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Documenting the Multiplicative Reasoning 
of a High School Junior and Senior 

Nicholas Shaver and Anna DeJarnette 

This study was guided by the question, how do we understand the 
multiplicative reasoning of upper high school students and use that to 
give insight to their performance on a standardized test? After 
administering a partial ACT assessment to a class of high school 
students, we identified students to make comparisons between low and 
high scoring students on the sample assessment. Through a written 
assessment targeted towards assessing students’ number sequences, 
and through semi-structured interviews with two students, we 
documented a direct relationship between a student’s number 
sequence and their performance on the partial assessment. The 
evidence that students showed of limited multiplicative reasoning skills 
help explain some of their challenges in responding to prompts on the 
ACT assessment. This study reflects the need to give more focused 
attention to the multiplicative reasoning skills of secondary students 
and to design interventions that might develop these students’ 
multiplicative reasoning and number sequences. 

Multiplicative reasoning (MR) is essential for many middle 
school and secondary mathematics topics including division 
(Hackenberg, 2010; Steffe, 1992), fractional reasoning 
(Hackenberg, 2007; Hackenberg & Tillema, 2009; Norton & 
Hackenberg, 2010; Steffe & Olive, 2010), area and volume 
(Mulligan, 2002), and ratio and proportions (Siemon et al., 2005; 
Tjoe & de la Torre, 2014). These topics, in turn, are foundational 
for secondary topics such as rate of change (H. L. Johnson, 
2015) and algebraic reasoning (Boyce & Norton, 2017; 
Hackenberg & Lee, 2015; Hulbert et al., 2017; Ketterlin-Geller 
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et al., 2015; Lesh et al., 1988; Lobato et al., 2010; Norton et al., 
2015; Norton & Hackenberg, 2010; Russell et al., 2011; Tillema, 
2013). Since MR is necessary to be successful in secondary 
mathematics topics, understanding the MR of students in high 
school who struggle with grade level standards is important as a 
pathway to support their learning.  

MR refers to how students understand, conceptualize, and 
operate with numbers in multiplicative and divisional situations 
(Hackenberg, 2010; Hulbert et al., 2017; Kosko, 2019; Ulrich & 
Wilkins, 2017). Measuring a student’s MR is complicated 
because students without fully developed MR can solve 
multiplicative tasks using standard multiplication algorithms or 
in an additive way without a sophisticated multiplicative 
understanding (Hulbert et al., 2017; Kosko & Singh, 2018; 
Ulrich & Wilkins, 2017). Standardized tests have been used to 
quantify students’ abilities in areas such as literacy and math, 
including many of the middle and secondary concepts that 
support MR. Two commonly used standardized tests are the 
ACT and SAT. These assessments are used in 33 states as a 
pathway to graduation (Gewertz, 2019). However, one weakness 
with standardized tests is that students’ scores can be affected by 
skills and knowledges the tests are not intended to measure. For 
example, studies have shown scores on standardized 
mathematics assessments are correlated with working memory 
(Gathercole et al., 2004; Howard et al., 2017), and targeting 
working memory can help students on mathematics assessments 
(Kroesbergen et al., 2014). The specific connections between 
students’ MR and their performance on standardized tests are 
relatively understudied. One study demonstrated that on one 
standardized test, the National Assessment of Educational 
Progress, multiplication and division questions were a better 
indicator of procedural knowledge than of conceptual 
understanding of multiplication and division (Kosko & Singh, 
2018). Because assessments such as the ACT and SAT are 
influential gatekeepers (Park & Becks, 2015), it is necessary to 
better understand how students’ mathematical reasoning might 
shape their performances on these tests. 

This study was guided by the research question, How does 
the multiplicative reasoning of upper high school students give 
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insight to their performance on a standardized mathematics test? 
Our hypothesis was that upper high school students who 
struggled with standardized mathematics tasks were limited by 
their MR. We will discuss the MR of two focal students with 
lower scores on a standardized test along with a contrasting 
example of a student with a high score on the same standardized 
test. We will use data from a MR assessment and diagnostic 
interviews and will demonstrate how the two students’ struggles 
on the standardized test can be explained, in part, by their 
challenges with MR.   

Theoretical Framework 

The theoretical framework for this research is scheme 
theory, which is based in the radical constructivist framework 
interpreted by von Glasersfeld (1995). Scheme theory explains 
that number sequences are the foundation for the mathematical 
operations students can implement (Hackenberg, 2010; Steffe, 
1992). A number sequence is a hierarchical scheme that 
characterizes how students conceive of numbers which 
facilitates greater sophistication of operations. The different 
mental actions or operations afforded to students depending on 
their number sequence development include but are not limited 
to unitizing, iterating, units-coordinating, partitioning, and 
disembedding (Hackenberg, 2010; Kosko, 2018).  

