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Exercising Mathematical Authority:  

Three Cases of Preservice Teachers’ 

Algebraic Justifications 

Priya V. Prasad and Victoria Barron 

Students’ ability to reason for themselves is a crucial step in developing 

conceptual understandings of mathematics, especially if those students are 

preservice teachers. Even if classroom environments are structured to 

promote students’ reasoning and sense-making, students may rely on prior 

procedural knowledge to justify their mathematical arguments. In this 

study, we employed a multiple-case-study research design to investigate 

how groups of elementary preservice teachers exercised their 

mathematical authority on a growing visual patterns task.  The results of 

this study emphasize that even when mathematics teacher educators create 

classroom environments that delegate mathematical authority to learners, 

they still need to attend to the strength of preservice teachers’ reliance on 

their prior knowledge.   

Self-efficacy in mathematics depends on having a sense of 

mathematical authority (Keazer & Menon, 2016; Lloyd & 

Wilson, 2000; Webel, 2010); that is, learners of mathematics 

need to rely on their own sense-making in mathematics in order 

to develop conceptual understandings of  mathematics. It is of 

particular importance that mathematics teacher educators 

provide preservice teachers (PSTs) opportunities for developing 

mathematical authority for two reasons: (a) As future teachers, 

PSTs need to be able to trust their own mathematical self-

efficacy (Ball, 1990); and (b) experiencing a mathematics class 

in which mathematical authority is shared can encourage PSTs 

to share authority with their students in their own future 

classrooms. However, elementary PSTs may have limited 

experience with sense-making in their own schooling, causing 
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them to rely on formulas presented by instructors or in a 

textbook instead of developing conceptual meanings (Blanton & 

Kaput, 2005; Keazer & Menon, 2016). By structuring tasks and 

classroom discourse in ways that allow PSTs to develop their 

own mathematical authority in the process of solving problems 

and justifying their reasoning, mathematics teacher educators 

can provide opportunities for PSTs to develop their own internal 

sources of mathematical authority. In this study, we discuss three 

cases of small groups of PSTs working on an algebraic task 

about growing visual patterns. Each case is an instantiation of 

PSTs’ use and placement of mathematical authority, whether in 

their own previously gained procedural knowledge or from their 

collaborative sense-making and justification of their work. This 

study informs the instructional recommendations for 

mathematics teacher educators who would like to delegate 

mathematical authority to PSTs in mathematics content courses 

by highlighting the importance of PSTs’ previous conceptions 

of mathematical concepts in their exercises of mathematical 

authority. 

Background 

When students are doing mathematics, they rely on a 

mathematical authority to drive their decisions about their 

course of action. Depending on where that authority is located 

in a classroom or how students confer it or defer to it, the 

exercise of mathematical authority by students can vary. 

Although previous scholars have not precisely defined the term 

mathematical authority, most agree that it can be conceptualized 

as being situated internally or externally. Gresalfi and Cobb 

(2006) described mathematical authority not as “‘who’s in 

charge’ in terms of classroom management but ‘who’s in charge’ 

in terms of making mathematical contributions” (p. 51). 

When mathematical authority is situated within the learner 

(i.e. internally), Schoenfeld and Sloane (2016) described the 

result to be a “personal ownership of the mathematics they can 

certify” (p. 62). Povey and Burton (2003) labeled this way of 

knowing mathematics as author/ity, in which learners and 

instructors co-create knowledge in the classroom. In this way,  
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learning mathematics is personal and reflective of the needs of 

students in the classroom, giving students opportunities to 

practice the development of their own knowledge. Reinholz 

(2012) proposed three aspects to the exercise of an internally-

situated mathematical authority: Students who rely on an 

internal mathematical authority (a) explain their reasoning, (b) 

justify their conjectures, and (c) assess their work once they find 

a solution, just as “mathematicians use these skills to derive 

authority from the logic and structure of mathematics, rather 

than relying on some other authoritative source” (p. 242). 

Reinholz conceptualizes these three aspects as “mutually 

supportive skills” that form the foundation of students’ 

development of an internal mathematical authority. Reinholz 

further differentiates between self-assessment (when a student 

assesses his or her own thinking) and peer-assessment (when a 

student assesses the thinking of a another student); for this paper, 

we will allow assessment to mean both types of assessment. 

Moreover, Reinholz’s appeal to the disciplinary norms of 

mathematics inform how we interpret explaining, justifying, and 

assessing, as we elaborate later.  

Another way of knowing mathematics that Povey and 

Burton (2003) proposed is through external authority. In this 

way of knowing, learners see mathematics as something they 

cannot control. The learner views mathematics as a subject that 

is fixed and unchangeable. Learners with this view leave 

mathematics to the experts, and they see mathematics as a 

collection of already-known facts that are decided upon by 

mathematicians in the field. In addition, the “authority for the 

learner rests in the content,” rather than internal judgement 

(Povey & Burton, 2003, p. 244). Povey and Burton conclude that 

most college students do not rely on an internal mathematical 

authority due to the dependence on an external (likely human) 

authority figure—the instructor. Similarly, Schoenfeld and 

Sloane (2016) found that students would propose their own 

conjectures and then wait for them to be corrected or justified by 

the expert. In this way, the mathematics in which the students 

are engaging is external to them. According to Schoenfeld and 

Sloane, when students rely on an external authority, “students 

propose; experts judge and certify” (p. 62). If students do not 
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have opportunities to engage in sense-making in the classroom, 

they are forced to rely on an external source of mathematical 

authority such as a textbook, a teacher, or a formula (Reinholz, 

2012).  

