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According to the Association of Mathematics Teacher Educators (AMTE, 

2017), teachers should first try to see problems through their students’ 

eyes, anticipate, understand, and analyze students’ varied ways of 

thinking, and respond appropriately. In this study, we engaged preservice 

teachers (PTs) in planning to implement problem-solving tasks; explored 

how they identified problem-solving tasks; and characterized their 

anticipated responses to those tasks. PTs’ competencies and deficiencies 

in selecting problem-solving tasks and anticipating solutions were 

described. The results inform the design of more effective interventions in 

math methods courses to help PTs to plan for implementation of problem-

solving in their future teaching.    

The National Council of Teachers of Mathematics (NCTM, 

2014) and Common Core State Standards for Mathematics 

(CCSSM; Common Core State Standards Initiative, 2010) 

recommended problem solving as part of effective classroom 

planning and instruction. The NCTM published Principles to 

Actions in 2014 with the goal “to fill the gap between the 

development and adoption of CCSSM and other standards, and 

the enactment of practices, policies, programs, and actions 
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required for their widespread and successful implementation” 

(p. 4). Engaging students in challenging tasks that involve active 

meaning making and support meaningful learning is identified 

as one of the foundational principles of effective teaching by 

NCTM. The eight effective mathematics teaching practices 

stipulated in the Principles to Actions represent essential 

teaching skills and a core set of high-leverage practices that are 

necessary for deep learning of mathematics. One of the eight 

practices is implementing tasks that promote reasoning and 

problem solving by allowing students access to the mathematics 

through multiple entry points, including the use of different 

representations and tools, and fostering the solving of problems 

through varied solution strategies. Beyond the policy documents 

and standards, problem solving has always been a goal of 

mathematics instruction as a means to encourage high-level 

student thinking and reasoning, and hence maximize student 

learning (Boaler & Staples, 2008). 

Nevertheless, problem-solving tasks are the most difficult to 

implement well, and are often transformed into procedural 

exercises during instruction, particularly in the U.S. classrooms 

(Stigler & Hiebert, 2004). In this respect, the Association of 

Mathematics Teacher Educators (AMTE, 2017) and NCTM 

(2014) recommended writing lesson plans that include 

anticipated student responses to assigned tasks along with the 

teacher’s own responses. They explained that such practice 

allows teachers to tentatively plan follow-up questions and 

instructional moves, instead of supplying students with the 

answers to the problems. Anticipating student responses was 

included in the first-ever comprehensive Standards for Preparing 

Teachers of Mathematics put forth by the AMTE in 2017. 

According to the AMTE (2017) standard, instead of 

demonstrating their approaches to a problem or correcting error, 

teachers should try to see problems through their students’ eyes, 

anticipate, understand, and analyze students’ varied ways of 

thinking, and respond appropriately. 

We have explored the importance of anticipating student 

answers in teaching and learning of mathematics, and found that 

preservice teachers (PTs) and beginning teachers have difficulty 

anticipating student solutions (e.g., Ball & Bass, 2000; Hill et 
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al., 2008; Thompson et al., 2011). Hallman-Thrasher (2017) 

further reported that PTs experienced difficulty in helping and 

responding to students when they encounter unanticipated 

solutions to problem-solving tasks. Bruun (2013) specified that 

elementary teachers’ preferred problem-solving strategies to 

teach were identifying key information (e.g., circle the 

numbers), looking for clue words (to choose an operation), and 

drawing a picture. Researchers, hence, emphasized the need to 

focus on a wide range of problem-solving strategies when 

educating mathematics teachers. For example, Bruun suggested 

that both in-service and PTs need to be trained on heuristic 

problem-solving methods. Hallman-Thrasher suggested that 

more research is needed to understand how teacher education 

can support PTs’ enactment of problem-solving tasks. Although 

much research has been done on the importance of problem 

solving, best practices for teacher educators in enabling PTs to 

enact problem solving in their classrooms are still being 

investigated. Particularly, research focused on methods for the 

development of PTs’ abilities to anticipate a variety of student 

solutions is needed as it is one of the important skills for 

preparing teachers of mathematics; and one of the difficulties for 

beginning teachers and PTs. The following research questions 

guided this study: 

• How do preservice elementary teachers identify 

problem-solving tasks in the context of a mathematics 

methods course? 

• In what ways do preservice elementary teachers 

anticipate student solutions when planning to implement 

a mathematical problem-solving task? 

Literature Review 

Quality of mathematics instruction begins with the quality 

of mathematical tasks. Student performance gains are greater 

where tasks are both set up and implemented to encourage the 

use of multiple solution strategies, multiple representations, and 

explanations (Stein & Lane, 1996). Students learn more, enjoy 

mathematics more, and progress to higher mathematics levels in 
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classrooms in which teachers consistently implement tasks 

encouraging high-level student thinking and reasoning, as 

compared to classrooms in which the tasks are routinely 

procedural in nature (Boaler & Staples, 2008). Moreover, tasks 

that promote problem solving and reasoning are effective tools 

for identification of mathematical creativity by means of 

multiple solutions and multiple representations (Leikin & Lev, 

2007). Particularly in the context of solving problems, students 

better comprehend, retain, and transfer knowledge (Jonassen, 

2011). 

Nevertheless, it is often challenging for teachers to 

implement high-quality tasks. Literature identified difficulties 

associated with the implementation of these tasks such as the 

amount of allocated time for the task (either too little or too 

much), classroom management, and teachers’ experience, 

knowledge, and beliefs (e.g., Henningsen & Stein, 1997; 

Remillard, 2005; Stein et al., 1996; Watson & Mason, 2007). 

One difficulty is that teachers are comfortable with the processes 

they experienced as learners of math, and thus are challenged by 

giving up control and becoming a facilitator of student learning 

(Borko et al., 2000; Crespo & Featherstone, 2006; Kersaint & 

Chappell, 2001; Smith, 2000). Another difficulty is that teachers 

are asked to teach content they did not learn in school and to use 

pedagogy they did not experience as learners due to changes in 

the mathematics curriculum (Sakshaug & Wohlhuter, 2010). 