Unitizing refers to the ability to mentally create a single 
conceptual unit based on multiple individual entities (Steffe, 
1992). For example, students who can unitize are able to 
mentally conceptualize a number such as 5 simultaneously as 
both a single composite unit and as a unit that represents five 
individual items. Iterating refers to the mental ability of 
repeating either a composite unit or an individual unit, such as 
adding 5 and 5 (Steffe & Olive, 2010). Units-coordinating is the 
operation that allows students to iterate a unit or composite unit 
on a sequential coordinate system (Steffe, 1992). For example, a 
student with this operation can skip count by coordinating a 
composite unit of 5 across the sequentially coordinated mental 
construct of 1, 2, and 3 as demonstrated in Figure 1 (Ulrich, 
2015). The number of units students can coordinate is an 
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essential characterization of a students’ number sequence. 
Partitioning refers to the operation of mentally segmenting a 
whole into smaller parts (Hackenberg, 2010), which will be 
discussed further with the ability to disembed. 

Disembedding 

Disembedding is an operation that allows students to 
mentally remove a partition from a whole while simultaneously 
keeping the whole intact (Hackenberg, 2010; Kosko, 2018). For 
example, if a student is asked to divide 12 marbles equally into 
three cups, a student who can disembed can mentally create a 
composite unit of 3 marbles, then iterate their composite unit of 
3 to determine if the possible iterate 9 is too low based on 
comparing it to their retained mental conception of 12. A student 
can then modify their guess to 4 marbles to determine that 
iterating this composite unit three times will yield the desired 
amount of 12 marbles (Steffe, 1992). Students who reason 
additively can also solve this whole number marble problem in 
other ways without relying on the disembedding operation, 
which is why observing students’ interactions with fractions can 
provide insight into student’s whole number action schemes 
(Steffe, 2002; Ulrich & Wilkins, 2017). For example, if a student 
is asked to partition a whole unit into 7 equal partitions, the 
whole number of 12 marbles from the previous can be conceived 
as the whole unit, and each partition of the whole is a fractional 
partition, which is conceptualized as a composite unit. 
Disembedding allows the student to maintain the whole while 
iterating the fractional partition as separate yet identical units 
(Hackenberg, 2013; Ulrich, 2016b). Disembedding allows 
students to develop the first fractional scheme because students 
can conceive each equal fractional partition as an identical and 
equivalent fractional partition of the whole (Hackenberg, 2013; 
Steffe & Olive, 2010; Ulrich, 2016b). When observing student 
behavior in partitioning a whole into equal partitions, students 
who can disembed can accurately and visually estimate partition 
sizes, while students who cannot disembed usually estimate 
unequal partitions and require a physical representation to 
estimate accurately (Ulrich, 2016b). Disembedding is a powerful 
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operation that facilitates a stronger understanding of 
multiplication, division (Hackenberg, 2010; Steffe, 1992, 1994), 
and fractions (Norton & Hackenberg, 2010; Steffe, 2010). 
Additionally, disembedding also facilitates strategic reasoning, 
which is similar to what has been referred to as number sense 
(Boaler, 2016; Humphreys & Parker, 2015). Strategic reasoning 
allows students to use related benchmark numbers to solve for 
differences and sums. For example, if finding the difference 
between 58 and 75, a student can find the difference of 75 and 
60 and mentally retain that 58 is 2 less than 60 and then increase 
the difference by 2.  

Number Sequences 

Since researchers cannot know the exact mental operations 
students use, number sequences characterize the mental 
framework students operate with based on the way students 
approach mathematical situations (Steffe, 1992; von 
Glasersfeld, 1995). A student’s number sequence is 
characterized by how many units a student can coordinate 
simultaneously, beginning with a single unitized composite unit 
and then two or three composite units. 

Students operating with the first counting scheme, Initial 
Nested Sequence (INS), understand numbers as sequential and 
can create a composite unit. Students operating with INS are 
limited to sequentially coordinating individual units instead of 
composite units (Figure 1). Students operating with INS can 
solve multiplicative problems in an additive way by drawing out 
individual representations of a situation and counting individual 
units.   

A student who has developed early tacitly nested number 
sequence (eTNS), the next stage in the hierarchy and the first 
multiplicative number sequence, would be able to coordinate 
two units because their initial counting sequence is tacitly nested 
and taken as a given (Hackenberg & Tillema, 2009; Steffe, 
1992). This allows students to skip count by conceptualizing a 
first sequential unit (e.g., 1, 2, and 3) each of which corresponds 
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Figure 1 
A Visualization for One, Two, and Three Levels of Units-Coordinating  

 
to a coordinated composite number (e.g., 5, 10, 15; see Figure 
1).  Students operating with eTNS have tacitly conceptualized 
their initial counting number sequence of 1, 2, and 3 but cannot 
assimilate the result of coordinating composite units. Ulrich 
(2016b) added the designation advanced TNS (aTNS) after 
observing students who had developed some attributes of ENS 
but had not developed the disembedding operation.  For 
example, one distinguishing feature of students operating with 
aTNS is their ability to partition fractions into equal partitions 
by simultaneously partitioning, as opposed to students operating 
with eTNS who sequentially partition (Ulrich, 2016b; Ulrich & 
Wilkins, 2017). This means students operating with aTNS tend 
to create marks to determine estimates of a fair share to decide 
simultaneously if each piece is equal. Students operating with 
eTNS tend to either create inaccurate estimates or struggle to 
partition a fractional whole since each partition is created 
sequentially and does not necessarily need to be the same size as 
a previous or future partition (Wilkins & Ulrich, 2017).  

