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Making Sense of Geometry Education 

Through the Lens of Fundamental Ideas: 

An Analysis of Children’s Drawings 

Ana Kuzle and Dubravka Glasnović Gracin 

For many decades, the amount of geometry curriculum worldwide has 

been cut, mathematics curricula have lacked diversity of geometrical 

phenomena, and geometry teaching has been reduced to a somewhat 

eclectic mix of activities. Recently, new trends have begun to counteract 

these tendencies by framing new curricula around fundamental ideas. The 

goals of this paper are threefold: (a) to present the structural elements of 

a coherent geometry curriculum through the lens of fundamental ideas, (b) 

to develop an analytical tool to determine the fundamental ideas of 

geometry in children’s drawings, and (c) to provide insight into the images 

primary grade students have of geometry. The results are discussed not 

only with regard to the latter of these goals, but also with regard to their 

theoretical and practical implications.   

Geometry is one of the earliest established branches of 

mathematics; it went through a period of significant growth, 

particularly during the 19th and 20th centuries, becoming well-

known for its internal diversity, coherence, and richness (Jones, 

2000). Nonetheless, geometry education did not parallelly 

undergo the changes and growth in its content and structure. On 

the contrary, in the past several decades, geometry seems to have 

lost its position in school mathematics developing the reputation 

of being the “problem child” of mathematics teaching (Backe-

Neuwald, 2000). At the same time the overall amount of 

geometry has been reduced in many national curricula (e.g., 

Backe-Neuwald, 2000; Glasnović Gracin & Kuzle, 2018; 

Mammana & Villani, 1998). Furthermore, some researchers 
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(e.g., Franke & Reinhold, 2016; Mammana & Villani, 1998; Van 

de Walle & Lovin, 2006) have made an observation that many 

geometry curricula have been an eclectic mix of activities 

without a clear and systematic structure in curriculum, and 

curriculum focusing on learning terminology. Such trends affect 

a quality geometry curriculum as it provides the structure for the 

provision of quality teaching practices and students’ learning. 

Despite the acknowledged necessity of teaching geometry 

and its anchoring in the curricula (Franke & Reinhold, 2016; 

Mammana & Villani, 1998; Van de Walle & Lovin, 2006), there 

are still great differences in the actual implementation. Those 

discrepancies can still be found in the classrooms today. For 

instance, Willson (1977) observed “very wide differences of 

opinion about what is appropriate subject matter for school 

geometry and about how to approach it” (p. 19). Hansen (1998) 

suggested that the geometry curricula should encompass various 

geometrical phenomena, such as knowledge of plane and space, 

applications of geometry, presenting milestones in the 

development of geometry as well as strengthening logical 

thinking, and deductive reasoning. This diversity of topics in 

geometry curricula had been especially advocated during ICME-

7 (1992) in Québec, which resulted in designing new curricula 

in many countries worldwide (e.g., Croatia, Germany, and the 

United States) that reflected the multi-dimensional view of 

geometry applied to all grade levels (e.g., Franke & Reinhold, 

2016; Glasnović Gracin & Kuzle, 2018; Kuzle et al., 2018; Van 

de Walle & Lovin, 2006). 

However, the diversity of topics still does not necessarily 

guarantee linking the learned objects. Hansen (1998) discussed 

the problem of lack of coherence in geometry curricula by listing 

the isolated fragments that are being taught in geometry classes: 

“small bits of polygon classification, some formulas to measure 

various shapes, some incidence geometry, a little mentioning of 

transformations, a few constructions, selected loci, introduction 

to vectors, and finally dome analytic geometry” (p. 238). Thus, 

geometry, as a mathematical discipline, offers huge 

opportunities for diversity and richness in its teaching programs, 

but these opportunities are still significant challenges to 

geometry education. The author concluded that in students’ eyes 
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the geometry they should learn might look as a “kind of 

inconsistent ‘bazaar’” (Hansen, 1998, p. 238). However, these 

assumptions should be studied more in depth. 

 One of the trends to counteract the issues mentioned above 

focuses on the idea of a coherent geometry curriculum by 

framing it in terms of “overarching ideas” or fundamental ideas 

(e.g., Van de Walle & Lovin, 2006; Wittmann, 1999). The value 

of this idea resides upon having a coherent content framework, 

which is characterized by a high degree of inner richness of 

relationships, and by gradual and continuous development in 

every grade (Rezat et al., 2014; Van de Walle & Lovin, 2006). 

Consequently, having a coherent geometry framework makes it 

easier to do research that might answer the following questions: 

• What geometrical concepts are being taught in geometry 

lessons nowadays, and to what extent? 

• What meanings do students assign to geometry? 

• How do these develop over the course of schooling? 

The main goal of the inquiry presented in this paper was to 

provide insight into the images1 primary grade students have of 

geometry by using participant-produced drawings. In order to 

achieve this goal, the study first sought to identify the 

fundamental ideas of geometry, and to develop an analytical tool 

to determine the fundamental ideas of geometry in students’ 

drawings before focusing on students’ images of geometry. 

Theoretical Framework 

In this section, we first present the construct of fundamental 

ideas and introduce different models of fundamental ideas of 

geometry, with a special focus on the model of Wittmann 

(1999). Mental images and image-based research using 

drawings are then discussed. The section ends with the three 

research questions that guided the study. 

 
1 Here, we do not refer to an ordinary informal meaning of the word “image.” 

Moreover, we do not use the terms “image” and “drawing” as synonyms. The 

term image is defined later on in the paper. 
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Fundamental Ideas 

As early as the late 1970s, researchers (e.g., Schweiger, 

1992, 2010; Vollrath, 1978) were advocating structuring 

mathematics curriculum around fundamental ideas, sometimes 

called overarching ideas. For instance, Freudenthal (1973) 

claimed that “Our mathematical concepts, structures, and ideas 

have been invented as tools to organize the phenomena of the 

physical, social and mental world” (p. 41). This term can be 

interpreted in many different ways (e.g., Rezat et al., 2014). 

Winter (1976) defined fundamental ideas as ideas that have 

strong references to reality and can be used to create different 

aspects and approaches to mathematics. Schweiger (1992) 

defined a fundamental idea as a set of actions, strategies, or 

techniques that (a) can be found in the historical development of 

mathematics, (b) appears viable to structure curriculum 

vertically, (c) seems suitable to talk about mathematics, and 

answers the question what mathematics is, (d) makes 

mathematical teaching more flexible and transparent, and (e) 

possesses a corresponding linguistic or action-related archetype 

in everyday life. In addition, fundamental ideas are characterized 

by a high degree of inner richness of relationships, and by 

gradual and continuous development in every grade (e.g., Rezat 

et al., 2014; Van de Walle & Lovin, 2006). In other words, each 

fundamental idea represents an independent axis along which 

competencies build up in a cumulative way. 

One of the trends counteracting the decrease in geometry in 

school mathematics, and the lack of both coherence and 

diversity of geometry topics in school mathematics focuses on 

the idea of structuring geometry curricula around fundamental 

ideas as a means of curriculum development (e.g., Mammana & 

Villani, 1998; Van de Walle & Lovin, 2006; Wittmann, 1999). 

For instance, Mammana and Villani (1998) listed several 

different overarching ideas for the geometry curriculum for the 

21st century, such as the idea of measurement, mapping, 

projection and topology, the idea of geometric figures, simple 

motions, and transformations, and the idea of connections to 

arithmetic. Principles and Standards for School Mathematics 

(National Council of Teachers of Mathematics, 2000), on the 
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other hand, provided a content framework for geometry 

organized around shapes and properties, transformation, 

location, and visualization (Van de Walle & Lovin, 2006). 

Similarly, Wittmann (1999) proposed that school geometry be 

organized around the following seven fundamental ideas: (a) 

geometric forms and their construction, (b) operations with 

forms, (c) coordinates, (d) measurement, (e) patterns, (f) forms 

in the environment, and (g) geometrization (see Table 1). While 

the fundamental ideas F1–F3 and F6 are specifically assigned to 

geometry, the fundamental ideas F4, F5, and F7 are intended to 

illustrate the connection to the content area of measurement, 

algebra, and number and operations (Backe-Neuwald, 2000). 
 

Table 1 

Wittmann’s Fundamental Ideas of Geometry 

Fundamental idea Description 

F1: Geometric 

forms and their 

construction 

The structural framework of elementary geometric 

forms is three-dimensional space, which is populated 

by forms of different dimensions: 0-dimensional 

points, 1-dimensional lines, 2-dimensional shapes, 

and 3-dimensional solids. Geometric forms can be 

constructed or produced in a variety of ways through 

which their properties are imprinted. 

