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Supporting young students in developing meanings for the set-theoretic 
function definition is emphasized in 6th-12th grade curricula around 
the world. In prior work, we have highlighted how covariational 
reasoning supports college students in constructing relationships that 
afford considering mathematical properties important for a set-
theoretic definition. In this paper, we show how such reasoning can 
provide similar affordances for younger students by presenting one 
sixth grade student’s, Ariana’s, sense-making. To characterize 
Ariana’s sense-making related to her quantitative reasoning in 
contextual situations, we build on Harel’s work to articulate the 
constructs of situational intellectual need and situational 
epistemological justification. We highlight how Ariana's covariational 
reasoning supported her development of a situational epistemological 
justification, which included a structure entailing numerous 
quantitative relationships. We also highlight how this epistemological 
justification supported her work representing conceived relationships 
graphically and making determinations regarding properties of a set 
theoretic function definition.  However, we characterize that Ariana 
constructed functional and non-functional relationships alike; 
determinations regarding properties of function were spurned by 
teacher-researcher prompts rather than an intellectual need 
experienced as she conceived such relationships. Through this 
analysis, we build an anti-deficit story of Ariana’s sense-making that 
leads us to call into question the value of focusing on the set-theoretic 
definition of function early in students’ experiences.   
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A function, covariationally, is a conception of two 
quantities varying simultaneously such that there is 
an invariant relationship between their values that 
has the property that, in the person’s conception, 
every value of one quantity determines exactly one 
value of the other. (Thompson & Carlson, 2017, p. 
444) 

 
Curricular standards in the U.S. and elsewhere emphasize 

the importance of middle and high school students learning a set-
theoretic function definition (Ayalon & Wilkie, 2019; National 
Governors Association, 2010). For instance, in the U.S. students 
are expected to learn a set-theoretic function definition in 8th-
grade (National Governors Association, 2010). High-stakes U.S. 
state tests require students to identify whether relationships 
presented as tables (e.g., New York State Education Department, 
2022; North Carolina Department of Public Instruction, 2019) 
and as graphs (e.g., Massachusetts Department of Elementary 
and Secondary Education, 2022; Ohio Department of Education, 
2022) represent functions. After students are introduced to a set-
theoretic function definition, their mathematical experiences are 
largely restricted to exploring various function classes (i.e., 
linear, quadratic, exponential). Non-functional relationships (per 
traditional textbook definitions of function) are largely absent 
from U.S. curricula after the introduction of a set-theoretic 
function definition.  

Despite the importance of the set-theoretic definition of 
function in school mathematics, most research points to students 
not understanding the definition in ways compatible with 
mathematician or educator intentions (e.g., Breidenbach et al., 
1992; Even, 1990; Martinez-Planell & Gaisman, 2012; Moore et 
al., 2019a). Whereas some researchers have designed 
interventions to promote more productive meanings for the 
function definition for high school (e.g., Dubinsky & Wilson, 
2013) or college students (e.g., McCulloch et al., 2019; 
McCulloch et al., 2022), in this paper we take a different 
approach. We call for a de-emphasis on the function definition 
in school mathematics altogether in favor of developing students 
quantitative and covariational reasoning. We ground this 
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argument in our prior research and the results presented in this 
paper.  

Extending the Horse and Cart Metaphor 

In our previous work (Paoletti & Moore, 2018), we argued 
a conception of function rooted in covariation, as described in 
the opening quote, can provide students with meanings for 
quantitative relationships that support them in making 
determinations about the mathematical properties important for 
a set-theoretic function definition (e.g., univalence). In that 
previous work we illustrated the productivity of such a 
conception using a case of an undergraduate student, Arya, 
constructing a quantitatively sophisticated image of a situation. 
Arya then leveraged this image to determine if various 
situational relationships (some represented graphically and 
others only imagined) represented functions by considering the 
set-theoretic function properties she had previously learned. We 
contended that Arya’s covariational reasoning provided her with 
a metaphorical horse that she could use to pull the metaphorical 
cart that is a formal set-theoretic function definition.  

In this paper, we return to the horse and cart metaphor to 
build on and extend our previous argument by constructing an 
anti-deficit story (Adiredja, 2019; Adiredja & Louie, 2020; 
Adiredja & Zandieh, 2020) describing the productive sense-
making of Ariana, a Latina 6th- grade student (approximately 11-
years old). To do this, we first extend Harel’s (2008, 2018a, 
2018b) prior work to the domain of students’ quantitative 
reasoning to introduce the constructs of situational intellectual 
need and situational epistemological justification.1 We highlight 
how Ariana experienced a situational intellectual need that 
supported her in constructing a situational epistemological 
justification. Ariana leveraged her situational epistemological 
justification as she developed meanings for graphs as 
representing emergent traces representing covariational 

 
1 We note our use of “situational” refers to the situation, context, or physical 
phenomena students are making sense of and is not intended to refer to situated 
perspectives (e.g., Lave & Wenger, 1991). 
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relationships (Moore & Thompson, 2015; Moore, 2021). 
Further, she leveraged this justification as she addressed 
questions related to properties of the set-theoretic definition of 
function in ways compatible with Arya (Paoletti & Moore, 
2018), despite never having been introduced to a set-theoretic 
definition of function. 

Although Ariana (a 6th-grade student) was capable of 
engaging in reasoning compatible with Arya (an undergraduate 
student), we highlight how Ariana did not experience any 
intellectual need for differentiating between functional and non-
functional relationships. By connecting to research on students’ 
and teachers’ meanings for function, we argue that a potential 
lack of intellectual need raises questions regarding the 
importance of emphasizing a set-theoretic function definition 
that over-privileges the importance of univalence (the property 
that for each element in the domain there is a unique element in 
the range) as required by pre-college mathematics curriculum 
standards. That is, we argue for freeing the metaphorical horse 
(i.e., constructing quantitative relationships) from the cart (i.e., 
a formal function definition), with the cart only being brought in 
when students experience some intellectual need for it (e.g., in 
analysis and exploring formal properties of integration and 
differentiation). 