Students operating with aTNS can partition a whole unit into 
equal partitions of fifths composed of three coordinated units: 
the whole unit, fifths partition, and their initial number sequence. 
However, since students operating with aTNS have not 
assimilated their composite unit structure, and need to create this 
structure in activity, students operating with aTNS cannot 
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disembed partitions to use them in further operations. Students 
operating with aTNS do not conceive of each fifth as an identical 
and equivalent fractional partition but rather as separate parts of 
a whole (Hackenberg, 2013; Steffe, 1992; Steffe & Olive, 2010; 
Ulrich, 2016b).  

Students operating with the second multiplicative concept, 
explicitly nested number sequence (ENS), can interiorize the 
result of their coordinated unit structure and coordinate a second 
composite unit, which allows them to disembed (Ulrich, 2016a). 
As shown in Figure 1, students operating with ENS can retain 
the structure of a composite unit of 15 composed of five 
composite units of three and can iterate one of the composite 
units or can add on a second coordinated composite unit of 10 
two times to the original 15 composite unit. ENS students could 
mentally combine these composite units without the aid of 
writing numbers down.  

Implications of operating with ENS can be observed with 
students’ interactions with fractions. Students operating with 
ENS conceptualize each fractional partition as an equivalent and 
identical partition of the whole fraction and have therefore 
constructed the first true fractional scheme, the partitive unit 
fraction scheme (Hackenberg, 2013; Steffe & Olive, 2010; 
Ulrich, 2016b). Disembedding affords students the ability to 
mentally retain the fractional whole as a composite unit 
composed of fractional units, while at the same time iterating a 
second composite unit of a fractional piece. When students 
operating with ENS partition a fraction into equal partitions, 
they are equi-partitioning. This means they know beforehand 
each partition needs to be equivalent to the others and tend to 
use visual marks such as dots or tick marks to ensure each 
partition is equal by mentally assessing each partition (Ulrich & 
Wilkins, 2017). Equi-partitioning leads to the development of 
the splitting operation, which means a student can both equi-
partition and iterate simultaneously, and it is important in 
helping students understand improper fractions (Steffe & Olive, 
2010; Wilkins & Norton, 2011).  
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Secondary Mathematics Impact 

Since disembedding has been “theorized as necessary for 
developing robust understanding of not only fraction operations, 
but also integer addition and subtraction and the use of algebraic 
notation” (Ulrich, 2016b, p. 18), and is helpful for more 
sophisticated understanding of multiplication and division 
(Steffe, 1992, 1994), identifying students who have not 
developed the disembedding operation (aTNS or eTNS) can 
have significant implications in targeting instruction for algebra, 
fractions, and more advanced mathematics concepts (Boyce et 
al., 2021; Hackenberg et al., 2017; Kerrigan, 2021; Zwanch, 
2019). Zwanch (2019) demonstrated that only three out of 10 
sixth-grade students operating with aTNS were able to write out 
an algebraic equation correctly, whereas all six students 
operating with ENS were able to do so successfully. Hackenberg 
(2013) demonstrated that two out of six (she did not distinguish 
between early or advanced TNS) seventh and eighth graders 
with TNS were able to successfully write an equation to 
represent a multiplicative situation with coaching, while the 
other four were not.  

Methods 

Two public, midwestern schools participated in a Youth 
Participatory Action Research (YPAR) study, one rural and one 
urban, each with one daily class dedicated to the YPAR project.  
One aim of the five-year YPAR project was to build 
foundational mathematical, scientific, and research skills to 
motivate students to get into STEM careers.  The focal class of 
this study came from the second cohort of students from the 
urban school participating in the project and was comprised of 
24 juniors and seniors (16-18 years old). The school had 49% of 
students eligible for the free and reduced lunch program. All 
students applied to the class through a teacher nomination and 
an essay application.   
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ACT 

To determine students’ mathematics performance on a 
standardized test, all students (n = 24) were administered a 
partial ACT assessment with 15 items that were determined by 
the first author to be the easiest questions on an ACT. These 
questions aligned with middle school and early high school 
Common Core State Standards: four on proportions, three on 
algebra, four on area and perimeter, two on arithmetic, one on 
graphing, and one on middle school statistics. Although the ACT 
has been shown to have issues with racial and economic bias 
(Gilmore, 2015; Johnson, 2003), this partial standardized test 
was useful in identifying students who struggled with typical 
middle and high school mathematics content. The ACT was 
selected instead of other standardized mathematics tests because 
students in the state where the research was conducted pays for 
all juniors to take the ACT. 

Based on the results of the partial ACT assessment, the class 
was sorted into three scoring groups: students answering nine or 
fewer questions correctly (n = 8); students answering between 
10 and 12 questions correctly (n = 7); and students answering 13 
or more questions correctly (n = 7). Five students across the 
three groups were selected to complete the 25 question units-
coordination assessment (UCA). One student was in the “above 
13” group (Jeff, a junior; all names are pseudonyms); two 
students were in the “11 or 12” group; and Sunil (a senior) and 
Ariana (a junior) were in the “9 or below” group. This research 
centers on how Sunil and Ariana’s number sequences may have 
impacted their performance on the standardized test questions. 
Since Jeff had evidence of having developed ENS, his work is 
included as a contrasting example of how he approached the 
problems on the standardized assessment. 