Rather than having to confer authority solely on the 

instructor, students should be able to construct their own 

personal meanings of the mathematics, allowing them to rely on 

an internal authority (Povey & Burton, 2003; Schoenfeld & 

Sloan, 2016). When students view instructors as the sole arbiter 

of mathematical correctness, they are surrendering their 

authority to the instructor and distancing themselves from the 

material they are learning. In order to decrease students’ reliance 

on external mathematical authorities and foster their dependence 

on internal ones, instructors must shift their roles in the 

classroom (Dunleavy, 2015; Gresalfi & Cobb, 2006; Stein et al, 

2008; Webel, 2010). Rather than instructors presenting 

themselves as  “‘dispenser[s] of knowledge’ and arbiter[s] of 

mathematical ‘correctness,’” they should take on the role of the 

facilitator or “engineer of learning” to allow students to 

construct their own understanding of the mathematics (Stein et 

al., 2008, p. 4). The instructor is no longer expected to present 

procedural problems and evaluate answers as correct or 

incorrect; instead, the instructor’s role is to monitor students’ 

solution processes and to investigate students’ sense-making. By 

shifting the sources of mathematical authority in the classroom 

from external to internal, instructors can help students gain a 

deeper conceptual understanding of the mathematics and support 

students to see themselves not as outsiders or doers of 

mathematics, but as constructors of mathematics (Webel, 2010). 

Dunleavy (2015) determined the site of authority in the 

classroom by identifying the sources of mathematical 

contributions: “Delegating” mathematical authority requires 

“students to convince their peers that their solutions make 

mathematical sense” (p. 63). When teachers delegate their 

authority to their students rather than maintaining sole authority 

in the classroom, students become responsible for their own 

learning. In addition, students are encouraged to actively 

participate in the construction of mathematical knowledge in the 

classroom. When mathematical authority is distributed to 
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students, they are given opportunities to “argue, evaluate, and 

confirm the validity of their mathematical ideas” (Dunleavy, 

2015, pp. 63–64). In order to develop PSTs’ own mathematical 

self-efficacy and encourage them to cede mathematical authority 

to their students in their own future classrooms, mathematics 

teacher educators should model the type of classroom described 

above in mathematics content courses.  

For this paper, we chose to focus purely on the PSTs’ 

development of intellectual authority as a group. Langer-

Osuna’s (2016, 2017) recent work has highlighted the 

importance of inter-group social dynamics (i.e. social authority) 

in mediating students’ development of intellectual authority. 

Although the instructors whose classes are included in this study 

attend and attempt to mitigate the role of status hierarchies 

within the group’s work, in this study, we focused on the 

opportunities built into each lesson for students to 

collaboratively develop a sense of mathematical (intellectual) 

authority. 

Methodology 

Context and Research Question 

PSTs, especially at the elementary level, like the other 

college students that Povey and Burton (2003) studied, lack 

experiences that encourage them to rely on their internal 

mathematical authorities (Schoenfeld & Sloane, 2016). Thus, 

when PSTs enter mathematics content courses, many are likely 

to search for an external mathematical authority to which to 

defer, be it the instructor, a textbook, or a peer with high 

mathematics status (Cohen & Lotan, 2014). The data analyzed 

in this study came from a larger ongoing project that followed 

the continuous improvement model proposed by Berk and 

Hiebert (2009) for iteratively improving elementary 

mathematics content courses for PSTs. The research team, 

comprised of four mathematics educators (three of whom 

regularly teach elementary mathematics content courses for 

preservice teachers), investigated PSTs’ engagement with 

mathematics tasks that addressed concepts that have been 
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historically challenging to PSTs at the large southwestern 

university where the study was conducted. The researchers 

created, either facilitated or observed, and revised tasks in 

accordance with the continuous improvement model. For each 

focal mathematical concept, the research team implemented the 

following cycle: (a) design a task that targets a particular 

mathematical conception or deepens understanding of a 

particular mathematical idea (as well as prompts pedagogical 

reflections by embedding the tasks in teaching scenarios); (b) 

develop hypotheses about anticipated student responses; (c) 

collect data such as student work, formative assessments, and 

recordings of classroom discourse and analyze these data 

sources for evidence of the desired student learning outcomes; 

and (d) record the information collected and use it to revise the 

task for use in subsequent semesters. For this paper, the primary 

sources of data were audio recordings and synchronized written 

records of PSTs’ work from small-group interactions collected 

during a single semester.  

When the research team wrote each lesson, the following 

assumptions about effective student learning in mathematics 

undergirded their thinking:   

1. Students need to have opportunities to collaborate and 

communicate about mathematics in order to learn 

conceptually and deeply (Stein & Smith, 2008).   

2. Good mathematical tasks for group-work must be group-

worthy (Lotan, 2003) and student-centered. 

3. Students bring their own funds of knowledge to the 

mathematics classroom, and this previous knowledge 

should be honored and leveraged (Aguirre et al., 2013). 

Therefore, each mathematical task that was developed in this 

project was implemented in a similar way: The instructor gave 

(at most) a brief introduction to the task, arranged the PSTs into 

groups of three to four to work on the task, and then allowed 

PSTs to work in groups while circulating around the classroom. 