F2: Operations 

with forms 

Geometric forms can be operated on; they can be 

shifted (e.g., translation, rotation, and mirroring), 

reduced or increased, projected onto a plane, shear 

mapped, distorted, split into parts, combined with 

other figures and shapes to form more complex 

figures, and superimposed. In doing so, it is necessary 

to investigate spatial relationships and properties 

changed by each manipulation. 

F3: Coordinates Coordinate systems can be introduced on lines, 

surfaces, and in space to describe the location of 

geometric forms with the help of coordinates. They 

also play an important role in the later representation 

of functions and in analytical geometry. 

F4: Measurement Each geometric form can be qualitatively and 

quantitatively described. Given units of measure, 

length, area or volume of geometric forms as well as 

angles can be measured. In addition, angle 

calculation, formulae for perimeter, area, and volume, 

and trigonometric formulae also deal with 

measurement. 
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F5: Patterns In geometry, there are many possibilities to relate 

points, lines, shapes, solids, and their dimensions in 

such a way that geometric patterns emerge (e.g., 

frieze patterns). 

F6: Forms in the 

environment 

Real-world objects, operations on and with them as 

well as relations between them can be described with 

the help of geometric forms. 

F7: 

Geometrization 

Plane and spatial geometric facts, theorems, and 

problems, but also a plethora of relationships between 

numbers (e.g., triangular numbers) can be translated 

into the language of geometry and described 

geometrically, and then translated again into practical 

solutions. Here, graph theory and descriptive 

geometry (e.g., parallel projection) play an important 

role. 

 

Wittmann’s (1999) fundamental ideas of geometry are 

aligned with ICME-7 study recommendations for new geometry 

curricula (Mammana & Villani, 1998), which have been adopted 

by many national curricula. Although mathematics curricula 

worldwide have been reexamined due to various curricular 

reforms (e.g., Glasnović Gracin & Kuzle, 2018), it is not clear 

what influence this may have on images students have of 

geometry, and whether students recognize the multi-

dimensionality of geometry and to what degree. 

Drawings, Mental Images, and Image-Based Research 

Using Drawings 

In image-based research, visual methods, such as drawings 

and photographs, are one of the crucial data collection tools. 

With visual methods—opposed to surveys and interview 

contexts which have shown not to be always reliable due to 

participants’ young age (e.g., Einarsdóttir, 2007; Pehkonen et 

al., 2016)—participants can express things that cannot be easily 

verbalized (Hannula, 2007; Thomson, 2008), as visual 

representation requires little or no language mediation. In 

particular, drawings as a data tool in visual research have been 

recognized as an alternative form of expression for young 

students. Drawings can be understood as “visual data that can 

give insight into how children view things” (Einarsdóttir, 2007, 

p. 201). For young students, drawing is much more than a simple 
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representation of what they see before them; rather, students use 

drawings—amongst other—“as a tool for understanding and 

representing important aspects of their own personal, lived 

experiences of people, places and things” (Anning & Ring, 

2004, p. 26). Thus, drawings are not only effective because of 

the richness of produced data, but also because of the quality and 

uniqueness of the data providing a holistic insight into students’ 

everyday lives, lived experiences and their conceptions of 

mathematics, and mathematics teaching (Einarsdóttir, 2007). 

Additionally, Kearney and Hyle (2004) found that participant-

produced drawings appear to lead to a more succinct 

presentation of participant experiences, as they inhibit viewing 

drawings with adult eyes, and enable data triangulation. Still, a 

drawing as a graphic representation is a construction which 

cannot be mistaken for the real object, but rather stands for an 

aspect of reality (Golomb, 1994). 

According to Luquet (1927/2001), an image (“internal 

model”) is the starting point of drawing imitation. Here, the 

presence of a model cues the use of a child’s internal model to 

produce a drawing. Furthermore, Luquet contends that the object 

of interest must necessarily pass through the mind in “the form 

of a visual image” before it can be translated onto a paper as a 

drawing. In other words, a drawing is an expression of the 

mental image. The extent to which it is similar or different from 

the external model condition indicates how influential the 

mental image is. A mental image can be defined in many 

different manners depending on the theory. In cognitive science, 

for instance, a mental image is defined as a representation of the 

physical world (e.g., an object, an event, or a situation) in a 

person’s mind (Eysenck, 2012) whose features are spatially and 

temporarily organized (Kosslyn, 1988). From the perspective of 

the theory of imagery, mental images are short-term memory 

representations generated from long-term memory 

representations that may be stored in a depictive (pictorial) or 

propositional (symbolic, language-like) format, regardless of the 

content (Kosslyn, 1980; Pearson & Kosslyn, 2015). In this 

paper, the term “image” refers to mental representations of a 

cognitive structure associated with a particular concept (i.e., 

geometry), built up over the years through various experiences, 
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which can be stored in both depictive and propositional format, 

and possess different functional characteristics. 

In the last two decades, drawings have been successfully 

used to access students’ beliefs about mathematics (e.g., Rolka 

& Halverscheid, 2006, 2011), the emotional atmosphere in 

mathematics lessons (e.g., Laine et al., 2013; Tuohilampi et al., 

2016), and students’ conceptions of mathematics lessons with 

respect to social and communicative aspects (e.g., Ahtee et al., 

2016; Pehkonen et al., 2016). Only a few studies (e.g., Glasnović 

Gracin & Kuzle, 2018; Picker & Berry, 2000) focused on 

students’ images of mathematical content, and mathematics 

teaching and learning. For instance, Glasnović Gracin and Kuzle 

(2018) conducted an explorative multiple case study with four 

students (one student per grade level from Grades 2–5) focusing 

on students’ fundamental ideas of geometry using Wittmann’s 

model (1999). The results showed that the four primary grade 

students mostly depicted the fundamental idea of geometric 

forms and their construction. Independent of the grade level a 

square, triangle, and circle disc were presented as the strongest 

representatives of geometric shapes. Three participants also 

illustrated several properties of geometric objects. In three cases, 

the idea of measurement (i.e., length of a line segment, 

perimeter, area, and volume) was also associated with the 

participants’ image of geometry. The fundamental idea of 

operations with forms (specifically, line symmetry) as well as 

the fundamental idea of forms in the environment was depicted 

by one participant only. The fundamental ideas of patterns and 

coordinates were not present in the data. During the interview, 

one participant’s drawing was shown to depict the idea of 

geometrization. Thus, the results of the multiple case study 

showed that the images the participants have of geometry are 

strongly related to the fundamental idea of geometric objects and 

their construction, while the fundamental ideas of operations 

with forms, coordinates, patterns, and geometrization were 

minimally represented, if at all. Glasnović Gracin and Kuzle 

(2018) also reported on the utility of Wittmann’s model (1999) 

when analyzing fundamental ideas in the children’s drawings. 

Though different subcategories of some fundamental ideas 

emerged, the sample was too small to develop a comprehensive 
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analytical tool. Furthermore, the framework showed weaknesses 

with respect to clearly categorizing each drawn object to a 

specific fundamental idea, and to reflecting new developments 

in geometry curriculum. Thus, the general utility of the model as 

a research tool appeared to be insufficient with respect to gaining 

a thorough insight into images students have of geometry. 

To summarize, drawings as a data tool in visual research 

have made an alternative and complementary contribution to 

conventional research approaches by providing researchers with 

a less invasive technique when working with young students 

(e.g., Einarsdóttir, 2007). They opened a nonverbal channel to 

students’ images of mathematics, and mathematics teaching and 

learning (Ahtee et al., 2016; Glasnović Gracin & Kuzle, 2018) 

in a multi-dimensional and holistic manner. However, studies 

focusing on the mathematical content in general as well on a 

specific mathematical content, such as geometry, using drawings 

are limited. 

Research Questions 

In order to gain insight into young students’ understanding 

of geometry, coherent and viable models and techniques are 

paramount. Wittmann’s framework (1999) illuminated students’ 

fundamental ideas of geometry on a global level (Glasnović 

Gracin & Kuzle, 2018). However, this kind of classification does 

not provide a comprehensive and thorough picture of students’ 

images of geometry. What concepts are students relating to each 

fundamental idea of geometry, and to what extent? Thus, we first 

needed to create an approach to analyze young students’ 

drawings in a comprehensive and holistic way. With this 

achieved, it is possible to address the question of students’ 

images of geometry through the lens of fundamental ideas taking 

Wittmann’s framework (1999) as a foundation, but at the same 

time expanding on it on the basis of both the students’ data and 

literature. With these goals in mind, the following research 

questions guided the study: 
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1. How can an analytical tool be developed that would 

provide insight into students’ images of geometry from 

the perspective of fundamental ideas of geometry? 