Teachers’ knowledge and confidence in mathematics are 

important factors in whether they adopt a problem-solving 

approach to teaching the subject matter (Anderson, 2003). For 

example, in Sakshaug and Wohlhuter’s (2010) study, teachers 

were not comfortable with the mathematics in problem-solving 

activities, wishing for an answer key or unsure if their work was 

correct. According to Guberman and Gorev (2015), teachers 

should have a deep understanding of mathematics to be able to 

choose or create suitable problem-solving tasks and effectively 

react to various solution strategies undertaken by their students. 

Only then, they can conduct meaningful mathematical 

conversations that help students connect new material to 

previously learned concepts (Guberman & Gorev). Stylianides 

and Stylianides (2008) observed a decline in cognitive demands 
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during implementation of high-quality tasks in some seventh 

grade mathematics classrooms. They associated the decline with 

teachers’ weak content knowledge, or teachers’ use of textbooks 

that did not support them to understand the mathematical goals 

of tasks and to appreciate the different levels of mathematical 

appropriateness associated with possible student solutions. 

However, Stylianides and Stylianides reported that strong 

mathematical knowledge was not sufficient for successful 

implementation of those tasks. They advised that teacher 

preparation and professional development programs have a 

critical role in equipping teachers with the necessary 

mathematical and pedagogical knowledge to successfully 

implement such tasks. 

As noted by Bailey and Taylor (2015), participating in 

problem-solving activities and reflecting on the experience is an 

important aspect of developing PTs’ positive dispositions 

towards teaching through problem solving. They argued that this 

is a first step, and recognized a next step to be PTs’ enactment 

of a problem-solving approach in the classroom. Yet, for 

addressing the issues related to enactment phase, it is crucial to 

initially investigate how PTs identify problem-solving tasks, 

because whether they can successfully enact a problem-solving 

approach depends on their selection of appropriate tasks. 

Although, problem solving and problem-solving tasks are well 

elaborated in the standards, teachers have difficulty identifying 

tasks that promote problem solving. For example, in Kartal’s 

(2015) study, teachers considered any word/contextual 

problems, or application problems as problem-solving tasks in 

an effort to support CCSSM practice⎯make sense of problems 

and persevere in solving them. However, based on the most 

recent standards and recommendations by the NCTM and 

CCSSM, as well as on historical (Hiebert et al., 1997) and 

relatively recent (Van de Walle, 2007) views, for a task to lend 

to problem solving: it should not have a prescribed approach, 

rules, or methods to solve (i.e., problematic); it should allow for 

multiple entry and exit points; it must include high-level 

cognitive demand; and it must include a relevant context. Van 

de Walle (2007) defined relevant context as a context that 

reflects the cultures and interests of the students in the classroom 
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or uses everyday situations. Relevant context can increase 

student participation and student’s use of different problem-

solving strategies, and help students develop a productive 

disposition toward mathematics (Tomaz & David, 2015). To this 

end, relevant context allows problem solvers to make 

connections with prior knowledge and engages and motivates 

students to a greater degree (e.g., Jacobs & Ambrose, 2008; 

Woodward et al., 2012). 

To sum up, selecting and identifying problem-solving tasks 

and anticipating a variety of student solutions are critical for a 

successful implementation of problem solving (AMTE, 2017; 

Bailey & Taylor, 2015; Guberman & Gorev, 2015; NCTM, 

2014). Therefore, in this study, we investigated how elementary 

PTs identify problem-solving tasks, and explored and 

characterized their anticipated student solutions in an attempt to 

equip PTs with the necessary mathematical and pedagogical 

knowledge to successfully implement such tasks. We provided 

suggestions for how to structure a mathematics methods course 

to position PTs to consider opportunities to learn how to plan for 

and use problem-solving tasks. 

Theoretical Framework 

We adopted Van de Walle’s (2007) definition of problem-

solving tasks as being problematic, allowing for multiple entry 

and exit points, high-level in cognitive demand, and involving a 

relevant context. A task being problematic is closely related to 

students’ prior knowledge and prior exposure. For example, a 

simple addition/subtraction word problem can be problematic 

for students, if they were not exposed to such problem before. 

Therefore, the role of students’ prior knowledge and experience 

was considered in determining whether a task is problematic or 

not for the purpose of this study. Multiple entry points include 

the use of different representations, tools (e.g., picture, table, 

graph, manipulatives, etc.), and varied solution strategies that 

reveal a range of mathematical sophistication (e.g., finding a 

pattern, working backwards, using representations or 

demonstrations with manipulatives, acting out a problem, or 

using algorithms, etc.). Relevant context is defined as a context 
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that reflects the cultures and interests of the students in the 

classroom or uses everyday situations. 

We adopted Smith and Stein’s (1998) taxonomy of 

mathematical tasks to classify mathematical tasks into lower- 

and higher-level cognitive demands, and each level is further 

categorized into two groups as shown in Figure 1. For example: 

Billy is making pies for a picnic at school. He wants to make 

12 pies. According to his recipe, Billy needs 2 cans of cherry 

filling for one pie. How many cans of filling does Billy need 

to buy from the store? 

This allows for multiple entry and exit points (e.g., can draw a 

picture to represent the situation, create a table, write an 

equation), and has relevant context (i.e., school picnic). 

Nevertheless, the level of cognitive demand depends on 

students’ prior knowledge and exposure to multiplication. It 

requires a lower-level demand, procedures without connections, 

based on Figure 1, at the third-grade level; whereas it is a higher-

level demand task at lower grade levels. 

Methods of Inquiry 

Sample and Context 

The sample of the study consisted of 88 PTs enrolled in a 

math methods course. The setting for this study was a mid-sized, 

regional, Midwestern university teacher education program in 

the United States. Participating PTs were members of the 

elementary/middle (K–8) or special education (K–12) programs. 

Each PT was enrolled in a math methods course taught by one 

of the researchers. The math methods course focused on 

effective math teaching practices, inductive and developmental 

ways of teaching math, as well as inclusive methods. This course 

was the only math methods course the PTs took in their program, 

typically the semester before their student teaching experience. 