The instructors closed most lessons by facilitating a whole-

group discussion. 
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The growing-visual-patterns task described in this paper was 

implemented in this way in two sections with two different 

instructors. This implementation structure allowed for the 

delegation of authority from the instructor to the PSTs in the 

ways advocated by research in the field (Dunleavy, 2015; 

Gresalfi & Cobb, 2006; Stein & Smith, 2008; Webel, 2010). 

Additionally, due to the third underlying assumption, instructors 

did not direct students to disregard any previous knowledge that 

they might bring to their engagement with the task. The research 

group believes strongly in modeling for PSTs the practice of 

eliciting and leveraging students’ existing funds of knowledge. 

However, when the research group observed the implementation 

of the first iteration of the growing-visual-patterns lesson, they 

noticed that many groups of PSTs were not fully exercising their 

mathematical authority by explaining, justifying, and assessing, 

even though the structure of the task created opportunities for all 

three. As many mathematics teacher educators do, the 

instructors in this study structured their classrooms and wrote 

mathematical tasks in ways that would support PSTs’ reliance 

on their internal mathematical authorities. However, since PSTs 

still deferred to their own procedural prior knowledge, this led 

us to ask the following question: What preempts the full exercise 

of mathematical authority by PSTs as a group on tasks that are 

structured to encourage it? 

Growing Visual Patterns Task 

One of the first tasks created for this project required PSTs 

to analyze growing visual patterns and to develop expressions 

that reflected their growth, which is a particularly rich context in 

which students can explore the concept of mathematical 

generalization (Liljedahl & Zazkis, 2002). Our expectations for 

our PSTs on the task were informed by the results of work that 

had been done by Warren and Cooper (2008) with third-grade 

students. Warren and Cooper found that although third-grade 

students were able to think functionally, they expressed visual 

patterns algebraically as a relationship between subsequent steps 

rather than between the term of the visual pattern (i.e., the 

output) and the step number (i.e., the input). They concluded that 
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students’ understanding of generalization relies on having 

adequate opportunities to generalize patterns; that is, by 

exposing students to visual growth patterns, they will be 

prepared to construct algebraic expressions based on their 

internal mathematical authority. The initial task (see Figure 1) 

created by the research team was aimed at expanding PSTs’ 

experience with generalizing visual patterns. Before creating the 

task, the research team identified the following learning goal for 

this task: PSTs will be able to use a variable to represent an index 

in a sequence of visual patterns and build an expression in terms 

of the variable to represent an arbitrary step in the sequence. 

 

Pattern I 

 
In groups:  

a. Draw the next three steps of the pattern.  

b. Draw the 10th step of the pattern.  

c. Express in words a general rule describing how to create any 

step in the pattern, given the step number.  

d. Using a variable, write a general expression that tells how many 

tiles are in a step of the pattern, given the step number. 

Figure 1. First iteration of the growing visual patterns task given to 

PSTs. 

 

PSTs were given two more patterns (shown in Figure 2) to 

investigate and prompted to answer the same questions; all three 

patterns were adapted from Boaler (2015). Different groups 

started with different patterns, but eventually all groups explored 

all three patterns. The small-group discussions were recorded 

with the use of smart pens that captured audio recordings of the 

PSTs’ discourse and synchronized the audio with a digital record 

of their written work. 
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Pattern II 

 

Pattern III 

 

 
Figure 2. Second and third iterations of the growing visual patterns 

task given to PSTs. 

Data Analysis 

The data were analyzed first from a perspective of content 

analysis (Krippendorff, 2012). Three cases (i.e., three groups of 

preservice teachers) were selected as instances that typified 

different modes of reasoning about the task, and the associated 

recordings were transcribed. Then, the authors identified three 

major categories of discourse based on Reinholtz’s (2012) three 

aspects of authority:  

1. Explaining reasoning. In the context of this task, PSTs 

explained their reasoning most often as they were 

attempting to communicate to their group members their 

conjectures about how the pattern would develop.  

2. Justifying conjectures. PSTs would justify their 

conjectures by attempting to make meaning for the 

variables or terms in their expression, often by referring 

back to the growth of the visual pattern. Justification was 

identified generally by using the word because or after a 

prompting question of why.  
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3. Assessing solutions. PSTs would assess the validity of 

their expressions by numerically testing them against 

their previously established numerical or visual patterns.  

Data were coded sentence by sentence (with phrases being 

considered sentences if the speaker stopped without finishing the 

sentence or started a new thought after a pause). Table 1 provides  

examples of utterances that fell into each category, with the 

excerpts shown as exchanges  in order to provide context. From 

coding the discourse in the transcripts in this way, the authors 

could characterize each group’s overall exercise of mathematical 

authority based on the general trends of the group’s interactions. 

For example, even though a group may have an isolated 

utterance coded as justification, the group was not necessarily 

considered to be justifying in a larger sense (see Exchange 1 in 

Table 1). Moreover, the distinctions between explaining, 

assessing and justifying were made from a mathematical 

perspective; for example, PSTs may have felt they were 

justifying a conjecture by checking it against the numerical 

growth of the pattern, but from a mathematical perspective, this 

would be considered assessing the conjecture. Additionally, 

because the focus was on how PSTs exercised their 

mathematical authority, the instructor’s talk was left uncoded. 