2. What fundamental ideas of geometry can be seen in the 

primary Grade 3–6 students’ drawings? 

3. What similarities and differences in students’ drawings 

exist among elementary Grades 3–6 from the perspective 

of fundamental ideas of geometry? 

Method 

Research Design and Subjects 

For this study, an explorative qualitative research design 

using participant-produced drawings was chosen. The study 

participants were Grade 3 to 6 students. This age group was 

optimal for the purposes of the study as this is an important 

period for the development of geometric thinking (e.g., 

Mamanna & Villani, 1998; van Hiele, 1959/1984). In total 114 

primary grade students2 from multiple urban schools in the 

federal states of Berlin and Brandenburg (Germany) participated 

in the project (see Table 2). Typical case sampling as a type of 

purposive sampling was utilized as a way of collecting rich and 

in-depth data (Patton, 2002). 

 
Table 2 

Participant Sample 

Grade Participants 

3 25 

4 33 

5 28 

6 28 

  

 
2 In the federal states of Berlin and Brandenburg, primary education covers 

Grades 1 to 6. 
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Data Collection Instruments 

The research data consisted of (a) audio data, (b) document 

review, and (c) a semi-structured interview. The audio data were 

comprised of the students’ unprompted verbal reports during the 

drawing process, and prompted verbal reports after the drawing 

process. For the document review, an adaptation of the 

instrument from the work of Rolka and Halverscheid (2006, 

2011) was used. It involved drawing an individual image of 

geometry. The students were given a blank piece of paper and 

instructed to draw their image of geometry. In addition, the 

students answered three questions, which were on the reverse 

side of the sheet: 

• In what way is geometry present in your drawing? 

• Why did you choose these elements in your drawing? 

Why did you choose this kind of representation? 

• Is there anything you did not draw, but still want to say 

about geometry? 

Depending on the age of the student, these questions were 

answered either orally or in written form. When answers were 

given orally, the student answers were audio-taped, otherwise 

the students wrote down their answers. After the student had 

finished drawing, the drawing was used as a catalyst for a semi-

structured interview in accordance with participant-produced 

drawing methodology (Kearney & Hyle, 2004). Multiple data 

sources (i.e., data triangulation) were used to assess the 

consistency of the results and to increase the validity of the 

results (Patton, 2002). 

Procedure and Data Analysis 

The research data were collected in a one-to-one setting 

between a student and the first author of the paper. It was briefly 

explained to each student that we were interested in geometry. 

Each student was given a blank piece of A4 paper with the 

following assignment: “Imagine you are an artist. A good friend 

asks you what geometry is. Draw a picture in which you explain 
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to him or her what geometry is for you. Be creative in your 

ideas.” The students took as much time as needed, usually about 

10 to 15 minutes. Afterwards, the student was asked to answer 

the questions on the reverse side of the sheet. If a student had 

difficulties reading the questions or writing his or her answers 

down, this was done by the researcher or the student answered 

them orally and the answers were audio-recorded. Lastly, the 

drawings were used as an entry to a semi-structured interview. 

Each student was asked to describe what he or she had drawn. 

This procedure gave each student the opportunity to frame their 

own experiences, and interpret their drawing. This last part 

lasted about 15 minutes in total. 

The drawings were analyzed after all the data had been 

collected. The analysis of the drawings was understood as 

interpreting the meanings that the students had given to the 

situations and objects they had presented (Blumer, 1969). As 

suggested by Patton (2002), multiple stages of the analysis using 

an analytic approach were performed. In the first step, the first 

author of the paper and another expert in geometry focused on 

developing an inventory to determine the fundamental ideas of 

geometry in the students’ drawings. This process contained the 

following steps: (a) transcribing audio data, (b) analysis of 

drawings with respect to Wittmann’s (1999) model of 

fundamental ideas of geometry, (c) confirmation of the 

interpretation and coding of other conceptions included in the 

students’ oral or written data, and interviews, and (d) developing 

subcategories for each fundamental idea by clustering similar 

concepts. The first researcher transcribed the audio data. We 

both analyzed the drawings separately using Wittmann’s (1999) 

model (see Table 1). Wittmann’s (1999) model provided 

descriptions of each fundamental idea as well as different 

aspects pertaining to each fundamental idea. Moreover, it 

offered specific examples that are typical for geometry lessons. 

This allowed us to assign a particular fundamental idea to items 

that were present in the students’ data. However, taken the 

generality of the model—as reported by Glasnović Gracin and 

Kuzle (2018), we revised his framework by structuring and 

expanding it with the goal of developing a multi-faceted 

inventory. Concretely, each category as well as description of 



Ana Kuzle and Dubravka Glasnović Gracin 

19 

each fundamental idea of geometry was reexamined, refined, or 

expanded, if necessary, and subcategories of each fundamental 

idea were developed, refined and/or defined on the basis of 

students’ data taking into account different expression forms, 

which allowed us to get a rich insight into images primary grade 

students have of geometry.  

Specifically, we first assigned one of Wittmann’s (1999) 

categories to each item taking into account any form of 

expression chosen by the child (i.e., drawing, written and/or oral 

data, or interviews). If a descriptor was not given, the researchers 

discussed the nature of the descriptor before assigning a 

particular fundamental idea to the item. The interrater reliability 

was high (97% agreement). Nevertheless, we discussed the 

differences in coding taking into consideration both the students’ 

products as well as the mathematics curriculum 

(Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015). In that manner, the fundamental idea descriptors 

were reexamined and refined. Adjustments were subsequently 

made to our coding, after which the interrater reliability was 

100%. Afterwards, the same researchers focused on separately 

developing an inventory with subcategories for each 

fundamental idea by going through all the drawings starting with 

Grade 3 and ending with Grade 6. The inventories were 

discussed (89% agreement) to obtain full agreement. Concretely, 

the nature of each subcategory was discussed, which allowed to 

refine each subcategory descriptor, and new subcategories were 

developed on the basis of data to allow for a more fine-grained 

analysis of the data. Consequently, this allowed developing a 

very detailed and refined inventory to analyze students’ 

fundamental ideas. All procedures and decisions were recorded 

in an audit trail, which also ensured trustworthiness and rigor 

(Patton, 2002). This procedure was used to answer the first 

research question. 

To answer the second and third research questions, we used 

the developed inventory and coded the drawings once again. We 

assigned codes to each drawing separately using the inventory, 

followed by a discussion of the results. For the within analysis, 

each grade level was treated as a comprehensive case, whereas 

cross-analysis was used to compare the particular cases against 



Making Sense of Geometry Education 

20 

each other. The interrater reliability was high (100% agreement). 

Thus, analyst triangulation contributed to the verification and 

validation of qualitative analysis (Creswell & Miller, 2000; 

Patton, 2002). Afterwards the descriptive statistics were 

calculated. 

Figure 1 illustrates the coding. The drawing does not 

represent a prototypical drawing, but rather has been selected on 

the basis of data richness and versatility. In the description of the 

drawings we used the coding presented in the Appendix. For 

instance, F6 refers to the fundamental idea of geometric forms 

in the environment. Here, each real-world object was coded as a 

whole (F6). Given that three real-world objects (i.e., a snowman, 

a house, and a tree), F6 was coded three times. Additionally, the 

real-world objects are composed of 1- (F1b; e.g., curved and 

straight-line segments) and 2-dimensional figures (F1c; e.g., 

circles, squares, rectangles, and triangles), which reflect the 

fundamental idea of geometric forms and their construction (F1). 

If the same geometric object (e.g., squares in Figure 1) was 

drawn several times, it was coded once. Different 2-dimensional 

figures were coded once for each object. The number in brackets 

gives the absolute frequency of the category and the 

subcategory. 

Figure 1 

Grade 3 Student’s Image of Geometry With Codes  

 

The child drew three real-

world objects, namely a house, 

a snowman, and a tree, 

consisting of different 

geometric forms. 

 

Coding:  

F1b: curved line segment; 

straight line segment 

F1c: circle; square; rectangle; 

triangle 

F6: snowman; house; tree 

 

Summary of the coding: 

F1(6): F1b(2), F1c(4) 

F6(3) 
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Results  

This section is divided into two parts. The first part focuses 

on the development of the analytical tool that would provide 

insight into students’ images of geometry from the perspective 

of fundamental ideas of geometry. The second part focuses on 

the evaluation of the distribution of fundamental ideas in the 

learning groups by using drawings. 