Units Coordination Assessment 

The UCA is part of a larger project of multiple scholars 
developing written assessments to determine the number 
sequences of students through dichotomous answers or 
analyzing written work without the need for lengthy clinical 
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interviews (Kosko, 2019; Kosko & Singh, 2018; Norton et al., 
2015; Ulrich & Wilkins, 2017).  We chose the UCA by Ulrich 
and Wilkins (2017) because their assessment requires analyzing 
and coding student written work as indications or 
contraindications of their number sequence (INS, eTNS, aTNS 
or ENS). The UCA does not distinguish between ENS and the 
Generalized Number Sequence (GNS), which is a more 
sophisticated number sequence; therefore, students identified as 
ENS are operating with at least the ENS. Since the UCA is 
currently not published in its entirety, we were given the grading 
scoring codes, the rubric, instruction, and permission by the 
author (C. Ulrich, personal communication, December 23, 
2019). We followed up with a diagnostic interview for the two 
focal students to further confirm evidence of their number 
sequences. Ulrich and Wilkins (2017) are continuing to work to 
refine the assessment by modifying questions and interviewing 
more students since they only initially validated the result by 
interviewing nine of the 93 students who took the assessment. 
Their inter-rater reliability for the written rubric kappa statistic, 
k, was .95.   

The UCA has 25 tasks to differentiate between number 
sequences based on written work without the use of a calculator. 
Six tasks used discrete multiplicative problems to distinguish 
between eTNS and aTNS (Figure 2A). Ten tasks in total 
pertained to the students’ fractions schemes and operations to 
differentiate between eTNS, aTNS and ENS: two for the 
partitioning operation (Figure 2B), four for the partitive unit 
fraction scheme (Figure 2C), four for the splitting operation 
(Figure 2D; Hackenberg, 2007; Steffe, 2010). Tasks highlighted 
in Figure 2 are in order of increasing complexity. Ulrich and 
Wilkins (2017) also included six bar tasks increasing with 
complexity. Accurate estimations for more sophisticated bar 
tasks were associated with more sophisticated number 
sequences.   
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Figure 2 
Sample UCA Tasks for a Some of the Concepts Assessed 
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Scoring Procedure 

Based on scoring codes that were validated by Ulrich and 
Wilkins (2017), student responses provided weak, strong, or 
decisive indications or contraindications for evidence of having 
constructed different number sequences. The scores were 
aggregated for evidence of having constructed each number 
sequence with positive values given to indications and negative 
values to contraindications. Since students do not always use the 
most sophisticated scheme afforded to them, indications of a 
number sequence always correspond to having evidence of at 
least operating with that number sequence.  

Sunil and Ariana both answered nine or fewer questions 
correctly on the ACT assessment and both scored with 
contraindications for having constructed ENS with indications 
of operating with aTNS. Therefore, we interviewed Sunil and 
Ariana to further understand how their reasoning aligned with 
aTNS and to determine if they shared similar struggles with 
mathematics concepts that could be attributed to their number 
sequences. The underlying potential implication is that if 
number sequences can limit students who score poorly on a 
standardized mathematics test, then it is important to attend to 
building more sophisticated number sequences for these 
students. Jeff’s work was used as a contrasting example since he 
had the highest score on the ACT and had strong evidence of 
operating with ENS.   

Interviews  

Ariana’s and Sunil’s UCA responses demonstrated 
contraindications for having developed ENS due to incorrect 
responses on the partitive unit fraction tasks (Figure 2C) and the 
splitting operation tasks (Figure 2D). We designed a semi-
structed, three-task interview reusing one question they 
answered previously from each of these two categories. We also 
added a new third task of a discrete quantity real world 
multiplicative task similar to Hackenberg’s (2010) reversible 
multiplicative (divisional) problems to explore how Ariana’s 
and Sunil’s number sequence impacted their understanding of 
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division with whole numbers. Both students were provided the 
same three tasks (see Appendix A) during a 30-minute 
interview. The interviews were transcribed and analyzed to 
document indications and contraindications for eTNS, aTNS and 
ENS alongside their written work.   

Results 

For an overview of the results, Figure 3 shows a scatterplot 
of each of the five students’ aggregate score for ENS indications 
and their corresponding partial ACT score. There seems to be a 
direct relationship between students’ scores on the UCA and 
ACT, indicating that it might be interesting to further explore 
how performance on the ACT might broadly relate to MR. We 
will next review Ariana and Sunil’s indications for operating 
with aTNS and contraindications for having developed ENS. 

Figure 3 
Overview of Indications for ENS and Partial ACT Score 

 

Ariana’s Indications on the Written UCA 

Ariana’s work on the written UCA overall indicated that she 
was operating with aTNS with contraindications of having 
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developed ENS. She also had indications of being constrained 
by eTNS in some fractional situations. Her strongest indication 
for operating with aTNS was demonstrated by her accurate 
estimation of shading one-fifth (Figure 4A) for one partitive-
unit-fraction-task. The red markings are Ariana’s while the blue 
region is an overlay to show exactly one-fifth. Besides the 
accurate estimation in Figure 4A, Ariana also estimated a second 
out of the four partitive unit fraction tasks (Figure 2C) 
accurately. Based on Ulrich and Wilkins’ (2017) research, 
students who had constructed ENS consistently and accurately 
estimated all four partitive unit fraction tasks, while students 
with aTNS inconsistently estimated unit fractions partitions like 
Ariana. Another strong indication for operating with aTNS was 
her ability to determine the length of the bar in Figure 4B 
accurately.   

