 

difficult for students to construct, in comparison to 

combinations, because students must first come to understand 

that AB is distinct from BA (Piaget & Inhelder, 1951/1975), 

which is irrelevant with combinations. Permutations will be 

considered first, however, because the derivation of the formula 

for permutations is necessary for the formula for combinations.  

After beginning to distinguish between permutations 

containing the same elements, such as AB and BA, children can 

construct an action conception of permutations. In the early 

stages of conceptualizing permutations, Piaget and Inhelder 

(1951/1975) find that students rely on physical models or 

manipulatives, which is due to limitations of their mental 

structures. I will discuss students’ construction of permutations 

within APOS theory in the context of the four-color cubes 
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problem, in which students are asked to make all two-cube 

permutations from the set of four, without replacement.2 

With a rudimentary concept of permutations, children will 

likely use some sort of manipulatives or models to determine all 

the possible outcomes of an experiment. Piaget and Inhelder 

(1951/1975) find that children at stage IA do not initially 

understand AB and BA, for example, to be distinct permutations. 

As they come to understand different arrangements of the same 

pairs of cubes constitute different permutations, which is 

indicative of the construction of stage IB, they are likely to 

“grope” with manipulatives on a problem like the color cubes 

problem (Piaget & Inhelder, 1951/1975). This groping 

constitutes an action conception (Asiala et al., 1996) of 

permutations because children do not have a systematic means 

by which they form permutations and they have no way to 

determine if they have found all permutations. Children might 

arbitrarily make and record groups of two color cubes, but they 

may make the same group again without realizing, or they may 

not find all the groups. With only an action conception of 

permutations, pairs of cubes are individually counted and 

children do not anticipate them before they are formed. Thus, 

students are likely to rely on manipulatives or other models, and 

the arrangements of these manipulatives or models may seem 

arbitrary because they are created in the moment. The odometer 

strategy (English, 1991), and models such as area and tree 

diagrams, enable children to organize their permutations. Each 

of these strategies provides a systematic means by which the 

color cubes can be arranged exhaustively.  

Construction of a conception beyond an action results from 

reflecting on these models. Supported by manipulatives and 

models of permutations, students can begin to generalize 

patterns. Regarding the example of the color cubes problem, 

students will notice that when the first color cube (cube A) is 

 
2 I refer to the color cubes throughout my discussion of permutations and 

combinations. This example is adapted from the work of Piaget and Inhelder 

(1951/1975). By color cubes, I mean four small cubes, each of which is a 

different color. For clarity, I will refer to them as cubes A, B, C, and D. 
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placed first, three groups of two cubes can be formed (AB, AC, 

AD); when the second color cube (B) is placed first, there are 

three more groups (BA, BC, BD); and so on. As students reflect 

on this pattern, they interiorize the actions of finding 

permutations into a process (Asiala et al., 1996), which is 

evidenced by students beginning to anticipate the number of 

possible combinations and to run through the activity mentally. 

These reflections align with Piaget and Inhelder’s (1951/1975) 

description of children at Stage IIB who observe regularities in 

permutations, have intuitive anticipations, and develop a 

“progressive consciousness of symmetries” (p. 187). These 

descriptions align with a process conception of permutations 

because students begin to anticipate and mentally run through 

creating permutations. Thus, with a process conception, the 

model and manipulatives can be used to verify that one’s set of 

groups is exhaustive. This verification is a nuanced, but 

important, distinction from the manner by which students with 

only an action conception of permutations rely on models and 

manipulatives to generate all the groups.  

With a process conception, students can reflect on their 

mental processes further, thereby engendering the encapsulation 

of the mental process into an object. Regarding permutations, 

students can generalize that the first selection in a permutation 

comes from a group of n, the second from a group of n – 1, and 

the number of permutations when selecting two objects is 𝑛 ∙
(𝑛 − 1). This aligns with Piaget and Inhelder’s (1951/1975) 

descriptions of students at stage IIIA, for whom systems begin 

to emerge and multiplicative reasoning comes into play. For 

example, on the color cubes problem, students might begin to 

reason that there are 12 permutations because there are four 

cubes to select from for the first element of the set and three 

cubes remaining to select from for the second element of the set 

(4 × 3 = 12).  