Fundamental Ideas of Geometry: An Analytical Tool 

The inventory that emerged from the students’ drawings, 

oral or written responses, and interviews is explained here (for 

more details see Appendix). The first category is related to 

Wittmann’s fundamental idea of geometric forms and their 

construction (F1), which refers to both basic and composite 

figures of different dimensions, their properties, and their 

constructions. From the data nine subcategories emerged: 0-, 1-, 

2-, 3-dimensional objects, geometric properties, drawing and 

drawing/construction tools, non-geometrical tools for creating 

geometrical objects, angles, and composite figures. All 

subcategories except for non-geometrical tools for creating 

geometrical objects and angles were listed in Wittmann’s 

framework (1999). 

When differing between 2- and 3-dimensional objects, other 

data (i.e., students’ oral and written responses or data from the 

interviews) was needed. As shown in Figure 2, the student 

named each solid as well as surface shapes, whereas in Figure 3 

depth of a rectangular prism was shown by using dashed lines. 

With respect to Figure 2 the student wrote: “Living and funny 

bodies are geometry for me. Spheres, cones, cubes, cylinders, 

and surfaces are represented.” With respect to Figure 3 the 

student said: 

I drew a compass, a circle, a protractor, a ruler, a rectangular 

prism, and a cube, because I think that these things belong 

to a geometry lesson. When I think of geometry, I think of 

exactly these things and that is why I drew them. 
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Figure 2 

Grade 4 Student’s Drawing With 2- and 3-Dimensional Figures (3D 

Solids: Sphere, Cone, Cube, Cylinder; 2D Shapes: Square, Rectangle, 

Circle, Triangle) 

 
Figure 3 

Grade 6 Student’s Drawing With 2- and 3-Dimensional Figures and 

Drawing Tools 
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With respect to properties of geometric figures, the students 

either described the figure by writing down “A square has 4 right 

angles,” or four right angles were illustrated in the drawing of a 

square. When a student drew a geometric tool, it was important 

that the function of the tool has been explicitly mentioned or 

implicit from the data. With respect to the former, a student 

wrote, “In geometry we use a ruler, compass or protractor to 

draw figures,” or a student in the interview referred to a ruler as 

a drawing tool as opposed to a measurement tool, whilst with 

respect to the latter the tool was present in the figure with which 

the forms were drawn, and no aspects related to measurement 

were present (see Figure 3). Other than in Wittmann’s (1999) 

framework, the students also used non-geometrical tools (e.g., 

wooden shapes or modelling clay) to create composite figures 

by using different techniques (e.g., building or printing). 

Additionally, the first category was expanded by the “Angles” 

subcategory, as the students’ drawings, written data, or 

interviews revealed a figurative angle aspect (e.g., angle as a turn 

or angle as a wedge). 

The second category is related to Wittmann’s (1999) 

fundamental idea of operations with forms (F2), which refers to 

different types of geometric mappings and manipulations with 

forms, and the properties which are influenced by these. From 

the data nine subcategories emerged as follows: translation, 

rotation, dilation, point symmetry, line symmetry, congruence, 

composing and decomposing, folding and unfolding, and 

tessellation (see Figures 4 and 5). All subcategories were 

consistent with Wittmann’s framework except for the last two 

subcategories, namely folding and unfolding, and tessellation. 

For instance, the student in Figure 5 said: “In geometry lessons 

we played with different figures, which have different 

symmetries. Here you can see a figure with rotational symmetry 

[points at pink ‘windmill’], and two figures with line symmetry 

[points at red circle and blue wind kite].” Even though the 

students rarely illustrated properties of a particular 

transformation, for the sake of completeness with respect to the 

mathematics curriculum for primary grades (Senatsverwaltung 

für Bildung, Jugend und Wissenschaft Berlin, 2015) each 

subcategory of the inventory was expanded with respect to this 
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aspect. The activities of folding and/or unfolding were most 

often supported by additional data (e.g., “We folded a paper into 

a Christmas star” as shown in Figure 4) or information (e.g., 

arrows). 

 
Figure 4 

Grade 5 Student’s Drawing Illustrating the Activity of Folding 

(“Folding and Cutting-Out a Christmas Star”) 

 
Figure 5 

Grade 4 Student’s Drawing of a Figure With Rotational Symmetry 

(“Drehung”) and of Two Figures With Line Symmetry 

(“Spiegelung”) 
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The third category is related to Wittmann’s (1999) 

fundamental idea of coordinates (F3), which was broadened to 

reflect both curricular trends (e.g., Franke & Reinhold, 2016; 

Senatsverwaltung für Bildung, Jugend und Wissenschaft Berlin, 

2015; Van de Walle & Lovin, 2006) as well as the students’ 

drawings and interviews. The subcategories that emerged were 

as follows: coordinate system, positional relationships, 

orientation and orientation tools, and spatial visualization, 

relation, and orientation. In that manner, not only location but 

also position (e.g., above or below) and positional relationship 

of a geometric object or between geometric objects (e.g., a 

square lies right from a circle, two lines are parallel to each other 

as shown in Figure 6) in the plane or space was regarded, which 

reflected more young students’ understanding of the 

fundamental idea. In addition, the drawings and, especially, 

interviews included activities that dealt with different aspects of 

spatial manipulation, such as making a view plan or a building 

plan of a geometrical composite figure or a cube building, 

folding a net of a solid mentally. With respect to the latter, one 

student wrote, “I have a lot of fun making nets of solids or 

cutting them out and then folding them into solids. But I could 

not draw that now,” which was often reported by the students 

either in written or oral form. As such, we renamed the 

fundamental into “coordinates, spatial relationships, and 

reasoning” to allow for a broader understanding of the 

fundamental idea than given by Wittmann who limited this 

fundamental idea to describing location of geometric objects 

using different type of coordinate systems. 

The fourth category is related to Wittmann’s (1999) 

fundamental idea of measurement (F4), which refers to 

qualitative and quantitative properties used to describe 

geometric forms as well as calculations of these using different 

formulae. The subcategories that emerged were as follows: 

length, perimeter, surface area, volume, angle measurement, 

measuring tools, estimation, conversion of measuring units, and 

scaling. Whereas the first five subcategories were also part of 

Wittmann’s framework, the subcategory “measuring tools” 

often emerged in the students’ data (i.e., drawings, oral or 

written responses, or interviews). The last three subcategories, 
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namely estimation, conversion of measuring units, and scaling 

were present in the data in a limited manner. Furthermore, these 

aspects are an important part of the mathematics curriculum 

(Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015), and were likewise revealed in a similar study 

conducted by the authors. Hence, the inventory was expanded 

with respect to these three subcategories. In Figures 4, 5, and 6 

different subcategories can be seen, namely the activity of 

measuring the length of line segments (“Miss!”, |𝐴𝐵̅̅ ̅̅ | = 9 cm), 

and formula for the area of a right-angled triangle, respectively. 

Similar to our discussion earlier, when a child drew a geometric 

tool, it was important that the function of the tool had been 

explicitly mentioned by the student, either in their written 

responses or in the interviews (e.g., “I measured the length of a 

line segment with a ruler”) or implicit from the data (e.g., length 

of a segment is measured which implies that a drawn tool is 

understood as a measuring tool). 

 
Figure 6 

Grade 6 Student’s Drawing With a Parallel Projection of a Cube 
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Figure 7 

Grade 3 Student’s Drawing of a Robot Head and a Six-Petal Rosette 

Pattern 

 

The fifth category is related to Wittmann’s fundamental idea 

of patterns (F5), which was renamed into “geometric patterns” 

since the data reflected patterns created by using simple 

geometric forms. For instance, a Grade 3 student said when 

asked to describe her drawing: “That in the middle is a pattern. 

It is made of a square, a triangle, and a circle. And then I repeated 

them creating a funny pattern.” Even though different patterns 

were illustrated in the drawings, such as frieze pattern and six-

petal rosette pattern, patterns formed of geometric shapes (see 

Figure 7), its small percentage did not allow creating different 

subcategories. 

The sixth category is related to Wittmann’s (1999) 

fundamental idea of forms in the environment (F6), which refers 

to the description of real-world objects, and operations on and 

with them by using simple geometric forms. In order to 

emphasize the core idea of this fundamental idea, we renamed it 

into “geometric forms in the environment.” Figures 1 and 7 

illustrate some of the motifs that could be seen in the students’ 
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drawings. The student drawing Figure 7 said, “Here is a robot 

head. It is made of different forms: circle for eyes and head, 

rectangle for ears and mouth, triangle for his nose.” Despite 

creative motifs in the students’ drawings (e.g., snowman, tree, 

house, robot, disco ball, and tent), written responses, oral data, 

or the interviews pertaining to this fundamental idea, the nature 

of the fundamental idea did not allow creating different 

subcategories. Often when students’ drawings included several 

motifs, the students mentioned other ones in their written 

responses or interviews. 