Figure 4 
Ariana’s Strong Indications for aTNS 

The strongest contraindication of ENS for Ariana came from 
the partition task (Figure 5A). Ariana did not partition the bar 
into seven partitions, and the left-most line, which we presume 
was her first marking, was an inaccurate initial estimate. We 
infer that this means Ariana was constrained to creating “the 
composite unit of 7 in activity before strategizing” (Ulrich & 
Wilkins, 2017, p. 11) across the whole, due to not being able to 
mentally visualize the seven partitions simultaneously as would 
be expected by a student with aTNS or ENS (Steffe & Olive, 
2010). This suggests that Ariana was constructing each segment 
independent of the others as indications of being constrained by 
eTNS and a contraindication of having constructed either ENS 
or aTNS. Students operating with ENS, like Jeff, are 
theoretically able to disembed a partition mentally and iterate the 



Multiplicative Reasoning 

18 

partition over the whole to estimate their partitions accurately on 
their first or second attempt.  

Another contraindication that Ariana had developed ENS 
was her question mark on the most sophisticated bar task on the 
UCA (Figure 5B). She was able to solve the bar task in Figure 
4B, but when the partitions were removed this added a barrier in 
her understanding. Jeff with strong indications of having 
constructed ENS was able to create his own partitions to 
estimate the smaller bar. Ariana left an additional four questions 
unanswered, three of which were fraction tasks which is a 
contraindication of having ENS since Ulrich and Wilkins (2017) 
mentioned that we may infer that blank responses may mean the 
tasks were cognitively challenging for a student, which would 
not be expected for students with ENS. One fraction task was 
explored further in the follow-up interview to understand what 
the blank questions may reveal about her number sequences.  

Figure 5 
Ariana’s Contraindications for ENS and Jeff’s Indication for ENS 

 

Ariana’s Interview 

In tasks presented in the interview, Ariana gave mixed 
indications of both being limited by eTNS with fractional tasks, 
while also having indications of operating with ENS with a 
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whole number division task. Since Ariana left the partitive unit 
fraction question shown in Figure 2C blank, before presenting 
Ariana with this question again, I gave her two bars, a beige bar 
(1 cm) and a dark green bar (6 cm) and asked her what fraction 
of the dark green bar was the beige bar. Immediately she iterated 
the beige bar 8 times across the dark green bar and estimated 
one-eighth. Then I proceeded to show her the task in Figure 2C 
and asked if they were similar tasks. She agreed they were 
similar tasks but mentioned she could not solve the question 
from the UCA because “these [referring to one of the physical 
bars I had provided] you can move over to see how big it is, you 
can't do that [on the UCA question] so I'm just not going to do 
it.” I then asked her if there was a way to find out the fractional 
size without moving a bar. Ariana created a length between her 
fingers and iterated it along the larger bar five times to determine 
that it was one-fifth of the larger bar. Ariana’s need to use a 
physical representation to estimate the partition was an 
indication of being limited to eTNS. A student with ENS or 
aTNS would be aware of the possibility to mentally estimate a 
partition by simultaneously partitioning the whole without 
requiring a physical representation to estimate (Ulrich, 2016b).    

Contraindications of having developed ENS were further 
demonstrated by Ariana not completing the splitting interview 
task (Figure 2D), which she also left blank on the UCA. I gave 
Ariana an orange bar (10 cm) and asked her to imagine it was 
five times as large as a purple bar. I then gave her a purple crayon 
and asked her to draw the purple bar. Initially she did not draw 
the purple bar because she said the bar would be too long for the 
paper. After prompting her to consider the question again, she 
began to draw a large bar and said, “it’s still not going to fit on 
this paper.”  Although I asked Ariana the question two more 
times in an attempt for her to see the situation differently, she 
did not change her response. Students who have not developed 
ENS tend to interpret the word “times” as meaning “more than” 
instead of implying a partitioning operation (Ulrich & Wilkins, 
2017; Wilkins & Norton, 2011). 

Ariana demonstrated evidence for having developed ENS 
with her fluent ability to reverse a multiplicative relationship in 
interview task. For this task, I asked Ariana to calculate how 
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many weeks she would need to work to save up enough money 
to buy a car. After determining a hypothetical situation where 
she earned $70 per week, I asked how many weeks she would 
need to work to save $6,000. Ariana used a calculator and 
immediately divided and said it would take her around 86 weeks. 
Using her calculator, she also quickly determined that 86 weeks 
was one year, eight months and a week. She knew she needed to 
reverse the multiplicative process and use division to determine 
how many times $70 “fits” into $6,000.  She completed this 
process fluently with the support of a calculator. Ariana’s ability 
to reverse multiplicative relationships gave indication of 
coordinating three units (Hackenberg, 2010) and operating with 
ENS (Steffe, 1992). However, her work on the fraction tasks 
suggested she was limited by eTNS or aTNS. This could indicate 
that Ariana has operated with TNS for many years, which has 
afforded her the ability to be fluent with whole numbers (Ulrich 
& Wilkins, 2017) but has not yet fully reorganized her whole 
number reasoning to her fractional reasoning (Steffe, 2002).   