Intellectual Need, Epistemological Justifications, and 
Constructing Quantitative Relationships 

Harel (2008, 2018a, 2018b) included the constructs of 
intellectual need and epistemological justification as part of his 
framework for DNR-based instruction. We use two criteria to 
characterize a student as experiencing an intellectual need.2 
First, the student must have an experience in which their current 
ways of operating (e.g., mathematics knowledge) does not result 
in assimilation and establishing a state of equilibrium, thus 
resulting in a state of perturbation. Second, a researcher claiming 

 
2 We note that intellectual need, as defined in the broadest sense, can stem from 
the enactment of mathematical or non-mathematical schemes (e.g., affective 
schemes). For the purpose of this paper, we focus on mathematical schemes.  
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that a student is experiencing an intellectual need implies that 
the researcher perceives meanings to be within the student’s 
zone of proximal development that could resolve the state of 
perturbation (Weinberg et al., 2023).3 If, on the other hand, the 
student experiences a perturbation such that the meanings 
necessary for accommodation are outside of their zone of 
proximal development, the student’s perturbation is better 
characterized as associated with a state of confusion rather than 
a state of intellectual need (Weinberg et al., 2023).  

If the student is able to resolve an intellectual need via the 
creation of new mathematical knowledge, and is aware of how 
the new knowledge resolves the perturbation, Harel (2008) 
characterizes the resulting awareness as the student’s 
epistemological justification. Using the context of complex 
numbers, Harel (2018a) exemplified the difference between 
students developing new knowledge without and with an 
awareness of how a perturbation is resolved. He described how 
his college students had been taught about complex numbers, 
and how they could operate on complex numbers, without ever 
having experienced any intellectual need for such numbers. He 
also described an approach to introducing complex numbers that 
started with students experiencing a perturbation. This 
perturbation could be resolved by creating a definition for 
complex numbers. The students’ prior knowledge around 
complex numbers was not grounded in any epistemological 
justification, whereas the students experiencing Harel’s 
approach could generate a sentential epistemological 
justification, which results from understanding the need for a 
definition, axiom, or proposition for complex numbers. 

Emphasizing the importance of intellectual need and 
epistemological justification, Harel (2018a) advised that 
instruction focused on rigor (e.g., formal mathematical 
definitions) in absence of intellectual need for that rigor creates 
situations in which students feel like “aliens in knowledge 

 
3 As Weinberg, Tallman, & Jones (2023) clarify, the particular meanings a 
researcher perceives to be within a student’s zone of proximal development are 
the for when a researcher describes a student experiencing an intellectual need 
for a particular idea.  
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construction” (p. 38). In such an absence, students are unlikely 
to value rigor and, relatedly, unlikely to construct an associated 
epistemological justification rooted in their mathematical 
meanings. 

In addition to sentential epistemological justification, Harel 
(2018a, 2018b) has described other forms of epistemological 
justifications including understanding aspects of the process of 
proving (apodictic epistemological justification) and 
understanding underlying reasons for how a proof or 
justification came into being (meta epistemological 
justifications). Across all of Harel’s characterizations of 
intellectual need and epistemological justification, he 
emphasizes the importance of students experiencing 
perturbations that they resolve via the construction of some new 
mathematical knowledge.  

Due to his focus on new mathematical knowledge, Harel 
does not explicitly focus on student’s meanings for situations 
that may support the generation of new mathematical 
knowledge. We add to the types of intellectual need and 
epistemological justifications by describing a situational 
intellectual need and situational epistemological justification. 
We characterize a student as experiencing a situational 
intellectual need when she experiences a (possibly minor) 
perturbation as she conceives a novel “real-world” situation and 
subsequently sets the goal-oriented activity of making sense of 
and mathematizing that situation via a cyclical process of 
constructing quantities and their relationships. Johnson’s (2023) 
description of an intellectual need for relationships, “a need to 
explain how elements work together, as in a system” (p. 30) falls 
within our description of a situational intellectual need. 

We characterize the student as creating a situational 
epistemological justification when she resolves this perturbation 
by leveraging, and potentially reorganizing, her existing 
schemes and operations in a way that provides her with both an 
understanding of the situation and an awareness of the 
underlying quantities and relationships between quantities in the 
situation. Our characterization of intellectual need and 
epistemological justification are less stringent than Harel’s use; 
we do not require the construction of knowledge in the form of 
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entirely new schemes and operations. However, we underscore 
that students re-constructing or reorganizing previously 
constructed (quantitative) schemes and operations in a novel 
situation is effortful, as well as critical for the construction of 
mathematical concepts (e.g., Steffe & Thompson, 2000).  

When characterizing intellectual need and epistemological 
justifications, the researcher’s goal should be to explore and 
explain the student’s purposeful sense-making in the context as 
the student understand it, which is consistent with an anti-deficit 
perspective (Adiredja, 2019), and pursuing a humanized, 
equitable education via attention to students’ mathematics (Ellis, 
2022; Hackenberg, 2010). Certain situations or tasks may elicit 
an intellectual need for some students and not for other students. 
When a task does not elicit an intellectual need, researchers and 
teachers need to consider why in relation to the student’s current 
meanings; the notion of intellectual need does not exist 
independent of situating it in the context of a student’s extant 
mathematics in combination with an instructor’s or researcher’s 
targeted meanings in working with that student (Weinberg et al., 
2023). Such reflections can support the design (or re-design) of 
tasks that can be further implemented.  