Lastly, the seventh category is related to Wittmann’s (1999) 

fundamental idea of geometrization (F7), which refers to 

translation of geometric facts and problems into the language of 

geometry, their handling with the help of geometric approaches, 

followed by interpretation of the solution. The subcategories that 

emerged were as follows: geometric facts, parallel projection, 

and geometrical problems. In one case only, a geometric fact 

was revealed during the interview, whereas in all other cases the 

items were part of students’ drawings (i.e., in Figure 6). With 

respect to the former, a Grade 6 student said when asked if there 

is anything she did not draw but still want to say about geometry, 

“Probably the best-known construction is the construction of the 

Euler line. There the intersection points of the angle bisectors, 

the medians, the altitudes, and the side bisectors are located on 

a straight line.” For the sake of completeness with respect to the 

mathematics curriculum for primary grades (Senatsverwaltung 

für Bildung, Jugend und Wissenschaft Berlin, 2015), the 

inventory includes the subcategory “figurate numbers“ 

(Wittmann, 1999), but excludes graph theory (Wittmann, 1999) 

as this is not part of the mathematics curriculum for primary 

grades (Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015). In Figures 3 and 6 parallel projections of a cube 

and a rectangular prism are drawn. 

Fundamental Ideas of Geometry in Primary Education 

Through Students’ Lenses: Similarities and Differences 

Here, the focus was to evaluate the distribution of 

fundamental ideas by using participant-produced drawings on 
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the basis of the developed inventory. As shown in Table 3, the 

fundamental idea of geometric forms and their construction (F1) 

was the most frequently coded fundamental idea of geometry 

(76.6%). This was independent of the grade level, where all the 

students’ drawings included at least one aspect regarding this 

fundamental idea. The second most frequently coded 

fundamental idea was geometric forms in the environment (F6) 

with 8.7%. This was followed by the fundamental ideas of 

measurement (F4), and coordinates, spatial relationships, and 

reasoning (F3), with 4.8% and 4.2%, respectively. The 

fundamental ideas of operations with forms (F2), geometric 

patterns (F5), and geometrization (F7) were the three least coded 

fundamental ideas with 3.2%, 1.3%, and 1.2%, respectively. 

With respect to the fundamental idea of geometric forms and 

their construction (F1), no increase is discernible (see Table 3), 

even though one might expect a more comprehensive picture 

from Grade 6 students than appeared in the data. According to 

the mathematics curriculum (Senatsverwaltung für Bildung, 

Jugend und Wissenschaft Berlin, 2015), Grade 6 students have 

covered all of the subcategories listed in the inventory, and 

should have reached the level of informal deduction (van Hiele, 

1959/1984). This was, however, not reflected in the data, since 

only Grade 4 and 5 students’ data exhibited all of the aspects 

pertaining to F1 (see Table 4). Grade 6 students’ data, on the 

other hand, revealed 7.3 codes on average pertaining to F1, 

whereas Grade 3 students 4.4 codes, Grade 4 students 6.4 codes, 

and Grade 5 students 5.8 codes on average. Thus, Grade 6 

students’ data revealed a deeper and more thorough insight into 

each subcategory’s aspect. 

Nonetheless, there were some patterns in the students’ 

answers pertaining to different aspects of this fundamental idea. 

In all grades, different plane surfaces (F1c) dominated in the data 

with 36.5%, 38.7%, 42.5%, and 46.9% of codes pertaining to F1 

in Grade 6, Grade 5, Grade 4, and Grade 3, respectively. F1c was 

an aspect mentioned by most students: 97 students (85.1%) gave 

answers pertaining to 2-dimensional figures (see Table 4). In 

each grade more than 76% of students mentioned this aspect 

independently, with a growing tendency from Grade 3 on. The 

second most often depicted aspect was solids (F1d), ranging 
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from 21.2% (Grade 6) to 27% (Grade 3) of codes pertaining to 

F1. In total, 70 students (61.4%) illustrated or mentioned this 

aspect (see Table 4). As in the case of F1c, a growing tendency 

with respect to F1d was observed, and F1d was illustrated the 

most by Grade 6 students (75%; see Table 4). Various drawing 

tools (F1f; e.g., drawing stencil, ruler, protractor, or compass) 

were the third most frequently coded aspect of F1, ranging from 

9% in Grade 3 to 16.6% of codes in Grade 5, and were illustrated 

or mentioned by every second student (50% of drawings; see 

Table 4). Likewise, a growing tendency from lower into higher 

grades was observed, as the topic of 1-dimensional objects 

becomes more important and diverse (Senatsverwaltung für 

Bildung, Jugend und Wissenschaft Berlin, 2015). 

The fourth most often illustrated aspect was 1-dimensional 

objects (F1b), which was present in 22.8% of drawings (n = 26; 

see Table 4). The students most often drew line segments, rays, 

and lines. In few cases, curved and broken lines were illustrated 

likewise. The data also reflected a growing tendency from lower 

into higher grades. Starting with Grade 4, the angle concept 

(F1h) was present in the drawings in a figurative manner. While 

Grade 4 and 5 students most often drew a right angle, Grade 6 

students mostly drew an arbitrary angle. Furthermore, a growing 

tendency was observed from lower into higher grades, as the 

topic of angles becomes more important and diverse 

(Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015). 

Most notably, the students differed with respect to the 

properties of geometric forms (F1e). Though one may expect 

that properties of geometric forms gain the importance as 

primary grade students progress into higher grades, this was not 

reflected in the data. Concretely, this aspect was seen in all 

students’ drawings besides in Grade 3 drawings with 7.6%, 

9.2%, and 5.9% of codes pertaining to F1 in Grade 4, Grade 5, 

and Grade 6, respectively. From another perspective, almost 

every fourth Grade 4 (24.2%), almost every fifth Grade 5 

(21.4%), and almost every third Grade 6 (28.6%) student 

illustrated or mentioned this aspect (see Table 4). Even though 

Grade 6 students did not exhibit most of the codes pertaining to 
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F1e, it was exhibited by the most Grade 6 students compared to 

other grade levels. 

Subcategories F1i (composite figures), and F1a (0-

dimensional objects) and F1g (non-geometrical tool for creating 

geometrical objects) were mentioned by the fewest students, 

namely by 13.2% (n = 15) and 7% (n = 8) of students, 

respectively (see Table 4), which are mostly dealt with in early 

grades of primary education (Senatsverwaltung für Bildung, 

Jugend und Wissenschaft Berlin, 2015). 

Fundamental idea “operation with forms” (F2) does not 

show an increase from Grades 3 to 6, as this fundamental idea 

was most frequently coded in Grade 3 (4.3%) and least coded in 

Grade 4 (2.2%; see Table 3). From another perspective, 24% of 

Grade 3, 15.2% of Grade 4, 32.1% of Grade 5, and 28.6% of 

Grade 6 students drew an aspect attributed to this fundamental 

idea (see Table 5). Line symmetry (F2e), and folding and 

unfolding (F2h) were two aspects mentioned by the most 

students with 12.3% (n = 14) and 7.9% (n = 9) of drawings, 

respectively (see Table 5). The former (F2e) was mainly present 

in Grade 3 (20% of drawings), whereas the latter (F2h) in Grade 

5 (17.9% of drawings). Furthermore, both aspects were 

exhibited in the data regardless of the grade level. All other 

transformations were not mentioned very often (once or twice), 

or not at all. For instance, translation (F2a) and tessellation (F2i) 

were only present in one Grade 4 and point symmetry (F2d) in 

one Grade 6 students’ drawings each (see Table 5). Rotation 

(F2b) was mentioned both in Grade 5 and Grade 6 by one student 

each (see Table 5). No student drew an aspect pertaining to 

dilation (F2c), congruence (F2f), and composition and 

decomposition (F2g; see Table 5). 

With respect to fundamental idea of coordinates, spatial 

relationships, and reasoning (F3), a decrease from the lower 

(6.4% in Grade 3) to the higher grades is observable (2.3% in 

Grade 5), but increasing again in Grade 6 (4.1%; see Table 3). 