Sunil’s Indications on the Written UCA 

Sunil’s work on the written UCA indicated that he was 
operating with aTNS and had strong contraindications of having 
developed ENS. The strongest indication of aTNS was that he 
accurately estimated the partition of one-fifth in the partitive unit 
fraction task as shown in Figure 6A. Like Ariana, Sunil also 
accurately estimated the same two partitive unit fraction tasks 
(Figure 4A and Figure 6A) and incorrectly estimated the two 
other partitive unit fraction tasks, one of which will be discussed 
with his contraindications for having developed ENS. Another 
indication for Sunil having developed aTNS was his ability to 
relatively accurately partition both partitioning tasks (one shown 
in Figure 6B). This suggests he was able to simultaneously 
partition and project an iteration throughout the rest of the whole 
to make relatively accurate partitions. Additionally, for the 
discrete problem in Figure 2A, Sunil solved for the number of 
cupcakes without creating individual representations for each 
cupcake and used only an intermediate step of showing 28 plus 
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21, which is consistent with students who have developed aTNS 
(Ulrich & Wilkins, 2017).  
 

Figure 6 
Sunil’s Indications for aTNS 
 

 
 

Contraindications for having developed ENS were Sunil’s 
inaccuracies in estimating the size of a partition in the partitive 
unit fraction task (Figure 7A) and inaccuracies in estimating all 
four splitting operations tasks (one shown in figure 7B). His 
estimate of the size of the piece of pie in Figure 7A suggested 
that he did not visually determine his estimation was inaccurate 
because he was limited by the ability to iterate the partition 
mentally to assess if it would complete the whole. Jeff, who had 
strong indications for ENS, was able to determine the fractional 
size through the use of sophisticated fractional partitioning. 
Jeff’s work suggests he has developed ENS because he was able 
to iterate a unit of one-sixteenth three times to estimate that this 
was close to the fractional partition, and he used accurate 
fractional notation (Ulrich & Wilkins, 2017). Additionally, Jeff 
had indications for having developed the partitive fraction 
scheme because he demonstrated an understanding that iterating 
a unit fraction of one-sixth three times yielded the partitive 
fraction of three-sixteenths.  
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Sunil did not successfully draw a stick one-sixth of a given 
whole (Figure 7B), a task that theoretically relies on using the 
splitting operation. As mentioned previously, students who have 
not developed ENS have been observed to understand “times” 
in splitting operation questions as larger than (Ulrich & Wilkins, 
2017). Jeff, a student with strong indications of ENS, drew a 
stick approximately one-sixth the size of the given stick by 
understanding this task required him to partition the bar into 
sixths.  

Figure 7 
Sunil’s Contraindications for ENS; Jeff’s Indication for ENS 
 

 

Sunil’s Interview 

Sunil’s work in his interview further demonstrated 
contraindications for having developed ENS. In a partitive unit 
fraction task (Figure 8), he did not see the smaller bar as a 
separate partition related to the larger bar without guidance. 
During the interview I asked him to explain a question from the 
written UCA where he had estimated the size of the smaller bar 
as one-ninth of the larger bar. Sunil said he counted the little  
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Figure 8 
Sunil’s Partitive Unit Fraction Scheme Question Revisited During the 
Interview 

 
spaces he had drawn on the diagram, and since he drew nine 
spaces it was one-ninth. When I asked why, he mentioned this 
fraction had no relation to the larger stick. I then asked him why 
he counted the small spaces and he said he did not know.  

After I rephrased the question by asking him how many 
times the smaller bar would fit into the larger bar, Sunil drew the 
same little spaces with his fingers on the larger bar that he had 
drawn on the smaller bar and then counted around 30 spaces. He 
then said the smaller bar would fit four times into the larger bar.     
 

Sunil: (Counting the little spaces on the larger bar) 
So I go like 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18…(silently moving 
his finger along the bar)..29 or 29 or 
something like that, or something around 
like that, it should be like 30ish, it could be 
simplified if you counted right.   

Researcher: So how many times do you think this 
[smaller] stick can fit into [the larger stick], 
would you say?  

Sunil: Nine…. Four four four, about four-ish 
times, if I’m not wrong. 

Researcher: (I placed all the Cuisenaire rods in front of 
him to select from) Can you use one of 
[these bars] to prove it? Which one is 
closest, maybe this red one? 

Sunil: I think so. Yeah, this red one is close. 
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Researcher: So what do you have? 
Sunil: (Counting how many times the red bar fits 

into the larger bar) Three, four.  You need 
like one more [to make it 5]. Okay, I was 
close. 

 
At first, Sunil did not see the connection between the two 

given bars on the written UCA and drew out many physical 
marks. Sunil’s work was similar to how a seventh grader 
operating with TNS approached a fractional situation 
Hackenberg’s (2013) study (p. 548), which was a 
contraindication of having developed ENS. Re-examining his 
written work in Figure 6A, the seven markings on the left of the 
fraction seem identical to the markings in Figure 8, which may 
weaken the evidence for having constructed aTNS, although we 
did not confirm this connection in understanding during the 
interview. 