During the course, PTs were presented with the definition of 

a problem-solving task: It involves higher-level cognitive 

demands—procedures with connections and/or doing 

mathematics as characterized by Smith and Stein (1998)—has 
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multiple solution pathways that are not immediately known by 

the students, and has relevant contexts. PTs learned how to 

distinguish a problem-solving task from an exercise, identified 

given tasks as problem-solving tasks or exercises, and modified 

given exercises into problem-solving tasks. PTs were shown and 

discussed lesson plans for a planned problem-solving task that 

included an array of anticipated student responses. For example, 

they were engaged in the “candy jar” task (Smith et al., 2005): 

A candy jar contains 5 Jolly Ranchers and 13 Jawbreakers. 

Suppose that you have a new candy jar with the same ratio 

of Jolly Ranchers to Jawbreakers that Ms. Pascal had but it 

contains 100 Jolly Ranchers. How many Jawbreakers would 

you have? 

Figure 1 

The Task Analysis Guide 
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Memorization 

• Involve either reproducing previously learned facts, rules, 

formulae or definitions OR committing facts, rules, formulae or 

definitions to memory. 

• Cannot be solved using procedures because a procedure does not 

exist or the time frame in which the task is being completed is 

too short to use a procedure. 

• Are not ambiguous. Such tasks involve exact reproduction of 

previously seen material and what is to be reproduced is clearly 

and directly stated. 

• Have no connection to the concepts or meaning that underlie the 

facts, rules, formulae or definitions being learned or reproduced. 

Procedures Without Connections 

• Are algorithmic. Use of the procedure is either specifically 

called for or its use is evident based on prior instruction, 

experience, or placement of the task. 

• Require limited cognitive demand for successful completion. 

There is little ambiguity about what needs to be done and how to 

do it. 

• Have no connection to the concepts or meaning that underlie the 

procedure being used. 

• Are focused on producing correct answers rather than 

developing mathematical understanding. 

• Require no explanations or explanations that focus solely on 

describing the procedure that was used. 

 



Ozgul Kartal, Susie Morrissey, and Gorjana Popovic 

93 

H
ig

h
er

 L
ev

el
 D

em
a

n
d

s 
Procedures With Connections 

• Focus students’ attention on the use of procedures for the 

purpose of developing deeper levels of understanding of 

mathematical concepts and ideas. 

• Suggest pathways to follow (explicitly or implicitly) that are 

broad general procedures that have close connections to 

underlying conceptual ideas as opposed to narrow algorithms 

that are opaque with respect to underlying concepts. 

• Usually are represented in multiple ways (e.g., visual diagrams, 

manipulatives, symbols, problem situations). Making 

connections among multiple representations helps develop 

meaning. 

• Require some degree of cognitive effort. Although general 

procedures may be followed, they cannot be followed 

mindlessly. 

• Students need to engage with the conceptual ideas that underlie 

the procedures in order to successfully complete the task and 

develop understanding. 

Doing Mathematics 

• Require complex and non-algorithmic thinking (i.e., there is not 

a predictable, well-rehearsed approach or pathway explicitly 

suggested by the task, task instructions, or a worked-out 

example). 

• Require students to explore and understand the nature of 

mathematical concepts, processes, or relationships. 

• Demand self-monitoring or self-regulation of one’s own 

cognitive processes.  

• Require students to access relevant knowledge and experiences 

and make appropriate use of them in working through the task. 

• Require students to analyze the task and actively examine task 

constraints that may limit possible solution strategies and 

solutions. 

• Require considerable cognitive effort and may involve some 

level of anxiety for the student due to the unpredictable nature of 

the solution process required.  

Note. Adapted from “Selecting and Creating Mathematical Tasks: 

From Research to Practice,” by M. S. Smith and M. K. Stein, 1998, 

Mathematics Teaching in the Middle School, 3(5), p. 348. Copyright 

1998 by the National Council of Teachers of Mathematics, Inc. 

Reprinted with permission. 

First, PTs were asked to work on the problem in groups and 

anticipate as many different student solutions as possible. 

Second, one group shared their anticipated solutions on the 
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board, and other groups added their solutions if different than 

the presented ones. In this way, PTs discussed an array of 

possible solutions that emerged from the class, such as cross 

multiplication, factor of change, and scaling up in tables. Then, 

the instructor presented all other possible solutions that were not 

anticipated by any of the groups, such as unit rate and incorrect 

additive. Hence, for the candy jar problem, a total of five 

different anticipated solutions were discussed, which were 

incorrect additive, factor of change, unit rate, cross 

multiplication, and scaling up using a table of values. All 

anticipated solutions are based on “The Case of Mr. Donnelly 

and the Candy Jar Task” (NCTM, n.d.). The PTs were then given 

other problem-solving tasks and asked to anticipate an array of 

solution strategies. This was followed by an assignment entitled 

Problem-Solving Task (PSTask) in which PTs were asked to 

select a problem-solving task as defined in the course, anticipate 

at least two different student solution approaches, identify 

difficulties students may have, and plan questions to help 

students overcome those difficulties. PSTask also asked for 

other information such as instructional objectives, related 

CCSSM standards, grade level, and prior knowledge. The 

information on grade level and prior knowledge was used in 

determining whether the task is problematic for the targeted 

student group. For example, PTs were told that if they claim a 

simple fraction subtraction/addition word problem to be a 

problem-solving task given that students do not have prior 

knowledge or experience, then they cannot anticipate any 

algorithmic and standard solution approaches to the problem 

(i.e., common denominator algorithm); rather, they should 

anticipate approaches that use demonstrations with 

manipulatives or pictures. 

Data Collection and Analysis 

In this study, we explored the tasks that were identified by 

PTs as problem-solving tasks; and the ways they anticipated 

student responses to the tasks in the PSTask assignment. First, 

whether each selected task was qualified for being a problem-

solving task was determined by referring to Van de Walle’s 
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(2007) definition of the problem-solving task⎯as being 

problematic, allowing for multiple entry and exit points, high-

level in cognitive demand, and involving a relative context. 