Additionally, the drawings qualitatively differed. Lower grade 

students used prepositions only (e.g., right, left, or below) to 

describe the position of geometric forms (F3b), while upper 

grade students used in addition a coordinate system (F3a) for it, 

which is aligned with the mathematics curriculum 
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(Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015). Furthermore, regardless of the grade level, using 

prepositions to describe the position of geometric forms (F3b) 

was the most often coded aspect pertaining to this fundamental 

idea. Very few students mentioned an aspect pertaining to spatial 

visualization, relation, and orientation (F3d), which was only 

seen in Grade 4 students’ drawings. A tool for orientation (F3c; 

i.e., compass rose) was drawn by one Grade 6 student. 

With respect to fundamental idea of measurement (F4), the 

students’ drawings show an increase of codes from the lower 

grades (1.4%) to the higher grades (8.5%; see Table 3). All 

aspects of this fundamental idea were exhibited (see Table 6). In 

Grade 3, only length (F4a) and estimation (F4g) were addressed, 

and each by one student only (4%; see Table 6). In Grade 4, in 

addition to length (F4a), which was illustrated by four students 

(12.1%), three other aspects appeared in the data, namely angle 

measurement (F4e; 3%), measuring tools (F4f; 9.1%), and 

scaling (F4i; 3; see Table 6). These were, however, illustrated by 

a few students. Similarly, in Grade 5 in addition to length (F4a; 

7.1% of drawings) and measuring tools (F4f; 3.6% of drawings), 

perimeter (F4b) and surface area (F4c) were illustrated in 7.1% 

and 10.7% of drawings, respectively (see Table 6). Lastly, Grade 

6 students’ drawings depicted seven out of nine different 

measurement aspects. Only estimation (F4g) and scaling (F4i) 

were not present in the data. Here, measuring tools (F4f) were 

illustrated by most students (25%; see Table 6). Additionally, 

F4f was dominant in the students’ drawings with 30.4% of all 

measurement codes. Whilst in earlier grades a protractor was 

presented as a tool for measuring lengths, in Grade 6 the 

protractor was assigned another role, namely as a tool to measure 

angles. Furthermore, perimeter (F4b), and (surface) area (F4c) 

were only present in Grade 5 and 6 students’ drawings, whereas 

volume (F4d), and conversion of measuring units (F4h) in Grade 

6 students’ drawings only. Thus, a more comprehensive picture 

of this fundamental idea appeared in the data as students 

progressed from lower to higher grades and different aspects win 

on their relevance (see Table 6). Most notably was the length 

aspect (F4a), which was seen in all drawings independent of the 

grade level, and together with measuring tools (F4f) the most 
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dominant aspect of measurement idea (9.7% of all drawings). 

Three measurement aspects, namely estimation (F4g), 

conversion of measuring units (F4h), and scaling (F4i) were the 

least coded aspect with 0.9% of all drawings (n = 1; see Table 

6). 

The fundamental idea of geometric patterns (F5) was the 

second least coded fundamental idea with 1.3% of all codes (see 

Table 3). Thus, very few students think of this fundamental idea 

when thinking about geometry. Apart from Grade 4 and Grade 

5, where four and three students’ drawings or written data, 

respectively, revealed geometric patterns, only one student in 

Grade 3 and Grade 6 depicted this aspect. In these instances, 

different patterns were drawn, such as patterns using basic 

geometric forms (Grades 3 and 4), frieze patterns (Grade 5), and 

the six-petal rosette pattern (Grade 6). 

As illustrated in Table 3, fundamental idea “geometric forms 

in the environment” (F6) was the second most often coded 

fundamental idea. Data revealed an increase from Grade 3 to 

Grade 5 (from 7.8% to 14.1%), but a decrease in Grade 6 (5.2%). 

Something pertaining to F6 was illustrated by almost every 

fourth Grade 3 student (24% of drawings), almost every fifth 

Grade 4 student (21.2% of drawings), almost every second 

Grade 5 student (42.9% of drawings), and every fourth Grade 6 

student (25% of drawings). 

Geometrization (F7) refers to the most abstract fundamental 

idea, which may explain the small number of codes (1.2%) 

assigned to it as well as no codes in Grades 3 and 4 (see Table 

3). Yet, an increase from the lower to the higher grades is 

evident, reaching a maximum of 3.7% codes in Grade 6 (see 

Table 3). Here, all subcategories were elicited apart from 

figurate numbers (F7d). In Grade 5, one aspect pertaining to F7 

was elicited, namely geometrical facts (F7a). Concretely, one 

student illustrated the sum of the interior angles of a triangle. 

Drawings and written data of six Grade 6 students (21.4%) 

showed three different aspects: geometrical facts (F7a), 

specifically sum of interior angles of a triangle, Euler’s line, 

triangle congruence theorems; parallel projection of a cube and 

a rectangular prism (F7b); and geometrical problems concerning 

angle measurements (F7c). 
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Discussion and Conclusions 

In the last section, the key aspects of geometry education 

through the lens of fundamental ideas we proposed are 

discussed. Lastly, the limitations of the study are considered, and 

some possible future research directions are provided. 

Educational Classroom Practices in Primary Grade 

Geometry 

In our study, we used participant-produced drawings as a 

data source for researching primary grade students’ images of 

geometry. We framed our study around fundamental ideas, 

which have been advocated by many researchers as a means for 

curriculum development (e.g., Mammana & Villani, 1998; 

Rezat et al., 2014; Schweiger, 1992, 2000; Van de Walle & 

Lovin, 2006; Wittmann, 1999). As it was not obvious whether 

Wittmann’s framework worked for the approach of using 

participant-produced drawings, in the first step we were 

concerned with clarifying whether and how this framework can 

be understood in this context. Since the framework turned out to 

be suitable, it was used as a basis for developing a multi-faceted 

inventory which both refined and expanded Wittmann’s (1999) 

theoretical framework of fundamental ideas of geometry. 

Concretely, on the basis of produced data, we developed 

subcategories of each fundamental idea illustrating its different 

aspects in order to get a more detailed and rich insight into 

current educational practices in primary school geometry. Also, 

we took different expression forms into consideration. The 

developed inventory was then used for classifying the students’ 

images of geometry encoded in the participant-produced 

drawings. 

Independent of the grade level, the fundamental idea of 

geometric forms and their construction (F1) dominated in 

students’ drawings. This focus is not surprising as this 

fundamental idea predominates throughout the mathematics 

curriculum (Senatsverwaltung für Bildung, Jugend und 

Wissenschaft Berlin, 2015). Moreover, there was no noticeable 

increase from Grade 3 to Grade 6. This is possibly due to the fact 
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that geometric forms are already covered before Grade 3. 

Naturally, with each grade level, students learn new geometric 

shapes and solids, and their properties; however, all Grade 3 

students were able to make statements in this area. Though 

properties of 2- and 3-dimensional objects are already covered 

in the first two grades of primary education, the data of Grade 3 

students did not reflect this (see Table 4). This may be due to the 

limited linguistic abilities of young students. Nevertheless, it is 

surprising that students mainly associated geometric forms with 

plane surfaces and solids (see Table 4), even though 0- (F1a) and 

1-dimensional objects (F1b) are covered in each grade in the 

mathematics curriculum (Senatsverwaltung für Bildung, Jugend 

und Wissenschaft Berlin, 2015). The results showed that these 

aspects increased from lower to higher grades. This might mean 

that with time students associate geometry with 2- and 3-

dimensional forms, which may be due to the fact that (surface) 

area and volume calculations are added to the measurement of 

distances in the higher grades (Senatsverwaltung für Bildung, 

Jugend und Wissenschaft Berlin, 2015). Additionally, great 

attention is given to 2- and 3-dimensional forms in the 

mathematics curriculum (Senatsverwaltung für Bildung, Jugend 

und Wissenschaft Berlin, 2015), and students develop different 

ideas of these forms in every grade. Hence, the existing 

mathematics curriculum may be crucial in developing learners’ 

understanding of geometry and the geometrical concepts. 

Interestingly, students associated geometry more with 

geometric forms in the environment (F6; 8.7% of codes), which 

is addressed only once per grade level in the curriculum, than 

with measurement (F4; 4.8% of codes; see Table 3), which 

dominates throughout the curriculum (Senatsverwaltung für 

Bildung, Jugend und Wissenschaft Berlin, 2015) as it is a 

separate mathematics standard. An initial increase from Grade 3 

to Grade 4 was expected as this content is explicitly dealt with 

in Grades 1 to 4. In Grade 5, this content was still highly present, 

even though this fundamental idea is no longer primarily part of 

the curriculum (Senatsverwaltung für Bildung, Jugend und 

Wissenschaft Berlin, 2015). It may be that this content was 

carried over from Grade 4 or was covered in Grade 5, and thus 

still present. Similarly, in Grade 6 this content is no longer 
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primarily part of the curriculum (Senatsverwaltung für Bildung, 

Jugend und Wissenschaft Berlin, 2015), which may explain its 

low frequency (see Table 3). Rather, in Grade 6 the focus shifts 

onto a more deductive approach to geometry. This may also 

explain an increase in drawings addressing the fundamental idea 

of geometrization (F7), especially with regard to geometrical 

facts (F7a), parallel projection (F7b), and geometrical problems 

(F7c). Considering that this fundamental idea is relatively well 

represented in the curriculum in the upper grades 

(Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015), only 3.6% of Grade 5 (n = 1) and 21.4% of Grade 

6 students (n = 6) mentioned or illustrated this aspect. This may 

be due to teachers who perceive geometry rather as 

entertainment than important mathematical content (Backe-

Neuwald, 2000). In that manner, the development of deductive 

and logical thinking plays a subsidiary role. 