Figure 9 
Sunil’s Proportional Equation and Repeated Addition for Interview 
Task 3 

 
The following excerpt demonstrates that Sunil struggled to 

use division as a reversible operation for his counting up 
operation, which could be a consequence of having not 
developed ENS. For Task 3, we established a hypothetical 
situation where Sunil earned $360 a week, and then I asked how 
much he earned in a month.  At first, he said around $10,000 
because he coordinated $360 over 30 days, but Sunil checked his 
work, and realizing his mistake, he multiplied $360 by 4 to 
calculate $1,440. To understand how he would solve a problem 
that required division, I asked him how many weeks he would 
have to work to save up for a car that costs $7,000. He initially 
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came up with an equation and set up a proportion that he 
determined would not work (Figure 9A), so I asked him to 
estimate.  

 
Researcher: Can you start with an estimate?  
Sunil: (Drawing Figure 9B) 4 weeks is 1 

thousand, eight weeks is equal to 2000.  
Plus 1440, that’s 2000 (pointing to eight 
weeks). Okay, there's another simple way to 
do this. I know this.  

Researcher: You’re doing great, that’s ok. There’s no 
one way to solve it in the real world. No one 
in the real world will tell you to solve it one 
way. 

Sunil:  I know there’s a better way to solve this. 1-
2-3-4-5, 20 weeks. 

Researcher: So how much is this? 
Sunil: 7,200 

  
Sunil knew intuitively that there was a more efficient way to 

solve the task, but he struggled to reverse this multiplicative 
situation with division.  I posed one more question to Sunil to 
see whether I could provoke him to see the usefulness of 
division. 

 
Researcher: One more challenge, can we get more 

exact? 
Sunil: You think so? 
Researcher: I’m asking you. 
Sunil:  Okay. 1440.  Divide that by 2 [to get] 720. 

5,760 (using his 16-week value from Figure 
9B) plus 720 [is] 6,480. 

Researcher: How did you get that? 
Sunil: So I subtract it by 2 because that would be 

two weeks. That's what I was doing, but I 
guess it doesn’t work like that. So no, you 
cannot get more exact. 

Researcher: What about division? Can you use division 
to solve for how many weeks? 
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Sunil: Did I do this wrong? With these I do this 
like this, is, what was this completely off? 
I was on the right track, right? 

 
Sunil did not use division for this problem even with my 

suggestion. He was disappointed in himself for not “knowing” 
the answer and understood that there was a more efficient way.   
This contrasts with Ariana, who was able to fluently operate with 
discrete numbers. Although Ariana and Sunil had indications of 
operating with aTNS and contraindications of ENS, both 
students had developed different strategies for managing 
division problems. 

ACT Work  

The students’ answers to four ACT questions demonstrates 
how the students’ number schemes can influence their work on 
standardized test questions. Figure 10 shows Ariana’s, Sunil’s, 
and Jeff’s respective responses on a question requiring division 
of fractions. Ariana and Sunil wrote down very little work and 
provided incorrect answers. Their written work on the UCA and 
our conversations during their interviews suggest they struggled 
to reason through fractional situations. On the ACT prompt, 
Ariana first wrote down fourteen-thirds and subsequently erased 
it (the erased work was reinserted by the researchers), which 
could suggest she knew procedurally how to turn a mixed 
number into an improper fraction but did not know how to use 
this knowledge in this situation. Operating with aTNS could 
explain the difficulty of this task for Ariana and Sunil. Jeff’s 
written work on the UCA suggests a more sophisticated 
understanding of fractions, which may be why he understood 
four and one-half is a more important fraction to use than four 
and two-thirds.  

Figure 10 
Student Work on Question 11 from the Partial ACT 
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Figure 11 highlights a question Sunil answered incorrectly 

and Jeff and Ariana both answered correctly. Sunil’s work on 
question two suggests that when he read the word “more” in the 
rate word problem, he attributed this to an additive problem as 
indicative by the equation 19 + p. Using the evidence from his 
interview, this is consistent with Sunil not applying division in a 
contextual situation, which could be attributed to operating with 
aTNS. Ariana, who demonstrated an ability to solve a division 
problem during the interview, solved this problem fluently in the 
same way as Jeff.  

Figure 11 
Student Work on Question 2 from the Partial ACT 

 
Figure 12 shows indications that Ariana, Sunil and Jeff all 

knew the basic procedural process in solving a linear equation. 
Although Ariana showed evidence of understanding division in 
application in her interview, she arrived at the incorrect answer 
due a procedural mistake (missing the distributive property). 
However, Sunil, who showed evidence of not understanding 
division in application, was able to use division correctly in this 
context presumably due to having enough experience with the 
standardized procedure for solving equations.  Jeff’s work 
demonstrates procedural fluency.  
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Figure 12 
Student Work on Question 4 from the Partial ACT 

 

 
 

In addition to how these three students performed on 
questions on the ACT, comparing their work on a fraction 
question (Figure 13) on the UCA gives further evidence of how 
students’ number sequences can affect their performance on 
standardized test questions. The question required students to 
share one eighth of a candy bar among three people, calculating 
one third of one eighth. Arianna wrote one-tenth along with a 
question mark acknowledging her confusion, while Sunil wrote 
one-third with no other explanation. Jeff knew the correct 
procedure to apply in this situation to determine the correct 
portion of the chocolate bar.  