Then, using constant comparative analysis (Corbin & Strauss, 

1990), we categorized problem-solving tasks. In order to 

establish interrater reliability, two researchers coded the data 

collaboratively, and the third researcher coded the data 

independently, with an agreement of 95%. 

Each PT’s anticipated student responses were first coded as 

representing related, contrasting, or the same strategies as 

recommended by Stein et al. (2008). Then, characteristics of 

anticipated student responses were further explored using 

constant comparative analysis. One researcher analyzed the data 

on anticipated student responses, developed codes while 

examining the work of the PTs, and adjusted codes accordingly 

as new characteristics were noticed. This iterative process 

continued until all data were coded consistently by all three 

researchers. 

Results 

Each of the 88 PTs selected or designed one problem solving 

task, and anticipated two student solutions for their task. As 

displayed in Figure 2, 36% (32/88) of the PTs selected or 

designed tasks that involve high cognitive demands, have 

relevant context, and allow for multiple approaches, and hence 

are problem-solving tasks. However, 64% (56/88) of the PTs’ 

tasks were not problem-solving tasks because they lacked one or 

more of the required features. 

Six of the 56 tasks⎯that were not problem-solving⎯had 

relevant context, but failed to involve high cognitive demands 

according to Smith and Stein’s (1998) task analysis guide. Also, 

these six tasks did not allow for multiple approaches by 

requiring students to use a specific representation and/or strategy 

(e.g., create an equation, use your making 10 strategies, etc.). 
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Figure 2 

Venn Diagram for PTs’ Tasks in Relation to Three Components of 

Problem-Solving Tasks 

 
 

There were 43 tasks that had relevant context and allowed 

for multiple approaches, yet required lower cognitive demands. 

In 40 of those low-cognitive-demand tasks, the required level 

was procedures without connections, which required an 

algorithmic thinking and/or use of procedures that were evident 

from prior instruction or experience. In 29 cases, these low-

cognitive-demand tasks required students to practice basic 

addition, subtraction, multiplication, or division facts. For 

example, one PT proposed Item 3 in Table 1, which is a typical 

word problem requiring a known procedure (multiplication) to 

solve at the targeted grade level. Three of the 43 low-cognitive 

tasks involved memorization level. 

 
Table 1 

Examples of Tasks with Various Components of Problem-Solving 

Tasks 

Item 

Components of 

problem-solving 

tasks evidenced PTsa Example 

1 High cognitive 

demand, 

multiple 

approaches and 

relevant context 

32 “I have two types of boxes one hold 

10 cookies and one box holds 5 

cookies. If I have 75 cookies total 

how many boxes of 10 cookies do I 

have and how many boxes of 5 

cookies do I have?” (Grade 2) 
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2 High cognitive 

demand and 

multiple 

approaches 

1 “1. Group these shapes together in 

like categories.  

2. Visually recognize which shapes 

are the same.” 

(Students are given a diagram of 

various shapes: 2 triangles, a 

rhombus, a trapezoid, a square, a 

regular pentagon, a concave 

pentagon, a regular hexagon, a 

hexagon, and two cubes; Grade 2) 

3 Relevant context 

and multiple 

approaches 

43 “Billy is making pies for a picnic at 

school. He wants to make 12 pies. 

According to his recipe, Billy needs 

2 cans of cherry filling for one pie. 

How many cans of filling does Billy 

need to buy from the store?”  

(Grade 3) 

4 Multiple 

approaches only 

3 “What factors make up the number 

56? Show your work and explain 

your answer.” (Grade 4) 

5 Relevant context 

only 

6 “The school library started with 63 

books. In the morning, 28 books 

were checked out and, in the 

afternoon, 10 more were checked 

out. How many books (b) did the 

library have at the end of the day? 

Write the equation as shown in the 

first two problems and write your 

answer.” (Grade 2) 

6 None 3 “Draw two different shapes that have 

areas of 8. Label the measurement of 

each side. Draw two different shapes 

that have perimeters of 8. Label the 

measurement of each side.” 

(Students are given gridlines to guide 

their drawings; Grade 3) 
aNumber of PTs with these tasks  

 

As depicted in Figure 2, three of the PTs selected tasks that 

lacked both context and high cognitive demand. These tasks 

were simply exercises, such as “15 – 11 = ?” which can be 

answered in a variety of ways (i.e., there was not any specified 

strategy). A student could use mental math, counting on, or use 

manipulatives to model decomposing. There was only one task 

(see Item 2 in Table 1) that involved high cognitive demand, and 
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allowed for multiple approaches, yet identified as “not a 

problem-solving task” for lack of relevant context. 

As shown in Figure 2, three tasks failed to satisfy any of the 

three components of a problem-solving task. Figure 2 also 

indicated that 60% (52/88) of the PTs selected tasks that 

involved relevant context and or allowed for multiple 

approaches, yet failed to be a problem-solving task, because of 

lack of high cognitive demand. These results show that PTs had 

difficulty with selecting tasks that involve higher levels of 

cognitive demands—procedures with connections or doing 

mathematics. 

Another pattern that emerged from coding of the tasks was 

that 36% (32/88) of the PTs’ selected tasks were typical word 

problems (i.e., exercises presented in context, which required 

using basic skills, procedures, or rules). Furthermore, four major 

categories emerged for the types of tasks: (a) calculating, (b) 

making decisions, (c) identifying, and (d) generating. 

Calculating tasks represented 68% (60/88) of the total; students 

were required to perform calculation(s) from a given situation, 

or symbolic or pictorial representation. The following is an 

example of such a problem-solving task: 

Sarah is planning her day. This morning, she can meet with 

a teacher, clean the gutters, or get a haircut. For lunch, she 

can have a sandwich or pizza. This afternoon, she can shop 

for groceries or volunteer at the library. Given these choices, 

how many different combinations does Sarah have to choose 

from? 