With respect to the fundamental idea of measurement (F4), 

an increase from lower to higher grades was observable, 

reaching its peak in Grade 6 (see Table 3). This may be due to 

the fact that in the higher grades (surface) area (F4c), volume 

calculations (F4d), and angle measurement (F4e) are added to 

the measurement of lengths (F4a; Senatsverwaltung für Bildung, 

Jugend und Wissenschaft Berlin, 2015). Even though Grade 6 

students’ drawings depicted almost all geometry measures, on 

average just one aspect was drawn per student. Only four 

drawings depicted three or more different measures. Since this 

fundamental idea illustrates the connection between geometry 

and number and operations, it may be that not many students 

perceived this fundamental idea as a part of geometry or were 

not sure if that was the case. The fundamental idea of 

coordinates, spatial relationships, and reasoning (F3) was not 

frequently found in the students’ drawings, even though this 

topic and its different aspects are well-covered in the 

mathematics curriculum (Senatsverwaltung für Bildung, Jugend 

und Wissenschaft Berlin, 2015), and are recognized as one of the 

most important goals of school geometry (Franke & Reinhold, 

2016; Senatsverwaltung für Bildung, Jugend und Wissenschaft 

Berlin, 2015; Van de Walle & Lovin, 2006). Furthermore, it is 

very surprising that this content was primarily addressed by 
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Grade 3 students at a basic level by using prepositions (F3b), 

even though in Grades 5 and 6 the topic of coordinate systems 

(F3a), and spatial visualization, relation, and orientation (F3d) 

are intensively covered. However, there was no increase in 

Grades 5 and 6. The low results with respect to the fundamental 

idea of geometric patterns (F5) may suggest that this content is 

either rarely discussed (Backe-Neuwald, 2000) or does not seem 

to be directly linked to geometry lessons, but rather to algebra 

lessons. As a consequence, the students might not have 

established the connection between geometry and algebra, 

which is the core idea of this fundamental idea. 

Similar to the results of Glasnović Gracin and Kuzle (2018), 

this study shows that primary grade students’ drawings revealed 

a relatively narrow understanding of geometry with respect to 

the diversity of fundamental ideas. Concretely, the majority of 

the students drew aspects pertaining to either one (n = 37, 

32.5%) or two fundamental ideas (n = 48, 42.1%). Only rarely 

did students’ drawings present an image containing three or 

more fundamental ideas of geometry (three ideas, n = 17; four, 

n = 11; five, n = 1). Although all of the fundamental ideas were 

depicted in the students’ drawings or mentioned in other data 

sources, the fundamental ideas of geometric objects and their 

construction (F1), and geometric forms in the environment (F6) 

were most frequently exhibited. These, however, are just two of 

the fundamental ideas, and solely focusing on them may result 

in students developing a narrow understanding of geometry, 

instead of facilitating the diversity and richness geometry has to 

offer (Hansen, 1998). Also, placing little or no emphasis on 

fundamental ideas (i.e., F4, F5, and F7) that connect geometry 

to other content areas (i.e., measurement, algebra, number, and 

operations) will resolve in developing a fragmented 

understanding of geometry. 

Limitations of the Study and Future Research Directions 

This study was an exploratory qualitative study using 

purposive sampling. A sample of 114 cases was used, but the 

results may be limited to the curriculum of two German federal 

states (i.e., Berlin and Brandenburg), and for that reason may not 
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be widely generalized. These limitations suggest a possible next 

step in research, namely to conduct a study with a larger data 

sample in a wider variety of settings (e.g., federal states or 

countries), so that a researcher could create a more thorough 

description of the images students have of geometry. In addition, 

drawings from entire classrooms across different grades and 

schools may reveal a more complete picture of primary grade 

students’ images of geometry. This would in addition allow for 

comparisons between different grades and schools. Also, we 

cannot assume that the drawings offered a complete picture of 

the development of reasoning ability, so that in future studies 

connection to van Hiele (1959/1984) levels could be explored. 

Moreover, a longitudinal study would show whether students’ 

images of geometry change over time and how. Lastly, the study 

design does not allow us to make direct inferences between 

students’ images of geometry and their classroom practices. This 

may be a path to explore in our future work by using other data 

sources, such as observations of geometry lessons. This would 

not only give researchers a better insight into current educational 

practices in geometry, but would also provide practitioners a 

window into their students’ thinking and learning (e.g., Anning, 

1997; Pehkonen et al., 2016), providing teachers with ideas for 

modifying their teaching practices with respect to the multi-

dimensionality of geometry. Future studies could also evaluate 

the possibilities for classroom implementation of the inventory, 

and the practicability of it as a classroom-tool for discussing 

images of geometry. 

Drawings and the processes by which they are made have 

opened up a new way of gaining insight into students’ cognitive 

processes pertaining to geometry. Nevertheless, there were some 

drawbacks: some students had difficulties drawing, some did not 

like to draw, some drew the objects which they found easy to 

illustrate, and some aspects can be expressed by drawing in a 

limited way. Concretely, students most often expanded on their 

image of geometry pertaining to 3-dimensional figures (F1d), 

geometric properties (F1e), and drawing/construction tools (F1f) 

in the semi-structured interview, as they found those aspects 

hard to draw. It is certainly plausible that the students have 

knowledge of properties of geometric figures which was not 



Ana Kuzle and Dubravka Glasnović Gracin 

43 

elicited in their drawings. Additionally, aspects pertaining to 

operations with forms (F2), measurement (F4), and 

geometrization (F7) also proved to be hard to draw. This may 

also explain very few or no codes are pertaining to different 

aspects of these fundamental ideas (e.g., F2c, F2f, F2g, F4a, F4b, 

F4c, F4d, F4g, F7c, and F7d). Here again, additional data 

sources (e.g., written questions and a semi-structured interview) 

were necessary. Despite the inventory, the analysis of the 

drawings has proven to be a challenging task. As Blumer (1969) 

noted, the analysis of drawings is understood as interpreting the 

meanings that the students had given to the situations and objects 

they had presented. Thus, in order to avoid the coder’s own 

interpretation, not only analyst triangulation is needed, but also 

methodological triangulation such as participant-produced 

drawings (Kearney & Hyle, 2004), allowing each student to 

interpret his or her own drawing, which consequently allowed 

an in-depth understanding of what the student had drawn. 

By relating the study results to teaching practice, some 

implications for geometry teaching can be drawn. In terms of 

Brunner’s spiral curriculum, it seems to make sense to build the 

children’s knowledge successively. It is important to pick up the 

children from where they stand. The framework curriculum can 

be an orientation for this (Senatsverwaltung für Bildung, Jugend 

und Wissenschaft Berlin, 2015). In addition, the school’s 

internal curriculum may be used to help plan lessons. 

Furthermore, it may be concluded that the fundamental ideas of 

geometry that occurred less frequently have also played a 

subordinate role in classroom instruction. Consequently, since 

teachers are the most significant influencing factor in students’ 

learning of geometry, their attitude and willingness to teach 

determine the development of students’ content-related and 

process-related competencies. Further training courses could 

remedy a lack of didactic knowledge and ensure professional 

confidence in teaching. 

Last but not least, we strongly believe that the new 

framework of fundamental ideas of geometry presented in this 

article, and the method, namely drawings, employed in this 

research, will provide a basis not only for further study of 

students’ images of geometry, but also impact educational 
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classroom practices in school geometry. With the help of the 

inventory, both researchers and practitioners have the possibility 

of identifying practices in geometry as seen through their 

students’ lenses. Thus, the inventory may be used as a classroom 

tool for discussing students’ learning in the context of geometry 

lessons. In that manner, the tool could make students’ images of 

geometry more visible, allowing students as well as teachers to 

gain insight into geometry thinking in the classroom. If children 

are allowed to draw, it makes sense to talk to them afterwards 

(e.g., narrative interviews [Krüger, 2006]) to get an insight into 

their thinking. On the other hand, it may provide teachers a 

window into their teaching to see through their students’ eyes. 