Figure 13 
Student Work on a Fraction Question from the UCA 
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Discussion  

This research described the MR of two students who had 
contraindications for having developed ENS (Ariana and Sunil) 
and one student with strong evidence of ENS (Jeff). Their work 
on a sample of the ACT questions demonstrates some of the 
ways students operating with aTNS and ENS may approach 
mathematical situations with grade level mathematics content. 
The questions in Figures 10 through 13 show examples of 
inconsistency in solving problems for Ariana and Sunil. Jeff’s 
number sequence provided him with a stronger grasp of 
fractions, as demonstrated in Figure 7A and 7B, which offers a 
reason for his approach to his work in Figure 10 and 13. This 
suggests that using reasoning-based assessments in conjunction 
with standardized tests may help to understand how students 
reason with the numbers involved in mathematical situations.  

While both Ariana and Sunil struggled with fractional 
reasoning, Ariana was more fluent than Sunil with whole 
number division. Their number sequence limitation could be a 
primary reason they struggled with solving the fraction question 
on the partial ACT assessment (e.g., Figure 10). Focusing on 
developing their number sequence and therefore their fractional 
reasoning could help target instruction. Sunil demonstrated he 
struggled with division in application, yet he was able to 
correctly solve a three-step linear equation, presumably through 
procedural knowledge.  

Conclusion 

Steffe (2017, p. 45) estimated that approximately 60% of 6th 
graders had not constructed ENS. The ways students struggle 
with proportional reasoning in middle and secondary 
mathematics (Ellis, 2007; Lobato, et al., 2003) and how students 
who have not built the necessary reasoning during the expected 
grade level get left behind (Tzur et al., 2010) suggests that there 
are large populations of high school students who still have not 
developed ENS and are operating with varying levels of TNS 
(e.g., Steinke, 2015, 2017; Zwanch & Wilkins, 2021).  
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Ulrich and Wilkins (2017) mentioned that “students at the 
aTNS stage during middle school [are] a particularly interesting 
and important group to identify and study because they have 
multiplicative schemes and yet will face a serious obstacle in 
trying to engage in truly multiplicative thinking” (p. 18). 
Extending this idea to high school and college students presents 
an equally interesting group to study for further research. Studies 
have shown adult college students without fully developed MR 
(Shaver, 2023; Steinke, 2015, 2017; Stigler et al., 2010), which 
suggests identifying and targeting developing these students’ 
number sequences is a way to support their learning. There is 
evidence that students’ number sequences can be developed 
when a teacher is aware of a student’s conceptual understanding 
and provides targeted cognitive mathematical interventions 
(Boyce & Norton, 2017, 2019; Olive & Vomvoridi, 2006). There 
are resources to support educators on how to build number 
sequences with students (Hackenberg et al., 2016; Hulbert et al., 
2017), but these resources are targeted for K-6 teachers. This 
includes instructors including visual mathematics for students 
(Boaler, 2016) and helping students to have concrete examples 
for mathematical situations (Hackenberg et al., 2016). Resources 
and strategies need to be created for secondary and remedial 
college mathematics classes as well.  

While developing ENS is an important milestone in 
developing an understanding of fractions (Hackenberg, 2007), 
writing algebraic equations (Zwanch, 2019), and reasoning 
algebraically (Olive & Çağlayan, 2008), students operating with 
ENS are not as adept in equation writing and understanding 
fractions as GNS students (Hackenberg et al., 2016; Hackenberg 
& Lee, 2015). Going forward, we need to re-emphasize the 
connection between number sequences and secondary 
mathematics which could include supplementing standardized 
tests with reasoning assessments to identify and build students’ 
number sequences.  
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Appendix A 

Interview Questions. 
Task 1 [Splitting Task] [Provide 1 copy of the orange 
(10 cm) bar and a purple crayon] 
 
Q1: Suppose the orange bar is 5 times as long as a purple 
bar. Can you draw the purple bar? 
 
Q2: I’d like to show you a problem you did on the earlier 
test (Q22*).  (Read through the problem, show them what 
they did.)   
 

 
(a) First, does this problem seem similar or different 

than what we just did?  Why? 
 
(b) How did you decide what to do? 

 
(c) Looking at work, would you solve this question 

differently right now?  If yes, how? 
 

Task 2 [Unit Fraction Task]  [Place beige bar (1 cm) 
and dark green (6 cm) in front of the student] 
 
Q3: What fraction is the beige bar of the dark green bar? 
 
Q4: I’d like to show you a problem you did on the earlier 
test (Q17*).  (Read through the problem, show them what 
they did.)   
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(a) First, does this problem seem similar or different 

than what we just did?  Why? 
 

(b) How did you decide what to do? 
 

(c) Looking at work, would you solve this question 
differently right now?  If yes, how? 

 
Task 3 [Real World Problem] 
Q5: How much do get paid an hour?  How many hours do 
you work in a week?  
 
Q6: How many weeks would you need to work to save for 
a car that is $7,000 (student 1) or $6,000 (student 2)? 

  

 

 

 