Only 15% (13/88) of the tasks presented options and asked 

students to make a decision. For example, one problem asked 

students to decide which of the two strings of lights of the same 

length was untangled for the longest length, deciding between 

one with a knot 11/12 of the way and another with a knot 7/8 of 

the way. Another problem asked students to decide “which pair 

of jeans is the better deal? How do you know?” based on a given 

price and sale information. Identifying tasks represented 13% 

(11/88) of the total; students were asked to identify a pattern and 

then calculate a value for the pattern, to list possible 
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combinations of numbers or objects to reach a certain sum, or to 

categorize shapes. Only 3% (3/88) of the tasks were generating 

tasks. For example, one task asked students to create a word 

problem, as well as a solution method, with a real-life context 

for a given equation. Another task asked students to generate a 

method for finding volume in the given problem context. 

Anticipated responses were coded in two different ways. 

First, each PT’s anticipated responses were coded in relation to 

each other into three categories: same, related, and contrasting 

strategies (Stein et al., 2008). Second, all anticipated solutions 

were coded by the type of required understanding into two 

categories: procedural and conceptual. Figure 3 shows an 

example of anticipated responses that were coded as the same 

strategies. Both anticipated responses used the process of 

carrying the ones and tens values to the next column to the left. 

 
Figure 3 

Anticipated Responses Coded as the Same Strategies 

 
 

For a task that required addition/subtraction, the two 

anticipated responses given in Figure 4 were coded as related 

strategies. The two strategies were somewhat different, as one 

utilized symbolic representation and the other one utilized 

pictorial representation along with counting, yet the underlying 

mathematical idea was subtracting 18 and 3 from 24 in both. 
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Figure 4 

Anticipated Responses Coded as Related Strategies 

 
 

On the other hand, Figure 5 shows contrasting strategies to 

a problem-solving task. One strategy used equations to represent 

the situation (i.e., algebraic thinking); another strategy used table 

of values and counting. The results showed that 23% (20/88) of 

the PTs provided strategies that were essentially the same, 48% 

(42/88) provided related strategies, and only 29% (26/88) 

provided contrasting strategies.  

Another characteristic of anticipated solutions was that a 

solution could exhibit procedural fluency or conceptual 

understanding, or neither, or both. An anticipated procedural 

solution makes use of general procedures, prescribed rules and 

or formulas, and standard algorithms with no connections to the 

meanings in context that underlie the procedure that was used. 

An anticipated solution that exhibits conceptual understanding 

involves representations of the problem situation and/or non-

algorithmic thinking. These definitions were based on NCTM’s 

(2014) assertion of procedural fluency as “the meaningful and 

flexible use of procedures to solve problems” and conceptual 

understanding as “the comprehension and connection of 

concepts, operations, and relations” (p. 7). For example, 

anticipated responses in Figure 3 were coded as procedural only, 

as both solutions only make use of standard algorithms. 

 
  

a. Students could solve the problem by making it into an equation. The 

equation should be 24-18-3=? The question mark indicates that the 

unknown is in the results position. The other way students could solve 

the equation would be by drawing pictures. Students could draw 24 

pictures, first crossing out 18 and then crossing off 3 more, leaving the 

remaining pictures as their answer. Both approaches should result in the 

answer being 3. 
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Figure 5 

Anticipated Responses Coded as Contrasting Strategies 

 
 

Figure 6 contains an example of a task and anticipated 

solutions that show conceptual understanding with no 

procedural fluency. Both counting fingers or pictures involve 

use of representations, and hence connections to the meanings in 

the M&M context. Using representations along with the 

procedure of counting is not considered as a procedural solution 

in this problem, because PTs’ emphasis was on the procedure of 

addition operation as evident in the Task 2 statement which 

includes words such as “plus,” “plus another,” and “sum.” 
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Figure 6 

Anticipated Responses Coded as Conceptual Understanding  

Problem-Solving Task: 

Task 1: Carter had 7 M&Ms, Mandy had 6 M&Ms, and Carly had 4 

M&Ms. How many M&Ms did they have all together? Can you show me 

using the M&Ms on your table? 

Task 2: Can you add 3 green M&Ms plus 6 red M&Ms plus another 5 

blue M&Ms, and read the sum for me? 

Task 3: Can you write the number of M&Ms you see here? 

Anticipated Solutions: 

One approach children could use to solve this problem is just by using 

their fingers to count. Another approach would be to draw pictures. These 

approaches are both similar in the way that the student can have a visual 

of something being added. 

The task shown in Figure 7 included an anticipated solution 

using the formulas that displayed both procedural fluency and 

conceptual understanding, and a solution of drawing on grid 

paper and counting the squares and borders that displayed 

conceptual understanding only. The majority (76%) of the PTs 

were able to anticipate solutions that involved both conceptual 

and procedural understanding, 19% of the anticipated solutions 

involved only conceptual, and 5% involved only procedural 

understanding. 

 
Figure 7 

Anticipated Responses Coded as both Procedural Fluency and 

Conceptual Understanding 

Problem-Solving Task: 

Part A. Ms. Kressin wants to build a pool in her back yard. She has three 

different options to choose from, but does not know which is the biggest 

one to choose from. The options are: 20 feet by 12 feet (Option A), 10 feet 

by 2 feet (Option B), and 20 feet by 6 feet (Option C). Find the area of 

each option using your own method. Show your work. Which would be 

the best option and why? 

Part B. Ms. Kressin forgot that she needs a fence to go around the pool. 

The fence will cost $1.50 per foot. Which option would be the cheapest? 

Show your own using your own method. 

Anticipated solutions: 

Solution 1: Student 1 uses the area formula length times width using 

drawings of each and labeling each side of the square as what it was in the 
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problem, which is a = l x w. They labeled each length and width as 

needed. They found that Option A was 240 feet, Option B was 20 feet, 

and Option C was 120 feet. The best option would be Option A. For the 

next part, they used the formula for perimeter, which is p = 2(l + w). The 

perimeter was 64 feet for Option A, 24 feet for Option B, and 52 feet for 

Option C. After, they multiplied each of the feet by $1.50 to see how 

much it would cost. Option A would cost $96, Option B would cost $36, 

and Option C would cost $78. They wrote that the least expensive option 

would be $36 dollars. They used the picture below each time to write out 

the length and width. 