Especially the fundamental ideas or the subcategories of these 

that were not often illustrated by the students, but are part of the 

mathematics curriculum and were taught by the teacher, may 

provide the teachers with paramount feedback (e.g., paying more 

attention to the idea in question, revising the content) and allow 

the teacher to reflect on his teaching practices (e.g., Why did not 

the students perceive the idea in question as important?). As 

such, students’ drawings and their interpretations of drawings 

are productive ways of promoting dialogue about learning 

between young people and their teachers (Anning, 1997). 
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Appendix 

Analytical Tool for Analyzing the Fundamental Ideas of 

Geometry 

Code Title Comments and/or examples 

F1 Geometric 

forms and their 

construction 

Basic and composite geometric forms of 

different dimensions, their properties and 

construction/creation fall into this 

category. 

F1a 0-dimensional 

objects 

A point as a separate object has been drawn. 

It can be, but it does not need to be, labeled.  

F1b 1-dimensional 

objects 

A segment, a ray and/or a line have been 

drawn as a separate object or written down. 

The object can be, but it does not need to be, 

labeled. 

F1c 2-dimensional 

objects 

A geometrical shape (e.g., square, circle, 

rectangle, triangle) has been drawn as a 

separate object or written down. The object 

can be, but it does not need to be, labeled. 

Other data (e.g., written, oral) is needed to 

confirm that the child did not draw a 3-

dimensional object in 2-D. 

F1d 3-dimensional 

objects 

A geometrical solid (e.g., cube, pyramid) has 

been drawn as a separate object or written 

down. The object can be, but it does not need 

to be labeled. The object can also be drawn 

as a 2-dimensional object. Here, either 

shading or written/oral data confirms 

classification.  

F1e geometric 

properties 

A property of a geometrical object is 

described or illustrated in the drawing. For 

instance, a child wrote “A square has 4 right 

angles” or four right angles are illustrated in 

the drawing of a square. 

F1f drawing and 

drawing/ 

construction 

tools 

Drawing/constructing as an activity was 

mentioned. A drawing/construction tool (e.g., 

ruler, protractor, compass) has been drawn. 

The function of the tool has to be explicitly 

mentioned. E.g., a ruler is explained as a 

drawing tool rather than as a measuring tool. 
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F1g non-geometrical 

tools for 

creating 

geometrical 

objects 

Material, such as inchworms, wooden 3-

dimensional shapes, modeling clay, is 

illustrated or mentioned as a way of creating 

geometric objects. 

F1h angles Angle stands for planar objects that can be 

created by means of concrete representations. 

The figurative angle aspect is emphasized 

here. For example, angle as a wedge, angle as 

a turn. 

F1i composite 

figures 

A composite figure without any reference to 

real word object(s) (e.g., cube building, net 

of a cube) made out geometry manipulatives 

(e.g., wooden cubes, polydron material) or 

material (e.g., modeling clay) is illustrated or 

mentioned. Here different techniques are 

possible (e.g., building, kneading, covering, 

printing). 

F2  Operations 

with forms 

Geometric mappings and other 

manipulations with forms, and the 

properties influenced or changed by these, 

fall into this category. 

F2a translation A figure with translational symmetry or a 

translation of an object with a translational 

vector is drawn. Properties of translation are 

documented. 

F2b rotation A figure with rotational symmetry or a 

rotation of an object with an angle and a 

point of rotation is drawn. Properties of 

rotation are documented. 

F2c dilation A given geometrical object is either enlarged 

or compressed. Properties of dilation are 

documented. 

F2d point symmetry A figure with point symmetry or a point 

symmetry of an object is drawn. Properties of 

point symmetry are documented. 

F2e line symmetry A figure with line symmetry or a reflected 

figure of an object with a given line of 

symmetry is drawn. Properties of line 

symmetry are documented. 

F2f congruence Two figures overlap. Properties of 

congruence are documented. 

F2g composing & 

decomposing 

A figure is decomposed into simpler forms or 

composed into a larger simpler form. 



Making Sense of Geometry Education 

50 

F2h folding & 

unfolding 

The activity of folding or unfolding is 

illustrated. For instance, the activity of 

folding and/or unfolding a paper is illustrated 

(e.g., origami). A net of a shape is drawn 

with an explanation that by folding it one 

gets a cube or arrows illustrating folding are 

drawn. 

F2i tessellation A tessellation of a plane is drawn (e.g., fish 

tessellation). Properties of tessellation are 

documented. 

F3  Coordinates, 

spatial 

relationships, 

and reasoning 

Position and location of geometric forms 

in the plane or space as well as spatial 

reasoning about them fall into this 

category. 

F3a coordinate 

system 

A coordinate system with x- and y axis or a 

map grid is drawn. An object is placed in a 

coordinate system or in a map grid with 

coordinates given to its constituent parts. 

F3b positional 

relationships 

The subcategory refers to specifying 

positions and describing relations to other 

objects. A positional adverb (e.g., above, 

below, left from) or positional relationship of 

an object or between object is described (e.g., 

a square lies right from a circle, two lines are 

parallel to each other). 

F3c orientation and 

orientation tools 

Mathematical conventions (e.g., labelling 

vertices in a polygon, labelling an angle) 

with respect to orientation are illustrated in a 

drawing (e.g., arrow showing a 

(counter)clockwise labelling of vertices in a 

square). A tool for orientation (e.g., a 

compass rose) is drawn. 

F3d spatial 

visualization, 

relation and 

orientation 

The subcategory refers to tasks dealing with 

different aspects of mental manipulation 

(e.g., folding a net of a solid mentally, 

making a view plan of a geometrical 

composite figure or of a cube building). 

F4  Measurement Qualitative and quantitative properties 

used to describe geometric forms as well 

as calculation of these using formulae fall 

into this category. 

F4a length A geometrical object is drawn and the length 

of at least one constituent part is illustrated. 

For example, the length of the sides of a 

parallelogram or the radius of a circle are 

measured. Units of length are illustrated. 
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F4b perimeter A geometrical object is drawn and its 

perimeter is illustrated. A formula for a 

perimeter of an arbitrary figure is written. 

Perimeter of a figure is calculated. 

F4c surface area A geometrical object is drawn and its surface 

area is illustrated. A formula for a surface 

area of an arbitrary figure is written. Area of 

a figure is calculated. Units of surface area 

are illustrated. 

F4d volume A geometrical object is drawn and its volume 

is illustrated. A formula for a volume of an 

arbitrary figure is written. Volume of a solid 

is calculated. Units of volume are illustrated. 

F4e angle measure The size of the drawn angle is illustrated 

(e.g., quarter of a circle with a dot in the 

middle for a right angle). Size of an angle is 

measured. 

F4f measuring tools A measuring tool (e.g., ruler, set square) has 

been drawn. The function of the tool has to 

be explicitly mentioned. For example,, a ruler 

is explained as a measuring tool rather than 

as a drawing tool. 

F4g estimation Estimation as an activity is illustrated. For 

example, a child draws a benchmark for a 

particular geometrical measure (e.g., 1 cm = 

1 small finger width, 

10 cm = a hand’s width with thumb). 

F4h conversion of 

measuring units 

Conversion of 1-, 2-, or 3-dimensional units 

is illustrated.  

F4i scaling A scale drawing of a geometrical object (e.g., 

a house) has been illustrated with a given 

scale. 

F5  Geometric 

patterns 

Geometric patterns created by using 

simple geometric forms fall into this 

category. For example, a frieze pattern, 

six-petal rosette is drawn. 

F6  Geometric 

forms in the 

environment 

Description of real-world objects, and 

operations on and with them by using 

geometric forms fall into this category. 

F7  Geometrization Plane and spatial geometric theorems and 

problems, relationships between numbers 

(e.g., triangular numbers), and abstract 

relationships, which can be translated into 

the language of geometry and then 

translated again into practical solutions, 

fall into this category. 
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F7a geometrical 

facts 

A particular geometrical fact (e.g., the sum of 

interior angles in a triangle, S-S-S theorem) 

is documented. 

F7b parallel 

projection 

A parallel projection of a particular solid is 

drawn. 

F7c geometrical 

problems 

A geometrical problem is illustrated (e.g., 

computing a missing angle measurement in a 

complex task, computing volume of a 

composite solid). 

F7d figurate 

numbers 

An example of a figurate number (e.g., 

triangular, numbers, cubic numbers) is 

illustrated. 

 

 

 

 