Additionally, with an object conception, students can 

compose permutations, which enables them to mentally 

construct sets of permutations in which more than two selections 

are being made. For example, a permutation of three events 

requires permutations on two selections and then an operation 

on that preliminary set of permutations. Composing 
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permutations facilitates the generalization of the pattern that 

additional selections increase the number of permutations to 𝑛 ∙
(𝑛– 1) ∙ (𝑛– 2), and so on, and eventually to n!. Composing 

multiple permutations in this way typifies an object conception. 

This generalization is distinguished by Piaget and Inhelder 

(1951/1975) as available to students only at stage IIIB, 

indicating it to be the most advanced development of students’ 

reasoning about permutations. Within APOS theory, when a 

schema includes “a coherent collection of structures . . . and 

connections established among those structures, it [schema] can 

be transformed into a static structure (Object)” (Arnon et al., 

2014, p. 25). In terms of permutations, this implies that the 

schema containing students’ actions, processes, and objects of 

permutations can itself be encapsulated into an object upon 

which students can act by composing permutations, thereby 

generalizing the formula n!.  

Combinations. Combinations are also necessary for 

students to reason about sample space in multi-stage 

experiments. Like permutations, a child’s conception will begin 

as an action and will require manipulatives or models to support 

their reasoning. Consider the color cubes problem again. 

Children at Piaget and Inhelder’s (1951/1975) stage I will likely 

“grope” with the cubes because they do not anticipate the 

combinations that result from the activity of selecting two cubes. 

Organizing their results using models or the odometer strategy 

(English, 1991) provides a systematic means by which the color 

cubes can be arranged, as well as a visualization of repeated or 

impossible combinations. Interiorizing these actions into a 

process results from reflections on these actions. 

Supported by models of combinations, students can begin to 

generalize patterns; these generalizations are typical of Piaget 

and Inhelder’s (1951/1975) stage II. In the color cubes problem, 

for example, students notice that by placing the first color cube 

(cube A) first, three groups of two cubes can be formed (groups 

AB, AC, and AD); when the second color cube (B) is placed 

first, there are two more groups (BC and BD); and so on. As 

students reflect on this pattern, they can interiorize the actions of 

finding combinations into a mental process (Asiala et al., 1996); 

namely, they can begin to anticipate the number of possible 
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combinations and run through the activity mentally. Thus, with 

a process conception, models or manipulatives can be used to 

verify that all groups have been found rather than to find all of 

the groups as a student with only an action conception would do. 

This allows students who have constructed a process conception 

of combinations to justify that their set of groups is exhaustive. 

Encapsulating a process for combinations into an object is 

characterized by students’ abilities to begin conceiving of the set 

of combinations in the color cubes problem, for example, 

without manipulatives or models. Piaget and Inhelder 

(1951/1975) note that children in stage III are able to determine 

combinations without any physical manipulatives because they 

can coordinate several sets of pairings simultaneously. For 

example, a student at stage III can coordinate the goal of pairing 

block A first with the other three blocks (i.e., AB, AC, AD) 

while pairing block B first with the other two blocks (i.e., BC, 

BD), and so on. Piaget and Inhelder’s characterization of 

students at stage III aligns with having encapsulated a process 

conception of combinations into an object because students are 

operating on sets of combinations. 

Combinatorial reasoning. As discussed previously, a 

schema for permutations can include students’ generalization of 

the formula n! once they encapsulate permutations into an 

object. A schema including combinations and permutations, 

which I will refer to as combinatorial reasoning, allows for the 

joint consideration of combinations and permutations in 

constructing sample space. Furthermore, deriving a formula for 

combinations is more complex than that of permutations in that 

it requires students to coordinate schemas for combinations and 

permutations. Thus, the justification of this formula is 

considered within a student’s combinatorial reasoning schema 

rather than as existing within a student’s combinations schema. 

The formula for combinations without replacement is (
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
. It involves three components, each of which is related 

to a conceptual idea: that combinations are a specialized case of 

permutations (n!), that duplicated cases are eliminated through 

division by r!, and that selecting fewer than n items is accounted 

for through division by (n-r)!. Students must reflect upon and 
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generalize these relationships in order to derive the formula. 

Thus, a conceptual understanding of a derivation of the formula 

for combinations is considered evidence of a student’s 

construction of a schema of combinatorial reasoning that 

coordinates permutation and combination schemas. It is this 

concept of combinatorial reasoning that acts in support of 

advanced conceptions of probability. The delineation of 

probability within APOS theory will be considered next.  