Solution 2: Student 2 is given grid paper. The student knows that 

anything inside the rectangle is the area. He counts however many boxes 

needed to for each and finds the area by counting inside of the boxes. He 

comes to the same answers as Student 

1. For the perimeter, the student 

knows that the sides around the 

rectangle are the same. For Option A, 

he decides to add 20 + 20 + 12 + 12. 

He can do this with each option. He 

then takes each perimeter and 

multiples it by $1.50 to get the same 

answer.  

 

 

Finally, we noticed that anticipated solutions may 

correspond to processes recommended in the related standard 

cited by the PTs for the PSTask. For example, the task in Figure 

6 had anticipated solutions that aligned with processes suggested 

in the relevant standard in the operations and algebraic thinking 

domain (see Figure 8). Note that the standard suggested using 

objects (the student’s fingers) or drawings to solve the problem; 

therefore, such actions are related to the standard. The area and 

perimeter problem presented in Figure 7 referenced the standard 

in the measurement and data domain that is provided in Figure 

8. This standard in Figure 8 requires a process, namely the 

application of formulas. The application of formulas is seen in 

the first anticipated student solution (using perimeter and area 

formulas) but not in the second solution (drawing on a grid). 

A particular process or a selection of processes were 

recommended by the standards for 56% (49/88) of the PTs’ 

tasks. The process from the relevant standard was used by 51% 

(45/88) of the PTs; 30 of those 45 PTs submitted anticipated 

solutions that displayed both procedural fluency and conceptual 
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understanding. Responses that were related strategies were 

anticipated by 20 PTs who used a suggested process from the 

standards, 12 PTs anticipated responses that were the same 

strategy, and 13 PTs anticipated responses that were of 

contrasting strategies. In summary, the resulted types of tasks 

and anticipated solutions are illustrated in Figure 9. 

 
Figure 8 

Sample CCSSM Standards Guided PTs’ Anticipated Solution 

Strategies  

CCSS.MATH.CONTENT.1.OA.A.2. Use addition and subtraction within 

20 to solve word problems involving situations of adding to, taking from, 

putting together, taking apart, and comparing, with unknowns in all 

positions, e.g., by using objects, drawings, and equations with a symbol 

for the unknown number to represent the problem.  

 

CCSS.MATH.CONTENT.4.MD.A.3. Apply the area and perimeter 

formulas for rectangles in real world and mathematical problems. For 

example, find the width of a rectangular room given the area of the 

flooring and the length, by viewing the area formula as a multiplication 

equation with an unknown factor. (Common Core State Standards 

Initiative, 2010) 

Figure 9 

Summary of the Types of Tasks and Anticipated Solutions that Emerged 

from PTs  
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Discussion 

The majority (60%) of the PTs had difficulty with selecting 

tasks that involve higher cognitive demands and they struggled 

to move beyond the familiar concept of “problem” as a word 

problem. Word problems often require limited cognitive demand 

with little ambiguity, and hence are at the procedures-without-

connections level (i.e., one of the lower-level demands). In 

contrast, it seems that the PTs conceived word problems as real-

life problems, and hence believed that they required deeper 

levels of understanding and higher cognitive demands. Their 

difficulty with selecting tasks that involve higher cognitive 

demands, as well as their vision of problem-solving tasks as 

typical word problems explains the high frequency (68%) of 

calculating problems rather than those involving making 

decisions, identifying, or generating. Especially, the scarcity 

(15%) of decision-making problems is concerning, as decision 

making in everyday life, in the workplace, and in our democratic 

society have been championed in recent mathematics education 

reform documents as a core component of teaching and learning 

mathematics. 

As evidenced by PTs’ proposed problem-solving tasks, 

many PTs in this study believed that word problems should be 

used to practice procedures that have been learned previously, 

rather than seeing word problems as potential problem-solving 

tasks in which the students do not already know, but determine 

themselves, the solution pathways that will lead to success. For 

example, one student proposed for the problem-solving task at 

the second-grade level: 

The school library started with 63 books. In the morning, 28 

books were checked out and, in the afternoon, 10 more were 

checked out. How many books (b) did the library have at the 

end of the day? Write the equation as shown in the first two 

problems and write your answer. 

This problem could be modified to be a problem-solving task 

with two changes: removal of the directions to write an equation, 

and use of the problem before students had developed 
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subtraction skills. If the students had not encountered 

subtraction, this could be seen as a higher-level cognitive task 

with an unknown solution path, and students could have solved 

this using manipulatives, drawing diagrams, or any other 

solution path they could envision. But, because this was intended 

for students who know how to subtract, and refers to two 

previous problems that model equation writing, students were 

applying a known procedure to the problem, which is a lower 

cognitive demand. Many of the PTs (58% or 51/88) provided 

tasks that required students to practice previously learned 

procedures. And 12 of the 51 cases included the solution path in 

the problem instructions. This result might suggest that the PTs 

were reluctant to or did not know how to engage their students 

in productive struggle, so they made sure their students had a 

clear path to the problem solution. 

It is important to note that 23% of the PTs provided 

anticipated strategies that were essentially the same strategies. 

More specifically, the PTs considered that carrying out the same 

procedures in different order or in a somewhat different way 

made up different strategies. The majority of the PTs came up 

with related strategies, which involved the same mathematical 

idea using different representations. Only 30% of the PTs 

provided contrasting strategies for their task. These results 

indicate that PTs need to engage in activities, in methods 

courses, in which they discuss what makes two strategies 

different, the underlying mathematical idea that is depicted in a 

given strategy, and what other mathematical ideas could be used 

for the task being discussed. 

Our results showed that only four PTs anticipated solutions 

that did not display conceptual understanding. Solutions that 

displayed only conceptual understanding were anticipated by 17 

PTs, while the remaining PTs provided at least one anticipated 

solution that displayed both procedural fluency and conceptual 

understanding. PTs who attempted to create problem-solving 

tasks, whether they were successful or not, realized that 

developing a solution strategy relied on having a conceptual 

understanding of the problem being posed. This conclusion is 

supported by Jonassen (2000), who surveyed the literature and 
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found that knowledge of how concepts in a domain are 

interrelated is essential to success in problem solving. 