Situational Intellectual Need, Epistemological 
Justifications, and Emergent Thinking 

As a backdrop to illustrate the notions of situational 
intellectual need and epistemological justification, we use the 
Faucet Task (and student work on this task in subsequent 
sections), which we have implemented in both research and 
instructional settings. As situational intellectual need requires a 
student to conceive a situation and set the goal-oriented activity 
of making sense of and mathematizing a situation, it is important 
to use experientially real situations (Gravemeijer & Doorman, 
1999). Experientially real situations give students the 
opportunity to construct quantities and their relationships (e.g., 
Johnson et al., 2020; Thompson & Carlson, 2017). As students 
have experiences with running water and faucets, we assume the 
Faucet Task is experientially real to them. 
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Creating Situational Intellectual Need 

To support students in connecting the Faucet Task to an 
experientially real situation, we have them explore a Geogebra 
applet that allows them to turn hot and cold knobs. Turning each 
knob results in changes both to the width of the rectangle below 
the faucet, which indicates changes in the amount of flowing 
water, and to the color of the rectangle, which indicates changes 
in the temperature of the water (see 
https://www.geogebra.org/m/rdxkrwek and Figure 1). When 
implementing the task, we first have students identify and 
describe quantities in the situation they could measure (e.g., 
amount of turns of either knob, water temperature, amount of 
water) to explore if they are understanding quantities in ways 
compatible with our intentions. Intending to support the students 
in experiencing a situational intellectual need that leads to their 
mathematizing the situation, we present four tasks, each 
beginning with both knobs turned halfway on (Figure 1, left). 
We ask students to predict how temperature and amount of water 
vary from this initial state as (A) the cold knob is turned to all 
the way on, (B) the cold knob is turned to all the way off, (C) the 
hot knob is turned to all the way on, and (D) the hot knob is 
turned to all the way off. In each case, we ask students to provide 
reasons for their prediction prior to using the applet to check if 
their prediction is viable. For example, a student addressing 
prompt B may argue that since the cold knob is being turned off, 
the amount of water will decrease, and there will be less cold 
water so the water temperature will increase. 

Building a Situational Epistemological Justification 

When students observe the quantities changing in a way 
other than their prediction, we ask them to consider why, in a 
faucet situation, the quantity did not do what they anticipated. 
For example, it is not uncommon for students to predict 
increasing the cold water will cause both the amount of water 
and temperature to increase. However, after observing the 
temperature decreasing, students have the opportunity to re-
construct and make accommodations to their meanings for the 

https://www.geogebra.org/m/rdxkrwek
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relationships between quantities in the situation. For example, 
they may consider how adding cold water will increase the 
relative proportion of cold to hot water from the starting 
combination of equal amounts hot and cold water, thereby 
decreasing the water temperature. Such reasoning can provide 
the basis for an evolving situational epistemological justification 
such that they begin to develop an awareness of the underlying 
quantities and relationships between quantities in the situation.4 

Figure 1 
Screenshots of the Faucet Task for Scenario (A) the cold-water knob 
being turned on from its initial state. 

 
Leveraging a Situational Epistemological Justification to 
Develop Graphing Meanings 

We next use the Faucet Task to support students in 
leveraging the situational epistemological justifications they 
developed in the above activity to build towards a conception for 
graphs termed emergent graphical shape thinking (Moore, 2021; 
Moore & Thompson, 2015). Drawing on descriptions of 
covariational reasoning (see Thompson & Carlson, 2017), 
Moore and Thompson (2015) described emergent thinking as 
conceiving a graph simultaneously in terms of “what is made (a 
trace) and how it is made (covariation)” (p. 785). Critical to such 
a conception is a student conceiving of a graph in terms of a 
progressive trace constituted by a point’s movement dictated by 
the covarying quantities’ magnitudes. Hence the resulting graph 
is an emergent result of that covariation (see Figure 2). Such 
reasoning requires explicit bridging of students’ meanings for 

 
4 We note it is common for students to share that they have thought of this task 
between sessions while cleaning dishes at home or using a school sink. Such 
experiences provide further opportunities for them to develop situational 
epistemological justifications.  
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objects in a coordinate system (e.g., segments representing 
quantities’ magnitudes) and the covarying quantities in a 
situation (Gantt et al., 2023; Paoletti et al., 2023). 

Figure 2 
Several Static Instances of the Emergent Trace Representing Amount 
of Water and Temperature Covarying as the Cold Knob is Turned On 

 
With the goal of supporting the students’ development of 

emergent graphical shape thinking, after the task sequence 
described above, students engage with a series of applets, each 
presenting the original situation with additional mathematical 
objects. The first of these applets presents temperature and 
amount-of-water magnitudes on a vertical and horizontal axis, 
respectively (Figure 3a). The next applet presents a point in the 
coordinate system simultaneously moving in accordance with 
each segment’s magnitude (Figure 3b). In the third applet, the 
‘trace’ feature of Geogebra is used to have the dynamic point, 
representing both quantities’ magnitudes, leave a trace that 
produces a record of the movement of the point.  

For each of these three applets, we again have students 
predict, test, and observe what happens for Scenarios (A)–(D). 
Students can leverage their situational epistemological 
justification as they describe how different objects in the 
coordinate system change based on their meanings for the 
situation. For example, a student may anticipate that when the 
cold water is turned on, the amount of water will increase and 
the temperature will decrease. That student can also anticipate 
these changes in the quantities would be represented by the pink 
segment on the horizontal axis getting longer and the red 
segment on the vertical axis getting shorter. The student may 
then argue that the point will move diagonally down  
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Figure 3 
Screenshots of the Applet Showing Corredponding Magnitudes, 
Points, and Trace 

Note. The applet (a) with temperature magnitude on the vertical axis and 
amount of water magnitude on the horizontal axis (b) with the point shown, (c) 
showing the movement of the knob and point as the cold is turned on. (d) The 
resulting emergent trace from (c). 

and to the right because of these changes in the two segments 
(see Figure 3c for a trace for Scenario (A)). Further, we note this 
series of applets and prompts can create additional opportunities 
for students to re-construct a situational epistemological 
justification. Each applet presents a new object for the student to 
consider, which can result in the student setting the goal-oriented 
activity of making sense of and mathematizing that object in 
relation to their previous activity. When objects do not behave 
as predicted, students have repeated opportunities to re-conceive 
the quantities and their relationships in the situation (and in the 
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graph). Hence students have additional possibilities to re-
conceive or strengthen their situational epistemological 
justification. 