 
Table 1 

Examples of the Three Categories of Mathematical Authority 

Exchange Example Code 

1 PST 2.2: Because the difference is 4. Justifying 

 PST 2.2: We already know that. Explaining 

 PST 2.2: And then the first step is 7. Explaining 

   

2 PST 2.2: So, I was using this [gesturing to 

the formula], and then this is your first 

number so on here, the first number is 7 and 

it is n – 1 so that’ll whatever step you 

choose. 

Explaining 

 PST 2.1: Yeah. Assessing 

 PST 2.2: And it is, the difference and we 

already knew it was going up by 3 every 

time. 

Explaining 
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Exchange Example Code 

3 Instructor: What would happen if you have a 

n instead of a n minus 1 there? What would 

that mean in the picture and pattern? 

(uncoded) 

 PST 1.1: It would be one term past what it 

needs to be. 

Justifying 

   

4 PST 3.1: So, it’s like we are deleting step 1, 

but like for step 2, would be your step 1, in 

the equation. 

Justifying 

 PST 3.2: It’s almost there is no 1 in a sense. Justifying 

 PST 3.2: So, step 3, we would take 3 times 2 

plus 1. 

Explaining 

 PST 3.2: Step 4 we would take 3 times 3 

[pause] 

Explaining 

 PSTs 3.1 and 3.3: Plus 1. Assessing 

 PST 3.2: Plus 1. Assessing 

 PST 3.3: Yeah. Assessing 

 PST 3.2: So, you would just have to get it 

one number behind. 

Justifying 

Note. PST 1.1 = preservice teacher, group 1, student 1. 

 

The examples of coding from Table 1 illustrate how the 

coding scheme was implemented. In general, utterances in 

which PSTs stated or elaborated upon conjectures were coded as 

explaining. Utterances in which students compared their 

conjectures to the numerical growth of the pattern or corrected 

or affirmed each other’s thinking (whether solicited or not) were 

coded as assessing.  Utterances such as right, yeah, or okay were 

ambiguous in terms of whether PSTs were actually confirming 

their peer’s thinking or using the word as a hedge. In these cases, 

the authors returned to the audio recording to base their 

decisions on the tone of voice and updated the transcript with a 

single period if the utterance seemed decisive or an ellipsis if the 

utterance was drawn out in a more questioning tone. While this 

process helped code these types of utterances with more 

confidence, the level of ambiguity that remained led the authors 

to look for other, more robust instances of assessing in order to 

include an utterance as part of the characterization of the group’s 

work. Utterances that connected stated conjectures to a 

generalized sense of how the visual pattern grew were coded as 

justifying as well as utterances that discussed the meanings of 
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variables and algebraic terms. This latter example of justification 

was only coded in this way if the students provided evidence that 

they had generated these meanings for themselves. In Exchange 

4 (coded as justification) in Table 1, the group is moving from 

discussing just the meaning of a single variable to how that 

variable operates within a particular term of their conjectured 

expression. In the first round of analysis, both authors read and 

discussed the transcripts to develop a portrait of each group’s 

work. In the second round, authors separately applied the coding 

scheme and discussed any discrepancies in the codes.  

Findings 

The three cases presented came from three groups of PSTs 

in a single section of this course taught by a member of the 

research team who is not an author of this paper. Each of these 

three groups exercised a different overall pattern of Reinholz’s 

(2012) three aspects mathematical authority in the creation of an 

expression to represent the growth of a linearly growing visual 

pattern. Examining the overall pattern of coding of a group’s 

discussion helped the investigators address the research 

question; the aspects of mathematical authority that PSTs 

exercised in their group was a function of the level of external 

authority that they afforded to a previously remembered 

formula. It should be noted that there were multiple instances of 

students ceding mathematical authority to each other or 

developing a shared sense of authority when the entire group 

agreed with a particular conclusion. Although these instances 

were fascinating from the perspective of analyzing power 

relationships and intra-group student dynamics (see Langer-

Osuna, 2016), the authors chose to attend to the group’s 

collaborative exercise of mathematical authority.  

Group One 

The first group (made up of two students) started with 

Pattern II (see Figure 3). 
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Figure 3. Student work from Group One. 

 

PST 1.2:  We need to draw the next 3 steps of the pattern. 

PST 1.1:  Okay. Then we will just add 3 each time. We are 

adding one more row on top, right? 

PST 1.2:  Yeah. 

 

For the first pattern, PST 1.1 identified—and PST 1.2 

confirmed—that the pattern was growing by 3 each time, and 

they connected that growth with the visual representation of the 

pattern (“We are adding one more row on top”). This 
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interchange started with an explanation, was followed by a 

justification that linked their expressions with the visual 

attributes of the pattern, and ended with an assessment, the last 

being an instance of peer-assessment when PST 1.1 asked, 

“Right?” and PST 1.2 confirmed. However, this instance was the 

only time when this group moved beyond explanation to provide 

justification or assessment. As they kept working on this pattern, 

PST 1.1 attempted to recall the formula for an arithmetic 

sequence to represent a linearly growing visual pattern.  

 

PST 1.1:  Okay. Step 4 is 12 blocks, next is 15. How do you 

want to do this? 

PST 1.2:  So now we draw the 10th step. 

PST 1.1:  How do you want to do that? I don’t remember 

the formula for it. [pause] I’m writing down the 

formula. [writing] Okay. So 𝑎1 is 3, n is 10 and  

the difference, d, is 3. It’s 30. Do you think that is 

right? 30. I don’t know how many rows I’ll need 

to have 30. 