CCSSM content standards that included the suggestion for a 

process or processes were used by 56% (49/88) of the PTs. 

Interestingly, in most cases (45/49), the selected standards 

suggestions influenced the PTs and hence anticipated solutions 

that are outlined in the standard. Given that standards require 

both procedural and conceptual ways by means of variety of 

representations, as exemplified in Figure 8, PTs who used such 

standards anticipated both procedural and conceptual solutions. 

The results suggest that discussion about a process or processes 

outlined in the CCSSM content standard corresponding to a 

particular problem-solving task might provide a foundation for 

developing elementary school PTs’ ability to anticipate student 

responses that display both procedural fluency and conceptual 

understanding. Therefore, we recommend that mathematics 

educators include such practice into mathematics methods 

courses. 

Future Directions 

Results seen in this study will orient future data gathering 

and analysis. Noting the weaknesses of problem-solving tasks 

proposed by PTs guides future research on the current project, 

as well as other researchers and teacher educators. Realizing 

what PTs understand and where they struggle to identify 

appropriate problem-solving tasks allows researchers to plan 

next steps more purposefully. Exploring PTs’ competencies and 

deficiencies in anticipating solutions may inform the design of 

more effective interventions in methods courses to better help 

PTs improve their collection of anticipated solutions. 

In the next phase of the larger study, PTs in this study will 

receive peer feedback on their selected PSTask and they will 

undertake the problem-solving task assignment a second time 

during each semester. The results of those assignments will be 

analyzed to determine how the PTs’ identification of problem-

solving tasks changes over time with re-designed interventions 

based on the findings of the current study, and after feedback 

from the instructor. In addition to collected assignments, PTs 
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will be interviewed about how they see their chosen task as 

fitting the definition of a problem-solving task. Researchers will 

attempt to relate instruction and feedback received by the PTs to 

changes in problem-solving task identification and array of 

anticipated solutions. In addition, PTs’ anticipated erroneous 

solutions and their ways to plan for questions to help students 

overcome those faulty reasonings will be investigated. Ongoing 

analysis of PTs’ attempts at anticipating a variety of student 

solutions as well as difficulties will provide a deeper 

understanding of PTs’ ability to anticipate what students know 

and what misconceptions students have. Researchers will also 

make plans to integrate the effective mathematics teaching 

practice “support productive struggle” into the problem-solving 

module of the methods course, to address PTs’ tendency to 

provide practice problems and direct instructions that leads to a 

decrease in the required level of the cognitive demand. 

References 

Anderson, J. (2003). Teachers’ choice of tasks: A window into beliefs about 

the role of problem solving in learning mathematics. In L. Bragg, C. 

Campbell, G. Herbert, & J. Mousley (Eds.), Mathematics education 

research: Innovation, networking, opportunities (Proceedings of the 

26th annual conference of the Mathematics Education Research Group 

of Australasia, pp. 72–79). MERGA. 

Association of Mathematics Teacher Educators. (2017). Standards for 

preparing teachers of mathematics. https://amte.net/standards 

Bailey, J., & Taylor, M. (2015). Experiencing a mathematical problem-

solving teaching approach: Opportunities to identify ambitious teaching 

practices. Mathematics Teacher Education and Development, 17(2), 

111–124. 

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in 

teaching and learning to teach: Knowing and using mathematics. In J. 

Boaler (Ed.), Multiple perspectives on mathematics teaching and 

learning (pp. 83–105). Ablex Publishing. 

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an 

equitable teaching approach: The case of Railside School. Teacher 

College Record, 110(3), 608–645. 

Borko, H., Davinroy, K. H., Bliem, C. L., & Cumbo, K. B. (2000). Exploring 

and supporting teacher change: Two third-grade teachers’ experiences in 

https://amte.net/standards


Ozgul Kartal, Susie Morrissey, and Gorjana Popovic 

109 

a mathematics and literacy staff development project. The Elementary 

School Journal, 100(4), 273–306. http://dx.doi.org/10.1086/499643 

Bruun, F. (2013). Elementary teachers’ perspectives of mathematics problem 

solving strategies. The Mathematics Educator, 23(1), 45–59. 

Common Core State Standards Initiative. (2010). Common core state 

standards for mathematics. 

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf 

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, 

canons, and evaluative criteria. Qualitative Sociology, 13(1), 3–21. 

http://dx.doi.org/10.1007/BF00988593 

Crespo, S., & Featherstone, H. (2006). Teacher learning in mathematics 

teacher groups: One math problem at a time. In K. Lynch-Davis & R. L. 

Rider (Eds.), The work of mathematics teacher educators: Continuing 

the conversation (pp. 97–115). Association of Mathematics Teacher 

Educators. 

Guberman, R., & Gorev, D. (2015). Knowledge concerning the mathematical 

horizon: A close view. Mathematics Education Research Journal, 27(2), 

165–182. http://dx.doi.org/10.1007/s13394-014-0136-5 

Hallman-Thrasher, A. (2017). Prospective elementary teachers’ responses to 

unanticipated incorrect solutions to problem-solving tasks. Journal of 

Mathematics Teacher Education, 20(6), 519–555. 

http://dx.doi.org/10.1007/s10857-015-9330-y 

Henningsen, M., Stein, M. K. (1997). Mathematical tasks and student 

cognition: Classroom-based factors that support and inhibit high-level 

mathematical thinking and reasoning. Journal for Research in 

Mathematics Education, 28(5), 524–549. 

http://dx.doi.org/10.2307/749690 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C., Wearne, D., Murray, 

H., Olivier, A., & Human, P. (1997). Making sense: Teaching and 

learning mathematics with understanding. Heinemann. 

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical 

content knowledge: Conceptualizing and measuring teachers’ topic-

specific knowledge of students. Journal for Research in Mathematics 

Education, 39(4), 372–400. 

Jacobs, V. R. & Ambrose, R. C. (2008). Making the most of story problems. 

Teaching Children Mathematics, 15(5), 260–266. 