Relevant to students’ emergent reasoning, Paoletti and 
Moore (2017) characterized that reasoning about the same graph 
as being traced in multiple directions was a strong indication of 
emergent graphical shape thinking. Hence, in the last part of the 
Faucet Task, we ask students to interpret what situations may 
have created novel completed graphs (see Figure 4 for 
examples). By asking students to interpret such graphs, we 
intend for them to experience another round of situational 
intellectual need as they set the goal of interpreting mathematical 
representations in relation to situational quantities and 
relationships between the quantities. The students can reconcile 
this intellectual need by drawing on and accommodating their 
previously constructed situational epistemological justifications. 
Namely, students may re-construct specific, and maybe several, 
quantitative structures to interpret given graphs as tracing in one, 
and maybe several, directions. For example, a student may 
interpret the graph in Figure 4a as tracing from left-to-right, 
arguing temperature is decreasing while amount of water is 
increasing. The student may conclude turning the cold knob on 
would produce this graph. A student may also interpret the graph 
as tracing from right-to-left, arguing temperature is increasing 
while the amount of water decreasing. With this interpretation 
the student may conclude turning the cold knob off would 
produce this graph.  

Anti-deficit Perspective, Radical Constructivism, and 
Teaching Experiments  

In this section, we characterize our understanding of 
adopting an anti-deficit perspective. We then describe how we 
view radical constructivist teaching experiments (Steffe & 
Thompson, 2000) as a viable tool researchers can use to develop 
anti-deficit stories of students’ productive sense-making. An 
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Figure 4  
Two Examples of Completed Graphs in the Faucet Task 

 

 
anti-deficit perspective is a theoretical orientation researchers 
can use to examine students’ mathematical sense-making 
(Adiredja, 2019; Adiredja et al., 2020). A researcher adopting 
this perspective:  

begins with the assumption that all students are capable of 
reasoning mathematically, and that they bring productive 
resources for learning mathematics. In research about 
student mathematical thinking, such perspective maintains 
flexibility with respect to the source and form of productive 
knowledge and reasoning. Important learning resources can 
stem from students’ experiences from both in and out of the 
classroom, and productive sense-making can be expressed 
in imperfect mathematical language and with 
inconsistencies. In fact, inconsistencies and imperfections 
are sites for exploration for productive understanding. 
(Adiredja et al. 2020, p. 521) 

Adiredja (2019) described a methodological framework for 
cognitive researchers who want to engage with anti-deficit work. 
The framework involved several criteria. First, researchers must 
engage in intentional selection of research subjects who are 
implicated in broader and individual deficit narratives. Second, 
researchers should adopt an anti-deficit cognitive theoretical 
framework, which allows them to construct an anti-deficit story 
using careful analysis of students’ sense-making. Finally, 
researchers should explicitly challenge deficit interpretations of 
data.  
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We argue that teaching experiments as described by Steffe 
and Thompson (2000), which are grounded in a radical 
constructivism (von Glasersfeld, 1995), are well suited to 
support researchers in constructing an anti-deficit story via a 
careful analysis of students’ sense-making. A foundational 
assumption of the teaching experiment methodology is that 
students’ independently construct their own mathematical 
realities based on their repeated experiences making sense of 
their experiential world (von Glasersfeld, 1995); a researcher’s 
goal is to use the student’s words and actions to build models of 
their mathematical realities, with the resulting models referred 
to as the mathematics of students (Steffe & Thompson, 2000). 
Connecting teaching experiments to Noddings’s (2002) care 
theory, Hackenberg (2010) identified that such a process 
involves cognitive decentering in which a researcher (or teacher) 
attempts to put aside their own reality and understand the 
mathematical reality of the student. Such a process “goes beyond 
just knowing that a student thinks differently to attempting to 
think like the student thinks, and acting upon that attempt to 
open possibilities for the student to make progress in some way” 
(Hackenberg, 2010., p. 240). Adopting this perspective, 
researchers using a teaching experiment methodology 
understand the mathematics of students as a form of legitimate 
mathematics, even when a student’s mathematics may not align 
with researchers’ or mathematicians’ conceptions.  

Adopting both a radical constructivist view and an anti-
deficit perspective (Adiredja, 2019), there are no such things as 
misconceptions–only conceptions that have worked for students 
in their prior experience. Further, although a teacher’s or 
researcher’s task or prompt may support or occasion shifts in 
student meanings, they can never cause such shifts; instead shifts 
in students’ meanings should always be attributed to the effortful 
sense-making on the part of the student (Adiredja, 2019; Steffe 
& Thompson, 2000). Finally, we note that both approaches de-
emphasize formal mathematical knowledge as conceived by 
mathematicians. In fact, Steffe & Thompson (2000) go so far as 
to argue for mathematics of students becoming a foundation for 
school mathematics: 
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By regarding mathematics as a living subject, we are faced 
with a different mathematics than appears in contemporary 
school mathematics… We strive to specify the mathematical 
concepts and operations of students and to make them the 
conceptual foundations of school mathematics. (p. 269)  

Hence, we view radical constructivists’ teaching experiments as 
a viable methodology researchers can use as they provide anti-
deficit stories. We now describe how we used this methodology 
in ways that align with an anti-deficit perspective. 

Methods, Participants, and Analysis 

We describe a student’s, Ariana’s, sense-making during an 
exploratory teaching phase of a teaching experiment (Steffe & 
Thompson, 2000) in which we engaged her in the Faucet Task. 
This teaching experiment was part of a larger design-based 
research study in which the research team was interested in 
investigating the extent to which middle-school students could 
reason quantitatively and covariationally to conceive of and 
graphically represent relationships.5 Although the research team 
was familiar with secondary and undergraduate students’ 
reasoning in relevant contexts through their prior research, they 
had not yet investigated the ways middle-school students may 
engage in such reasoning and thus initially conducted 
exploratory teaching.  