 

PST 1.1 opened another opportunity for peer-assessment by 

asking, “Do you think that is right?” but PST 1.2 did not respond 

to it, meaning that no such assessment occurred. However, this 

group did ascribe some meaning to the variables in the formula 

by identifying 𝑎1 as the number of tiles in the first term, n as the 

step number, and d as the difference in number of tiles from one 

step to the next, but it is unclear if this is meaning that they have 

constructed for themselves or just a fact that they have looked 

up. Additionally, in the dialogue that immediately follows, the 

students interpreted the directive to “express [a general rule for 

the pattern] in words” as asking for a verbal description of their 

formula.  

 

PST 1.1:  I think this might be right. [Reads the next 

question.] Should I just describe the formula now 

or what? Should I just describe the formula? 

PST 1.2:  It says to explain it in words. 

PST 1.1:  Yeah. So, I have to explain like, subtract 1 from 

the n. Yeah. We will just do that. 
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After this, the PSTs did not question or justify why the 

formula requires them to subtract 1 from n. Much of this group’s 

remaining verbal dialogue could be characterized as 

descriptions; little of it was coded as any of the three aspects of 

mathematical authority. The only evidence of meaning-making 

that was found from the group was an explanation of what the 

variables represented in the arithmetic sequence formula.  

Furthermore, we noticed that there were two occasions when 

the instructor prompted the group to justify their expressions. In 

the first occasion, the student's response directly appealed to the 

authority of the formula as her justification.  

 

Instructor: Okay. So why do you take 1 out of the equation 

[referring to the term n – 1)]? 

PST 1.1:  That’s how the formula works. 

 

The instructor then left this group to circulate with the other 

groups. In the second exchange, when the group was working 

with Pattern I, the instructor returned and prompted the group 

more explicitly to justify the use of the n – 1 term in their 

expression.  

 

Instructor:  Why is it [n] minus 1 each time and not n? 

PST 1.1:  Because you have to subtract 1. 

Instructor:  That’s right, but why? 

PST 1.1:  I don’t know. 

Instructor:  What would happen if you have a n instead of a 

n – 1 there? What would that mean in the 

picture and pattern? 

PST 1.1:  It would be one term past what it needs to be. 

Instructor:  Why? Why can’t we have it? 

PST 1.1:  Because you’re not starting with 0. 

Instructor:  And you’re not adding anything to pattern 1, 

right? That’s what you meant by, “You’re not 

starting with 0,” right? 

PST 1.1:  Yeah. 
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This exchange highlights the PST’s appeal to the external 

authority of the formula. When the instructor asked for 

justification, the PST implicitly presented the formula as 

justification, then admitted to not having a justification beyond 

that formula. PST 1.1 had made some meaning for the term n – 1 

by realizing that replacing it with n would mean that this would 

offset the expression by one term. However, the PST did not 

refer back to the visual attributes of the pattern to provide any 

justifications for the group’s expression; instead she simply 

validated the instructor’s interpretation of the group’s thinking. 

It is not clear that this final “yeah” is an instance of assessment 

since the PST could simply have been ceding her mathematical 

authority to the instructor and not assessing the accuracy of the 

instructor’s statement. In other words, the instructor was right by 

virtue of being the instructor, not because the instructor’s 

statement reflected a conclusion that the PST reached as a result 

of her own mathematical authority. 

Group Two 

The second group also started with Pattern II (see Figure 2). 

For this pattern, the group found that the number of tiles in each 

step was equal to the step number multiplied by 3. The group 

designated s to be their variable, and they generalized the 

statement to find the number of tiles in larger step numbers.  

 

PST 2.3:  For [the expression], I think it is just the number 

of the step times 3. [pause] Step 1 times 3 is 3. 

Step 2 times 3 is 6. Step 3 times 3 is 9. So, just 

think of the number of the step times 3. 

PST 2.1:  So, step number times 3? 

 . . . 

PST 2.3:  We can use s as our variable, and it can just be 3s 

if you want to find the step number. I don’t know 

if we should define s as our step number? 

PST 2.2:  Yeah, we should. How should I? Should I just 

leave it like that or [pause]? Okay, 3s. 

PST 2.1:  It would equal the number of tiles. 
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This dialogue was coded mostly as explanation. Later, when the 

instructor visited the group to check on their progress, she asked 

them to justify the expression they came up with for Pattern II.  

 

Instructor:  Oh, you already finished the other one? Can I 

see what your [expression] looked like? [pause] 

Okay. So, explain to me a little bit why that 

worked. What is 3s about? Nothing is wrong, by 

the way. 

PST 2.1:  So, like step 1 is 3 tiles, so I was thinking 1 

times 3 is 3. So, this is step 2, so that is 2 times 

3 equals 6, which is why there is 6 tiles in here. 

And step 3 is 3 times 3 equals 9. 

Instructor:  So, you take step 40, what would you do? 

PST 2.1:  40 times 3. 

Instructor:  So, what does s represent? 

PST 2.1:  The step number. 