Probability and Probabilistic Independence 

Conditional probability is defined in the following way: 

“The conditional probability of an event A, given that event B 

has occurred, written 𝑃(𝐴|𝐵), is the probability of A considering 

as possible outcomes only those outcomes of the random 

experiment that are elements of B” (Tarr & Jones, 1997, p. 40). 

This definition illuminates the difficulty of conditional 

probability over simple probability. Tarr and Jones (1997) note 

that students have particular difficulty constructing the 

appropriate sample space for conditional probability because 

they fail to reevaluate the sample space based on the 

conditioning event. Accordingly, I will delineate the mental 

constructions students must make in order to appropriately 

conceptualize conditional probability, and ultimately 

independence (Figure 1). 

The construction of simple probability involves 

randomness, modeling probability, and the quantification of 

probability (Figure 1, arrows a, b, and c); furthermore, simple 

probability will begin as an action. Having constructed only an 

action, students cannot mentally anticipate results. As such, 

students are unlikely to discern a relationship between classical 

and frequentist results of probability because an action 

conception does not support the anticipation that the infinite 

extension of an experiment would generate the theoretical result. 

To interiorize an action into to a process requires reflection on 

the results of the classical and frequentist perspectives (Figure 1, 

arrow d). This reflection includes the generalization that the 

results of the two types of problems are equal, thereby indicating 
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that the two actions (conducting an experiment and comparing 

favorable to all outcomes) are the same.   

A process conception enables more advanced probabilistic 

reasoning, which includes comparing probabilistic results 

without actions. With a process conception, students can 

anticipate the results (Arnon et al., 2014) of a single theoretical 

event, facilitating comparison between the likeliness of two 

events. Having constructed a mental structure for probability 

also allows students to reverse the process of probability (Arnon 

et al., 2014), which allows students to create a set of all possible 

outcomes based on known probabilities. For instance, if the 

probability of drawing a red marble from a bag is 
3

10
 and there 

are only red and blue marbles, a student with a process 

conception can determine that there may be three red and seven 

blue marbles in the bag. Students with a process conception of 

probability have reflected on the results of classical and 

frequentist perspectives to the extent that they expect them to 

generate the same result, and will likely be perturbed if they do 

not. Students who have constructed only a process may lose 

track of the idea that the equivalence of results relies on a 

sufficiently large number of trials because their mental structure 

for probability anticipates the similarities they have observed 

and reflected on over time. 

Reflecting on mental processes leads to the encapsulation 

into objects (Figure 1, arrow e). Specifically, reflection on the 

distribution of results from experimental data and the manner in 

which experimental results approach theoretical probabilities 

supports construction of an object. Thus, the connection between 

theoretical and experimental results is resolved with an object 

conception, meaning that students now conceive of theoretical 

and experimental probabilities to represent different 

perspectives on the same probability. The strength of an object 

conception is that it enables students to conceptualize compound 

and conditional probabilities because an object implies that 

probability can be acted upon by combining multiple events (i.e., 

compound probability) and finding probabilities nested within 

probabilities (i.e., conditional probability; Arnon et al., 2014). 

Furthermore, students can now coordinate probability with 

combinatorial reasoning (Figure 1, arrow f) to conceptualize 
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compound and conditional probabilities, and they have finally 

constructed the mathematics necessary to begin conceptualizing 

the independence of events. By definition, “Two events are 

independent if the occurrence of one does not change the 

probability of the occurrence of the other” (Tarr & Jones, 1997, 

p. 40). Conceptualizing probabilistic independence as it is 

defined conditionally requires a schema conception that includes 

probability as an object so that a nested conditional probability 

can be conceptualized and compared to a simple probability.  

While the incorporation of conditional probability into a 

schema for independence is necessary, it is not sufficient. In 

APOS theory, a schema can itself become an object to which 

actions are applied (Arnon et al., 2014). Thus, with an object 

conception of probability, students can begin to apply the action 

of calculating independence using the conditional definition. 

This is, however, only a jumping off point for conceptualizing 

independence because this action is, at first, external. Through 

reflections on this action, it can be interiorized into a mental 

structure for anticipating the results of determining 

independence, which constitutes a process (Arnon et al., 2014). 

This anticipation manifests behaviorally as students’ intuitions. 

Through reflections on intuitions, a process can be encapsulated 

into an object, in which the independence schema is an entity to 

which further actions are applied (Arnon et al., 2014). 

Accordingly, with an object conception of independence, 

students can overcome intuitive reasoning regarding 

independence because they can reason about and act upon 

independence as its own entity. 