The goal in this exploratory teaching was “to become 
thoroughly acquainted, at an experiential level, with students’ 
ways and means of operating in whatever domain of 
mathematical concepts and operations are of interest” (Steffe & 
Thompson, 2000, p. 274). For example, we were unsure the 
extent to which middle school students experienced 
opportunities to reason about and graphically represent 
relationships between covarying quantities. As such, we 
designed several tasks, including the Faucet Task, that allowed 

 
5 We refer the reader to Paoletti et al. (2020), Paoletti et al. (2022), and Paoletti 
et al. (2023) for additional findings from the larger design experiment.  
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us to explore the ways students may naturally reason about, and 
represent, such situations.  

Due to the exploratory nature of this part of the study, our 
interactions with students were largely responsive and intuitive. 
During such interactions, a teacher-researcher’s (TR’s) actions 
are not pre-planned in advance of the session, instead relying on 
their in-the-moment conjectures about how and why students are 
reasoning during the interactions (Steffe & Thompson, 2000). 
Although exploratory teaching was largely our purpose in this 
teaching experiment (Steffe & Thompson, 2000), we audio and 
video-recorded each session with the intention of building viable 
models of the student’s evolving mathematical meanings as we 
engaged her in a 10-session teaching experiment.  

Subjects and Setting 

The study occurred in a Northeastern U.S. school that hosts 
a diverse student population (over 75% students of color). We 
asked teachers to recommend students who could articulate their 
thinking and would be willing to participate. Particular to this 
paper, we characterize the activity of one Latina 6th-grade 
student, Ariana, we engaged in the teaching experiment. We 
focus on the first three sessions in which Ariana addressed 
questions particular to the Faucet Task. 

Consistent with the anti-deficit framework principle of 
intentional subject selection (Adiredja, 2019), we chose Ariana 
as according to her end of year state test, she was categorized as 
“Partially Met Expectations” (Level 2 out of 5). As our results 
will show, this score did not accurately capture Ariana’s full 
mathematical capabilities. We highlight her brilliance as she 
engaged in sense-making to explore mathematical ideas well 
beyond what is typically expected of a 6th-grade student.    

Data Analysis 

Consistent with the teaching experiment methodology 
(Steffe & Thompson, 2000), we used on-going and retrospective 
analyses to analyze the data. Both phases of analysis, involved 
conducting conceptual analysis—“building models of what 
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students actually know at some specific time and what they 
comprehend in specific situations” (Thompson, 2008, p. 45). 
The conceptual analysis method allowed us to develop and 
refine models of Ariana’s mathematics that viably explained her 
actions.  

During on-going analysis, the research team met after each 
teaching episode to review the video and identify important 
instances in student activity that supported our building initial 
models of Ariana’s mathematics to viably explain her 
observable words and actions. These initial models supported 
our designing and adapting tasks for future episodes. In these 
future episodes we tested these models by predicting how she 
might respond to a given task or situation. Such activity is 
consistent with analytical interactions in a teaching experiment 
(Steffe & Thompson, 2000).  

During retrospective analysis, we again performed 
conceptual analysis (Thompson, 2008) to generate, test, and 
adjust models of Ariana’s mathematics so these models provided 
viable explanations of her activity. The research team re-
watched the entire teaching experiment sequentially to analyze 
the data using generative and convergent approaches (Clement, 
2000). Using a generative approach, we watched videos 
identifying occurrences providing insights into Ariana’s in-the-
moment meanings (Thompson, 2016) for constructing, 
interpreting, and graphically representing relationships between 
quantities. Using these instances, we generated tentative models 
of her mathematics, including characterizing Ariana’s 
situational epistemological justifications. Using a convergent 
approach, we tested these models by searching for supporting or 
contradicting instances in Ariana’s other activities. When 
evidence contradicted our models, we revised our model and 
returned to prior data with these new hypotheses in 
mind.  Further, we considered how researchers adopting a deficit 
view may describe Ariana’s activity, and explicitly challenged 
such interpretations (Adiredja, 2019). This process resulted in a 
viable model of Ariana’s mathematics that allows us to tell an 
anti-deficit story about her mathematical learning. 
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Developing Epistemological Justifications to Reason 
Emergently: The Case of Ariana 

We describe Ariana’s activity addressing the Faucet Task, 
first highlighting her experiencing a situational intellectual need 
she resolved by constructing a situational epistemological 
justification via a quantitative structure. We show how she 
leveraged this justification as she described how various 
mathematical objects varied. We conclude by highlighting how 
this activity supported Ariana in addressing questions regarding 
‘function’ (from the researchers’ perspectives) but illustrate that 
these questions did not stem from or produce an intellectual need 
for her.  

Developing a Situational Epistemological Justification in 
the Faucet Task 

When first presented with the Faucet Task and asked to 
“play around” with the knobs, Ariana identified “how much 
water comes out” and “temperatures of the water” as quantities 
she could measure. As Ariana addressed Scenarios (A)–(D), she 
constructed and re-constructed particular quantitative and 
covariational schemes and operations to make sense of the 
situation (e.g., reasoning about directional changes in two 
quantities’ magnitudes, making additive comparisons to 
describe more water leaving the faucet). This activity formed a 
basis for her developing situational epistemological 
justification. For instance, addressing Scenario (A), Ariana drew 
on her personal experiences with faucets to accurately describe 
“there’s going to be more water coming out,” and when asked 
what was going to happen to the temperature, she said, “it’s 
going to become colder.”  

When addressing Scenario (B), Ariana initially indicated 
both water temperature and amount of water would decrease. 
However, when asked to justify the change in temperature she 
re-considered: 

TR: Why do you think it’s going to get colder? 
A: Because you’re turning it off [pauses]. 
TR: We’re turning cold off, so. 
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A: [interjecting] It would become warmer. 
TR: Why would it become warmer? 
A: Because, since we’re turning it [the cold knob] off. 