Jonassen, D. H. (2000). Toward a design theory of problem solving. 

Educational Technology Research and Development, 48(4), 63–85. 

http://dx.doi.org/10.1007/BF02300500 

Jonassen, D. H. (2011). Learning to solve problems: A handbook for 

designing problem-solving learning environments. Routledge. 

http://dx.doi.org/10.1086/499643
http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
http://dx.doi.org/10.1007/BF00988593
http://dx.doi.org/10.1007/s13394-014-0136-5
http://dx.doi.org/10.1007/s10857-015-9330-y
http://dx.doi.org/10.2307/749690
http://dx.doi.org/10.1007/BF02300500


Mathematical Problem-solving Tasks and Solutions 

110 

Kartal, O. (2015). Enactment of common core state standards for 

mathematics: Relationship between teachers’ choices of curriculum, 

teaching, and professional development (Publication No. 3733992) 

[Doctoral dissertation, Illinois Institute of Technology]. ProQuest 

Dissertations and Theses Global. 

Kersaint, G., & Chappell, M. F. (2001). Helping teachers promote problem 

solving with young at-risk children. Early Childhood Education 

Journal, 29(1), 57–63. https://doi.org/10.1023/A:1011313007716 

Leikin, R., & Lev, M. (2007, July 8–13). Multiple solution tasks as a 

magnifying glass for observation of mathematical creativity. In J.-H. 

Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of the 

31st conference of the International Group for the Psychology of 

Mathematics Education (Vol. 3, pp. 161–168). The Korea Society of 

Educational Studies in Mathematics. 

National Council of Teachers of Mathematics. (n.d.). The case of Mr. 

Donnelly and the candy jar task. https://www.nctm.org/Conferences-

and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-

of-Mr_-Donnelly-and-the-Candy-Jar-Task/ 

National Council of Teachers of Mathematics. (2014). Principles to actions: 

Ensuring mathematical success for all. 

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use 

of mathematics curricula. Review of Educational Research, 75(2), 211–

246. http://dx.doi.org/10.3102/00346543075002211 

Sakshaug, L. E., & Wohlhuter, K. A. (2010). Journey toward teaching 

mathematics through problem solving. School Science and Mathematics, 

110(8), 397–409. 

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1949-

8594.2010.00051.x 

Smith, M. S. (2000). Balancing old and new: An experienced middle school 

teacher’s learning in the context of mathematics instructional reform. 

The Elementary School Journal, 100(4), 351–375. 

http://dx.doi.org/10.1086/499646 

Smith, M. S., Silver, E. A., & Stein, M. K. (2005). Improving instruction in 

rational numbers and proportionality: Vol. 1. Using cases to transform 

mathematics teaching and learning. Teachers College Press. 

Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical 

tasks: From research to practice. Mathematics Teaching in the Middle 

School, 3(5), 344–50. 

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). 

Orchestrating productive mathematical discussions: Five practices for 

helping teachers move beyond show and tell. Mathematical Thinking 

https://doi.org/10.1023/A:1011313007716
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Mr_-Donnelly-and-the-Candy-Jar-Task/
http://dx.doi.org/10.3102/00346543075002211
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1949-8594.2010.00051.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1949-8594.2010.00051.x
http://dx.doi.org/10.1086/499646


Ozgul Kartal, Susie Morrissey, and Gorjana Popovic 

111 

and Learning, 10(4), 313–340. 

http://dx.doi.org/10.1080/10986060802229675 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student 

capacity for mathematical thinking and reasoning: An analysis of 

mathematical tasks used in reform classrooms. American Educational 

Research Journal, 33(2), 455–488. 

http://dx.doi.org/10.3102/00028312033002455 

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of 

student capacity to think and reason: An analysis of the relationship 

between teaching and learning in a reform mathematics project. 

Educational Research and Evaluation, 2(1), 50–80. 

http://dx.doi.org/10.1080/1380361960020103 

Stigler, J. W., & Hiebert, J. (2004). Improving mathematics teaching. 

Educational Leadership, 61(5), 12–17. 

Stylianides, A. J., & Stylianides, G. J. (2008). Studying the classroom 

implementation of tasks: High-level mathematical tasks embedded in 

‘real-life’ contexts. Teaching and Teacher Education, 24(4), 859–875. 

http://dx.doi.org/10.1016/j.tate.2007.11.015 

Thompson, J. R., Christensen, W. M., & Wittmann, M. C. (2011). Preparing 

future teachers to anticipate student difficulties in physics in a graduate-

level course in physics, pedagogy, and education research. Physical 

Review Physics Education Research, 7(1), Article 010108. 

http://dx.doi.org/10.1103/PhysRevSTPER.7.010108 

Tomaz, V. S., & David, M. M. (2015). How students’ everyday situations 

modify classroom mathematical activity: The case of water 

consumption. Journal for Research in Mathematics Education, 46(4), 

455–496. https://doi.org/10.5951/jresematheduc.46.4.0455 

Van de Walle, J. A. (2007). Elementary and middle school mathematics: 

Teaching developmentally (6th ed.). Pearson. 

Watson, A., & Mason, J. (2007). Taken-as-shared: A review of common 

assumptions about mathematical tasks in teacher education. Journal of 

Mathematics Teacher Education, 10(4), 205–215. 

http://dx.doi.org/10.1007/s10857-007-9059-3 

Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, 

A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical 

problem solving in Grades 4 through 8: A practice guide (NCEE 2012-

4055). U.S. Department of Education, Institute of Education Sciences, 

National Center for Education Evaluation and Regional Assistance. 

https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/MPS_PG_043012.pdf 

 

http://dx.doi.org/10.1080/10986060802229675
http://dx.doi.org/10.3102/00028312033002455
http://dx.doi.org/10.1080/1380361960020103
http://dx.doi.org/10.1016/j.tate.2007.11.015
http://dx.doi.org/10.1103/PhysRevSTPER.7.010108
https://doi.org/10.5951/jresematheduc.46.4.0455
http://dx.doi.org/10.1007/s10857-007-9059-3
https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/MPS_PG_043012.pdf