 

PST 2.1’s response to the instructor alternates between 

explanation and assessment, with the latter referring solely to the 

numerical growth of the pattern. In fact, the group’s 

representation of the tenth step of the pattern shows that they did 

not attend to the visual attributes at all. They have the correct 

number of tiles (30), but the tiles are arranged in a 5 by 6 array 

instead of in 10 rows of 3 (see Figure 4). This group relied on 

their assessment of the numerical accuracy of their expression 

and expressed confidence in their expression based on that 

assessment. However, they did not engage in a full exercise of 

mathematical authority because they failed to justify their 

expression in a mathematical sense. Thus, while they may have 

had internally-situated confidence in their conjecture as a result 

of their assessment of their conjecture, they did not justify their 

conjecture in a way that would be considered valid in the broader 

discipline of mathematics.  
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Figure 4. Student work from Group Two (page 1 of 2). 
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Figure 4. (continued; page 2 of 2) 

 

When they worked on Pattern I, the group developed a 

similar template for their discourse of alternating between 

explanation and justification. The following episode starts as 

they are discussing the number of tiles in the tenth step:  

 

PST 2.1: Okay. So, then step 10. [pause] I feel like having 

to add 3 like to 10 is not the way to do it. 

PST 2.3:  I feel like there is a formula. 

PST 2.1:  I know there is. 

 . . . 

PST 2.1:  Yes. So, 4 times 2 is 8 plus 3. 

PST 2.2:  11. 
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PST 2.1:  4 times 3 is 12 plus 3. Is that the right number? 

PST 2.2:  13. 

PST 2.3:  What was the formula you wanted to use? 

PST 2.1:  Something like this [writes the arithmetic 

sequence formula]. 

PST 2.2:  Okay. 

PST 2.1:  So, I was just trying to think of that. Because the 

difference is 4. We already know that. And then 

the first step is 7. 

 

As shown in Figure 4, the group used the arithmetic sequence 

formula to build their expression for Pattern I and then went back 

to finalize their picture for the tenth step of the pattern. Their use 

of the expression to find the number of tiles in the tenth step can 

be seen in the top right corner of the page. As they continued 

discussing their expression for Pattern I, PST 2.2 made an appeal 

for justification of the group’s expression. 

 

PST 2.1:  Thirteen. 16. 19. Oh because [pause]. Okay. So, 

3n + 4. Three times 3 is 9 plus 4 is 13. Three times 

2 plus 4 is 10. That’s it. We got it. 

PST 2.2:  Okay. So, yeah. Explain to me how you figured 

that out. 

PST 2.1:  Oh, I just did the homework and that’s how I knew 

that. 

PST 2.2:  Oh. Okay. 

PST 2.1:  So, I was using this [formula], and this is the first 

number is 7 and it is n – 1 so it is whatever step 

you choose, and it is the difference and we already 

knew it was going up by 3 every time. So, then 

you just like 7 plus 3n. 

PST 2.2:  Okay. That makes sense. 

 

PST 2.1’s response explains her use of the formula by describing 

what each variable represented. Because there was no 

connection between these representations and further meaning-

making within the formula, we did not consider this an example 

of justification. 
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This group’s investigation of Pattern III followed the 

scheme developed for their first two investigations (which was 

prompted by the structure of the task). Once the group developed 

a conjectured expression, they assessed its validity by referring 

strictly to the numerical growth of the pattern. As for the 

previous patterns, after the expression was explained and 

assessed, the group moved on. 

Group Three 

The third group is included in this paper to provide an 

example of a group that fully exercised their mathematical 

authority by displaying all three of Reinholz’s (2012) mutually 

supportive skills. The PSTs evaluated the first pattern and tried 

to find different ways to represent the visual pattern’s growth.  

 

PST 3.3:  So, any step of the pattern. 

PST 3.2:  Any step, you are adding 3 more blocks. 

PST 3.1:  Say that again. 

PST 3.3:  Yeah. For every previous step we add 3 to each 

one. 

PST 3.1:  Okay. So, we are adding 3 blocks to the next 

[pause]. 

PST 3.2:  To the previous step. 

 

Their initial numerical investigation led them to develop an 

iterative relationship between the steps of the pattern. Once the 

students realized that they needed to express the pattern using 

the step number (in comparison to the number of tiles in each 

step), they proceeded to investigate the pattern in a different 

way, thus shifting their discussion toward a general perspective 

of the pattern.  

 

PST 3.1:  Is there a way [pause] it says to, like, describe a 

rule [pause] so it’s saying, like, saying or 

comparing to the step number not the previous 

step. 

PST 3.3:  For every step [pause] you are describing how to 

make any step, so you would say you are like 
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constantly adding 3 to every step. It doesn’t seem 

like you are adding 3, it seems like you are going 

backwards. 

PST 3.2:  So, if you say step 12, how many blocks are there? 

I should be able to immediately say that is 3 times 

12 which is 36 plus 1 is 37. 

PST 3.1:  In other words, we are explaining an expression. 

 

After the two instances of explanation from PSTs 3.3 and 3.2, 

PST 3.2 proposed a way to find the number of tiles for the step, 

which included a “deleted step.”  

 

PST 3.1:  So, step 1 is your base. Step 2 starts going into 

the actual equation. So that would be 3 times 

[pause]. 

PST 3.2:  That’s where you would see the pattern form. 

Between step 1 and 2. 

PST 3.1:  So technically this is your step 1 [points to step 

2 on the paper]. 

PST 3.3:  Okay. Okay. 

PST 3.1:  It’s like we are deleting step 1, but your step 2 

would be step 1. 