Um the more you turn it, um to the right [referring 
to Scenario A], the more colder it would get. But 
since we’re turning it um to the left, it would 
become warmer because we’re basically turning it 
[the cold knob] off. 

 
Addressing the TR’s prompt, Ariana reconsidered the quantities 
in the situation, arguing that whereas turning cold water on 
resulted in a decrease in temperature in Scenario (A), turning the 
cold off would result in an increase in temperature in Scenario 
(B).  

Leveraging situational intellectual need and situational 
epistemological justification, we contend Ariana experienced a 
situational intellectual need as she attempted to justify her initial 
conjecture that water temperature decreased for Situation (B). 
She experienced a minor perturbation when she attempted to use 
her already existing schemes and operations to make sense of 
and mathematize a novel situation. Reconciling this need, 
Ariana used existing schemes and operations (e.g., reasoning 
about the directional change of quantities) to begin to construct 
a situational epistemological justification that enabled her to 
determine how, and more importantly why, the quantities in the 
situation varied as they did (i.e., arguing that since turning the 
cold water on results in colder water, turning it off will result in 
warmer water). Specifically, her constructed quantitative 
structure entailed schemes involving compensation such that she 
could anticipate changes in temperature regardless which knob 
was changed. This is reflected by the fact that Ariana had no 
difficulty in accurately predicting how each quantity would 
change for Scenarios (C) and (D). 

We note that a researcher adopting a deficit perspective may 
consider Ariana’s sense-making insignificant given the 
everyday context. However, we counter such an interpretation 
by highlighting the sophistication of this reasoning. Particularly, 
Ariana understood that a modification to one knob can cause a 
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temperature change more directly related to the other knob (e.g., 
“[the temperature] would become warmer because we’re 
basically turning [the cold knob] off”). Such reasoning requires 
a situational epistemological justification that entails a complex 
relationship between (at least) three interrelated quantities 
(amount of hot knob turns, amount of cold knob turns, and water 
temperature).  

Leveraging a Situational Epistemological Justification 
Addressing Graphing Prompts in the Faucet Task 

Ariana leveraged her developing situational epistemological 
justification when describing how the mathematical objects 
(seen in Figure 3a/b) varied in the next two applets. For example, 
after describing the point as moving according to the endpoints 
of the two varying segments (Figure 3b), Ariana predicted and 
then tested how the point moves for Scenarios (A)–(D). In each 
case, Ariana leveraged her situational epistemological 
justification to accurately address each prompt. In one instance, 
addressing Scenario (D), Ariana first described that the 
temperature and amount of water decreased and that this 
corresponded to each segment decreasing in length. She then 
described, “since they’re [motioning to the segments on the axes] 
both moving, it’s [the point’s] going to go diagonally [motioning 
from the point on the computer screen diagonally down and to 
the left].” In each scenario, Ariana described that the point’s 
movement was dictated by the covarying magnitudes, which she 
later built on to describe the direction of the emergent trace in 
these scenarios.  

Ariana’s activity on the last part of the Faucet Task (e.g., 
Figure 4) provided an opportunity to explore if she was engaging 
in emergent graphical shape thinking. Addressing the first graph 
(Figure 4a), and indicative of reasoning emergently, Ariana 
experienced a minor perturbation as she immediately questioned 
if the graph “started down here [pointing to the bottom right 
endpoint] or up here [pointing to the top left endpoint]?” She 
then argued if the graph started at the top left endpoint, then 
“turning cold on” would produce the given graph. Justifying this, 
she put her finger over the top left endpoint and indicated for the 
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initial state, “If it started here, the hot water, the hot water would 
be on.” Then, leveraging her situational epistemological 
justification, she argued the action that would result in the given 
graph was “turning cold on… because if you turn cold on it 
[water temperature] would go down [motioning along the curve 
from the top left endpoint] and as you can see it’s a little curve 
[motioning over the curve near the bottom right endpoint] as if 
the water is increasing [motioning horizontally along the 
horizontal axis to indicate the amount of water is increasing].” 
Shortly thereafter, Ariana argued if the graph started at the 
bottom right endpoint, then “turning the cold water off” would 
produce the graph traced in the opposite direction.  

We infer Ariana experienced a situational intellectual need 
as she was tasked with describing a single knob turn that would 
produce the given graph but was unsure which direction the 
graph traced (e.g., questioning the starting point of the graph). 
Ariana resolved this perturbation by using her existing 
situational epistemological justification in a new way. In 
particular, she interpreted one graph in two different ways and 
provided two different descriptions of starting states and turns 
that would accurately produce the graph. Hence, we infer Ariana 
was engaging in emergent shape thinking. Ariana’s emergent 
reasoning is particularly powerful as there is evidence that such 
reasoning is non-trivial for pre-service and in-service 
mathematics teachers (Moore et al. 2019a, Thompson et al., 
2017). 

Ariana Explicitly Addressing Questions about Univalence 

Consistent with exploratory teaching, the TR next opted to 
explore in-the-moment conjectures. In particular, he conjectured 
that Ariana’s quantitative structure could support her in 
considering scenarios that were more complex than the applet 
was designed to address. He intended to explore if Ariana, 
similar to Arya in Paoletti and Moore (2017), could conceive of 
and describe both functional and non-functional relationships 
(from his perspective) within the scenario.  

First, the TR prompted Ariana to imagine if she could turn 
both knobs simultaneously, which was not possible in the applet 
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as designed. He intended to explore if Ariana might consider 
novel situations that may produce different changes in the 
temperature and amount of water than she had yet experienced. 
He then asked if she could describe “a way to turn both of them 
to keep the temperature the same.” The following conversation 
ensued:  

 
A: If you turn them both on, the temperature would 

stay the same… if it started off like equal, and you 
left it [the amount you’re turning each knob] equal, 
but you still move it, it will, the temperature will 
stay the same. 

[Ariana spontaneously considered what happens to 
volume as she turns one knob on and the other off. The TR 
returned to keeping temperature invariant before moving 
to the situation Ariana was describing]. 
TR: But the volume would in that case, what would 

happen to the volume if turning them both on by the 
same amount? 