Implications 

The purpose of this preliminary genetic decomposition is to 

outline the mental constructs necessary to support a conception 

of probabilistic independence, informed by literature and 

reflection. Research indicates that a limited understanding of 

independence is problematic for secondary and undergraduate 

students (D’Amelio, 2009; Nabbout-Cheiban, 2017; Ollerton, 

2015; Shaughnessy, 2003). Some students struggle with 

probabilistic independence in spite of a sophisticated conception 
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of probability (e.g., Kelly & Zwiers, 1988; Nabbout-Cheiban, 

2017; Ollerton, 2015). More specifically, students often reason 

about independence intuitively and with biases (D’Amelio, 

2009; Nabbout-Cheiban, 2017; Ollerton, 2015), or by applying 

an understanding of the term as it is used colloquially rather than 

as it is defined mathematically (Thompson & Rubenstein, 2000; 

Kaplan, Rogness, & Fisher, 2014).  

The implication of the extant literature is that probability is 

a necessary but not a sufficient condition for conceptualizing 

probabilistic independence. This genetic decomposition 

provides a lens through which the research regarding students’ 

reliance on intuition and colloquial definitions can be 

understood. In the absence of sufficiently advanced mental 

constructs regarding probabilistic independence (e.g., 

combinations, permutations), students may rely on intuitions 

and apply biases to understand independence. Interpreting 

students’ difficulties with independence through the framing of 

this genetic decomposition suggests that the students in existing 

literature who apply biases have not constructed conceptions of 

probability that support the construction of an object conception 

of independence. 

This model demonstrates that in order to conceptualize the 

conditional definition of independence, students must have not 

only sophisticated conceptions of probability and combinatorial 

reasoning, but must also encapsulate their conception of 

independence into an object. Furthermore, while the result of the 

conditional definition 𝑃(𝐴 ∩ 𝐵)  =  𝑃(𝐴) ∙ 𝑃(𝐵) is a useful 

mathematical tool for determining independence, it is not 

necessarily appropriate for students who have yet to encapsulate 

independence into an object. Therefore, instruction should focus 

first on supporting students’ construction of the conditional 

definition of independence before encouraging students to apply 

the resulting theorem in its place. 

Keeler and Steinhorst (2001) call for the improvement of 

instruction of probabilistic independence by capitalizing on 

students’ intuitions. They posit that inquiry-based learning 

environments facilitate understanding by building on students’ 

intuitions. Abrahamson (2014) also encourages probability 

instruction that “guide[s] students to appropriate the cultural 
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resource as a means of supporting and empowering their tacit 

inference” (p. 250). His findings indicate that students’ 

intuitions are a powerful instructional tool that instructors can 

leverage by linking to formal mathematics. Relating these results 

to the present research, I hypothesize that reflection on the 

mental processes that manifest behaviorally as intuitions about 

independence can potentially support students’ encapsulation of 

those processes into objects, and teachers can leverage students’ 

intuitions to support such an encapsulation.  

According to Nabbout-Cheiban (2017), students with 

limited conceptions of combinatorial reasoning and probability 

may be successful on independence tasks by applying intuitions. 

From my own teaching experience, I also observe that some 

students operate with limited conceptions of probability and are 

intermittently successful with independence due to supports. For 

example, providing students who cannot coordinate probability 

and combinatorial schemas with sample space in a two-way 

contingency table may support them in successfully determining 

the independence of two events. Alternatively, students with 

limited conceptions may be successful on complex problems by 

relying on formulas. However, these students may struggle to 

derive the formulas because deriving formulas requires 

constructing probability and combinatorial schemas that are 

sophisticated enough to support independence. Therefore, these 

types of difficulties may be helpful indicators to instructors 

whose students need more time and support to construct 

sophisticated conceptions of independence. These students may 

initially require supports, such as a two-way table or support 

applying formulas, to be successful. However, it is more 

important to provide these students with opportunities to reflect 

on these support materials in order to engender their construction 

of more sophisticated conceptions of independence. The 

empirical refinement of this genetic decomposition could test 

this hypothesis. 

It is easy to mistake students’ intermittent success with 

understanding, and so it is necessary to take a deeper look at the 

limitations of students’ reasoning. A more comprehensive 

understanding of how students construct the concept of 

probabilistic independence, and the underlying mathematical 
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concepts, is necessary to advance research and teaching 

practices in this area. This preliminary model supports future 

research into how students construct the concept of probabilistic 

independence and provides preliminary evidence that is useful 

to instructors. 
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