PST 3.2:  So, step 3 we would take 3 times 2 plus 1. Step 

4 we would take 3 times 3 plus one. So, you 

would just have to be one number behind. We 

can write that out. Verbally express that. And 

now we can say step 27 is like 3 times 26 plus 

one. 

PST 3.1 & 

PST 3.3:  Yeah. 

 

The group found that by finding the product of a number and 

the previous step number and adding 1 would give them the 

number of blocks for the current step. Note that the PSTs 

continually referred back to the visual pattern itself, not just the 

numerical pattern, even as they simply explained their 

reasoning. The group then assessed their expression and started 

to develop their justification for their expression.  
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PST 3.3:  So, you can give an example to make sure they 

understand what we are saying. So, you can write 

out step 1, 2, 3, etc. 

PST 3.1:  Okay to find [pause] let’s do [pause] 

PST 3.2:  They’re going to be able to understand what we 

write. 

PST 3.3:  You can write it here. And draw a line. 

PST 3.1: Do you want me to use a different step like step 6 

or 7? 

PST 3.3:  It doesn’t matter. 

PST 3.1:  I’m going to use step 7 since we don’t have that 

visually. For step 7 [pause] 

PST 3.3:  We would do 3 times 6 plus one. 

 

Their search for justification was motivated by the fact that they 

were expected to present their thinking to their peers and the 

instructor. Their plan for justifying their expression hinged on 

being able to draw a step of the pattern to illustrate each term of 

their expression, leading them to realize that instead of using n 

to represent the step number before the given term, they should 

incorporate the term n – 1 into their expression. They saw that 

this allowed them to use n to represent the step number of the 

current step, thus negotiating the meaning of the variable 

between themselves.  

 

PST 3.1:  So, wouldn’t the expression be 3 times n – 1 plus 

1? 

PST 3.3:  Oh, you could do it that way, but then it would 

cancel out. 

PST 3.1:  Let’s say step number is 3 minus 1 and that would 

be 2 plus 1. 

PST 3.3:  It is the same thing. 

PST 3.1:  It is the same thing, but you could use the current 

step number. 

PST 3.3:  This would not confuse anyone. 

PST 3.1:  Here is our answer: 3 times n – 1 plus 1; n would 

be the step number. You are multiplying 3 and say 

we are multiplying step 7, so that would be 3 times 

7 minus 1, 6, and then add 1. 
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Not only did this group explain their reasoning, assess their 

expression, and justify their conjectures, but they also switched 

between them quickly and often. In this way their full exercise 

of mathematical authority did not simply come from displaying 

all three of the necessary skills, but also from using them to 

mutually support each other, as Reinholz (2012) argued is 

necessary.  

Discussion 

Mathematics teachers and educators often emphasize the 

importance of students’ making sense of formulas by deriving or 

otherwise justifying them (Blanton & Kaput, 2005; Boaler, 

2015; Cuff, 1993). Students can confer mathematical authority 

onto a previously learned formula if they have not made sense 

of it for themselves. The cases discussed in this paper fall along 

a spectrum; each group exercised their own mathematical 

authority to a different extent, sometimes conferring externally 

on a previously learned formula and sometimes not. This can be 

seen from mapping their overall patterns of engagement with the 

task onto Reinholz’s (2012) framework. Throughout most of 

their work, the first group only went as far as explaining their 

reasoning, with very little assessment or justification of their 

expression. The second group developed a predictable pattern of 

dialogue that alternated between explanation and assessment; 

that is, it was not enough for them to only form conjectures, but 

they also felt it was important to test them as well. In contrast, 

the third group decided to visually justify their expressions by 

referring back to the visual pattern. Moreover, the third group 

did not develop a predictable pattern of interaction; instead, they 

used each skill as necessary when prompted either by the task, 

by the implicitly defined expectations of the classroom, or by 

their own need to make meaning. In addition, these cases show 

that locating mathematical authority is more complex than 

identifying whether its situation is dichotomously internal or 

external and that the full exercise of authority can vary within 

the same classroom episode and with the same students.  
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In the first two cases, ceding mathematical authority to the 

external authority of a remembered, but not conceptually 

understood, formula preempted the groups’ full exercise of 

mathematical authority. The second group’s faith in the 

arithmetic sequence formula prevented them from reaching a 

more robust justification of their expression. By serving as the 

mechanism of their justification, the formula obviated the need 

for the first group to assess their expression numerically. Since 

the third group did not remember the arithmetic sequence 

formula nor did they recognize the discrete linear growth of the 

visual pattern, which might have prompted the use of y = mx + b 

as a template for their expression, they had to make sense of 

every part of the expression they built. They did this by engaging 

with the visual attributes of the pattern more than the first two 

groups. 

This study demonstrates that what can be understood as 

mathematical authority is co-constructed by both the student and 

the instructor (who functions in some ways as a representative 

of the formal the discipline of mathematics). For example, the 

PSTs in the second group had confidence in their conjectured 

expression and ascribed this confidence to the fact that the 

conjecture matched the numerical growth of the pattern. 

However, when the instructor prompted them to justify their 

work, their answer did not constitute a valid justification in the 

disciplinary sense. This begs the question of whether they can 

truly be considered to have developed a full sense of 

mathematical authority. Based on our interpretation of 

Reinholz’s (2012) framework, we would argue that this is an 

incomplete sense of mathematical authority. Therefore, both 

words that make up the phrase “mathematical authority” are 

important: Not only must students develop an internal sense of 

authority, but they should also engage in explaining, assessing, 

and justifying in ways that are seen as mathematically valid.  