A: The volume would increase. 
TR: Increase. What if we were turning them both off by 

the same amount?   
A: Um it [volume] would decrease. 

 
Despite the applet not allowing Ariana to turn both knobs 
simultaneously, she was able to make a modification to her 
quantitative structure by imagining a new situation that entailed 
simultaneously turning the knobs in the same direction. She 
reasoned in such a case water temperature remained constant 
while the amount of water varied. We infer Ariana was 
implicitly reasoning that situationally the amount of water is not 
in a univalent relationship with temperature (i.e., the same 
temperature magnitude can correspond to multiple amount of 
water magnitudes).  

Immediately after this, the TR began to question whether 
every amount of water magnitude corresponded to exactly one 
temperature magnitude: 
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TR: I don’t want any more water…So we want that 

same amount of water. But we want it to be hotter, 
and you can turn both knobs. 

A: But you would just turn on the hot. 
TR: If I turn on the hot more, it’s going to increase the 

temperature and the amount total amount of water 
right? So say I turn the hot on a little bit. But at the 
same time I turned the cold off a little bit. What 
would happen in that case?  

A: In that case, the volume would stay the same, 
because you're adding a piece that you already took 
away from the cold. 

TR: Right… And what happens to the temperature? 
A: Um the temperature increases. 
TR: Increases. What if I want the water to be a little 

colder?  
A: You would take, you [do] the opposite, you would 

just take away the hotness, you take, like a turn of 
the hotness [off] and then add another turn of cold.  

 
Leveraging her situational epistemological justification, Ariana 
understood if she simultaneously turned the knobs in opposite 
directions by equal amounts, the amount of water leaving the 
faucet would remain invariant, but the water temperature would 
vary. We infer Ariana implicitly reasoned that situationally 
temperature is not in a univalent relationship with water volume 
(i.e., a particular volume magnitude can correspond to several 
temperature magnitudes). 

As Ariana’s quantitative structure supported her in making 
decisions regarding univalence in each case, the TR conjectured 
she may be able to characterize whether even more complex 
relationships were univalent. Hence, he prompted Ariana to 
consider if each coordinate point representing (Amount of water, 
Temperature) magnitudes corresponded to exactly one 
situational state, e.g., one pair of (Hot knob turns, Cold knob 
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turns). Referring to a specific (Amount of water, Temperature) 
coordinate point shown on the applet, he asked Ariana if it was 
possible to play with the knobs to obtain both the same amount 
of water coming out and the same temperature. After a 6-second 
pause, Ariana indicated this was possible. The following 
conversation occurred:  

 
A: I'm not sure that the temperature, but… if we just 

like add, umm, another piece of hot water and take 
a cold water away, umm, [the pink segment on the 
horizontal axis, seen in Figure 2] would stay the 
same… because the amount of water is coming out. 

TR: Yeah, so the pink will stay the same, but do you 
think it [the point] would move up or down or 
would it stay there?  

A: It would move up because you’re, more hot water. 
Now that you told me that, I don't think, I don't 
think there's a way. 
 

Ariana initially additively coordinated the volume of hot water 
and the volume of cold water to consider how to maintain a 
constant total volume of water. When asked if the point would 
move up or down, Ariana turned her attention to temperature, 
realizing it would increase in the situation she described.  

After this, the TR provided Ariana with another point on the 
graph and asked if another mixture of hot and cold water could 
produce that same (Amount of water, Temperature) coordinate 
point. After an eleven second pause, and consistent with her 
initial response above, Ariana attended only to the amount of 
water to conclude another situation could produce the point. 
Also consistent with her response above, when testing her 
conjecture Ariana then attended to temperature, realizing the 
temperature changed and that her proposed situation produced a 
different point. After Ariana realized this, the TR asked “So if I 
stopped [at] a specific place…I have that amount of water 
coming out and that temperature [pointing to the segments on the 
axes respectively]. Any other situation gets me there?” Ariana 
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immediately responded that this was not possible just prior to the 
session ending. Due to time constraints of the session, the TR 
did not have an opportunity to further explore Ariana’s meanings 
for this complex relationship.  

A researcher adopting a deficit account may characterize 
Ariana’s activity above as showing a lack of sense-making; in 
both cases she first only attended to one quantity while 
considering the TR’s prompt. We challenge such an 
interpretation by highlighting the complexity of considering four 
changing quantities simultaneously (i.e., hot knob turns, cold 
knob turns, temperature, and amount of water). In each case, 
Ariana successfully coordinated three changing quantities prior 
to considering the fourth; such multivariational reasoning is non-
trivial for students from middle school to advanced mathematics 
(Jones, 2022; Panorkou & Germia, 2020). 

Reflecting on Ariana’s actions, we infer that she continued 
to (re)construct her quantitative structure and, thus, her 
associated situational epistemological justification involving 
relationships between states of the turning knobs and the 
resulting temperature and amount of water. She concluded in the 
moment that two different knob states could not produce the 
same (Amount of water, Temperature) coordinate point. That is, 
Ariana concluded that the relationship between (Hot knob turns, 
Cold knob turns) states and (Amount of water, Temperature) was 
a univalent relationship. Hence, we infer Ariana described three 
relationships as having or not having the property that “every 
value of one quantity determines exactly one value of the other 
[quantity]” (Thompson & Carlson, 2017, p. 444; Table 1). 