The researchers’ interpretation of the learning goal they had 

identified at the beginning of the task design sequence requires 

the task to prompt continued interaction with the visual aspects 

of the pattern in order to validly justify algebraic expressions 

that the PSTs developed. However, the unanticipated appearance 

of the formula for arithmetic sequences interfered with the 
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success of the task in prompting the type of reasoning that the 

researchers wanted students to practice. In order to address the 

fact that PSTs remembered the arithmetic sequence formula, the 

research team revised the task to have the following features: (a) 

Only one visual pattern in the task grows linearly (that is, in an 

arithmetic sequence), and this task is color-coded to encourage 

students to attend more closely to its visual attributes in their 

reasoning; (b) the task includes a multiple-choice portion in 

which multiple patterns grow according to a given expression, 

but only one matches an accompanying visual description; (c) a 

second growing visual pattern for which students need to create 

an expression grows quadratically, which means that PSTs 

cannot successfully use the arithmetic or geometric sequence 

formulas; and (d) a task is given where PSTs are asked to 

develop their own visual patterns based on a given linear 

expression, reversing the pattern of thinking prompted by the 

rest of the task. When completing the revised task, it is 

anticipated that PSTs will be less likely appeal to previously 

learned formulas (as it is very unlikely that they have learned to 

apply a quadratic equation in such contexts) and may instead be 

more likely to construct expressions based on their own 

reasoning. 

Implications 

All students, but most certainly PSTs, need to learn the 

metacognitive skills of understanding their own knowledge. The 

research group that developed the task (which included the 

course instructors) felt it was important to model the practice of 

leveraging and honoring students’ funds of knowledge (Aguirre 

et al., 2013). However, MTEs need to attend to the ways in 

which PSTs’ prior knowledge can interfere with their relearning 

of mathematical content for greater conceptual understanding 

(Zazkis, 2011). To PSTs, relying on their previous knowledge 

can look like using their own reasoning, but it might not be, as 

seen with Group 2’s work. Thus, the onus is on MTEs to develop 

mathematical tasks that uncover and address PSTs’ previous 

knowledge. Moreover, the instructors’ expectation that PSTs 

engage in justifying their conjectures leads to the question of 
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whether these PSTs knew what it means to justify in 

mathematics.  

For students to fully exercise mathematical authority, 

teachers need to provide opportunities for students to use all 

three mutually supportive skills. Intentional task design can help 

teachers provide these opportunities. Group-worthy 

mathematical tasks also allow teachers to step back and remove 

themselves as a potential source of mathematical authority upon 

which the students can rely (Lotan, 2003). However, no matter 

how carefully written a task is, student work on group tasks can 

be unpredictable. As evidenced by the cases presented, 

previously held procedural knowledge may interfere in the 

conceptual development of knowledge for a student. Thus, an 

iterative task design and revision model, such as the one 

proposed by Berk and Hiebert (2009) and followed by the 

researchers in this study, can help teachers attend to such 

unanticipated student responses and improve the tasks 

accordingly. Implementing this model follows the 

recommendations of Cai et al. (2017) in using data collected 

during classroom implementations to revise and assess tasks.  

The dual importance of supporting the development of 

internal sites of mathematical authority in elementary 

PSTs⎯both for their sake as learners and as future 

teachers⎯makes it especially critical for mathematics 

educators’ attention. PSTs enter teacher development with a 

great deal of prior knowledge, most of which has not been 

conceptually unpacked. This unpacked prior knowledge serves 

as its own force of mathematical authority, with students taking 

the results (e.g., formulas and procedures) as absolute truth. In 

such cases, it is vital that PSTs are given more opportunities to 

exercise their own mathematical authority, especially with 

respect to unpacking their prior knowledge. An interesting side 

note to the cases described in this study is that multiple groups 

in the class appealed to the arithmetic sequence formula, but 

only a few PSTs actually remembered it correctly. Most PSTs 

remembered that such a formula existed, but they needed to 

solicit help from the internet for its particulars. Thus, having 

seen and used the formula in a previous course only resulted in 

PSTs recognizing a situation in which the formula could be used. 
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For many students, this is perhaps the ideal outcome—they 

understand the correct contexts for the use of a formula and 

apply it correctly. However, PSTs need to understand how to 

make sense of the parts of the formula and be able to discuss 

why (in the case of this study) the common difference is being 

multiplied by n – 1 instead of n.  

Recognizing PSTs’ prior knowledge as a possible location 

of mathematical authority in the classroom is vital to the 

objectives of mathematics teacher education, as prior knowledge 

can disrupt the sense-making and justification expected of these 

future teachers in their mathematics content courses. Revising 

the task as the researchers did acknowledges the role PSTs’ prior 

knowledge can play in the process of conceptually unpacking 

elementary mathematics content, allowing subsequent iterations 

of the task to require PSTs to rely largely on their own reasoning 

and less on external mathematical authorities. Attending to the 

location of mathematical authority in the classroom is therefore 

particularly important for mathematics teacher educators. When 

MTEs develop prospective elementary teachers’ mathematical 

self-efficacy, those teachers gain confidence in their own 

mathematical abilities and an open mind toward children’s 

mathematical thinking, thereby better equipping them to support 

their own students’ learning. 
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