Table 1 
The Relationships Ariana’s Considered as Possibly Representing 
Covariational Functions 

Situation “One quantity” “The other [quantity].” Univalent? 
Turning both knobs in 
same direction 

Temperature Amount of water No 

Turning both knobs in 
opposite directions 

Amount of 
water 

Temperature No 

Turning either knob 
any amount 

(Temperature, 
Amount of 
water) 

(Hot knob turns, Cold 
knob turns)  

Yes 

 



Intellectual Need, Covariational Reasoning, and Function 

64 

Ariana developed situational epistemological justifications 
that supported her in determining if certain quantitative 
relationships had the property of univalence. However, 
univalence was a natural (although not always conscious) aspect 
of her quantitative structures; Ariana never experienced a 
perturbation regarding if a relationship was not (or was) 
univalent. Hence, Ariana did not experience any intellectual 
need for explicitly considering the possible univalence of the 
relationships. Ariana only determined if a relationship was 
univalent because the TR prompted her to do so. Rabin et al. 
(2013) referred to such a situation as entailing a social need, 
rather than intellectual need, and noted “for students to learn the 
mathematics we intend to teach them, they must see a need for 
it, where ‘need’ means intellectual need, not social or cultural 
need” (p. 652). In such situations, we agree with Harel (2008) 
who argued students are less likely to learn what teachers or 
researchers intend when “students’ actions are socially rather 
than intellectually driven” (p. 488).  

Univalence, Intellectual need, and Function 

Like Ariana, there is little evidence most students (or 
teachers) experience any type of intellectual need that motivates 
constructing an epistemological justification for univalence, a 
property critical to a set-theoretic definition of function. For 
example, in her study of prospective secondary mathematics 
teachers, Even (1990) noted, “Some serious questions are raised 
by the fact that, without prompting, none of the subjects could 
come up with a reasonable explanation for the need for the 
property of univalence” (p 531). Compatible with Harel’s 
(2018a) description of presenting mathematics that makes 
students feel like aliens in their knowledge construction, Even 
(1990) characterized current approaches to the teaching of 
function as contributing “to making mathematics look like an 
arbitrary collection of rules and definitions” (p. 531).  

Reflecting on the collective body of research on students’ 
understandings of a set-theoretic function definition, Even and 
Bruckheimer (1998) questioned emphasizing univalence for 
pedagogical purposes, instead suggesting researchers and 
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educators consider the historical development of function 
including its initial roots in relationships between variables. The 
covariational meaning of function characterized by Thompson 
and Carlson (2017), described in the opening of this paper, and 
as exemplified in Ariana’s thinking, fits this suggestion. Rather 
than foregrounding univalence, Thompson and Carlson’s (2017) 
covariational meaning emphasizes a student initially 
constructing invariant relationship(s) between quantities. Once 
a student has constructed such a relationship (and potentially a 
complex network of relationships), she can investigate 
properties of the relationship(s). Univalence is one possible 
property of a relationship (or a property common across a 
network of relationships; see Table 1). As Ariana’s example 
illustrates, a student can construct an invariant relationship 
situationally and consider certain properties of that relationship, 
without concerning herself with formal mathematical 
representations such as graphs or algebraic rules (Paoletti & 
Moore, 2017, 2018; Thompson, 2011).  

Concluding Remarks  

In this paper, we extended Harel’s (2008, 2018a, 2018b) 
constructs by defining situational intellectual need and 
situational epistemological justification in the context of 
constructing quantitative structures. We then presented an anti-
deficit story (Adiredja, 2019) exemplifying Ariana’s powerful 
sense-making as she experienced situational intellectual needs, 
which she resolved via the creation of a situational 
epistemological justification.  

Like Arya, the undergraduate student in Paoletti and Moore 
(2018), Ariana’s quantitative structure supported her in 
reasoning emergently to (re)construct and interpret graphs as 
representing “simultaneously what is made (a trace) and how it 
is made (covariation)” (Moore & Thompson, 2015, p. 785). 
Further, her case highlights the extent to which a student can 
(re)construct a situational epistemological justification that 
entails a quantitative structure to consider various relationships 
in and properties of this structure, regardless if these 
relationships maintain the property of univalence.  
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We are not surprised students may not be spontaneously 
motivated to determine whether a relationship is univalent when 
asked to mathematize a novel situation. Univalence is unlikely 
to be critical to their reasoning as it is merely a byproduct of their 
constructing quantitative structures. Ariana, and possibly the 
pre-service teachers in Even’s (1990) study, had not yet 
experienced any intellectual need for the property of univalence. 
Consistent with Harel’s (2008, 2018a, 2018b) arguments, we 
contend it is unlikely for students (or teachers) to appreciate the 
importance of univalence until they have experienced some 
intellectual need for it, and it is only then that they will come to 
value the property of something we, as mathematicians or 
mathematics educators, refer to as ‘function’.  

We question current approaches to teaching a function 
definition early in students’ school experiences (e.g., Ayalon & 
Wilkie, 2019), and then focusing almost solely on functional 
relationships in secondary school. In fact, we conjecture this 
approach makes certain topics more complicated than if we 
allowed for non-functional relationships. For instance, Paoletti 
et al. (2015) found that most pre-service teachers used 
procedures when asked to graph the inverse of trigonometric 
function that was distinct from the procedures they used for non-
trigonometric functions. However, this is unsurprising given the 
time and attention standard approaches to teaching inverse 
trigonometric functions dedicate to students memorizing various 
domain and range restrictions for different trigonometric 
functions. We conjecture an approach focusing on supporting 
students in developing meanings for trigonometric functions and 
their inverses as representing the same underlying relationship, 
regardless of function-ness, as in Paoletti (2020), would be more 
productive.  

Collectively, we believe current approaches to function in 
school mathematics are likely over-privileging the use of formal 
mathematical definitions, which can “insidiously de-value 
students’ informal mathematical knowledge and emerging 
understandings” (Adiredja & Louie, 2020, p. 43). Returning to 
the horse and cart analogy, Ariana’s activity exemplifies 
reasoning covariationally can provide a younger student the 
horse needed to pull the cart that is properties critical to a formal 
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set-theoretic function definition. However, her covariational 
reasoning did not lead to Ariana experiencing an intellectual 
need for the cart itself. Although other researchers may view this 
as a deficit in Ariana’s reasoning, we argue the anti-deficit story 
illustrates what was important to Ariana’s sense-making 
(constructing relationships between quantities) and what was not 
significant (set-theoretic properties of function). As such, and 
contrary to the suggestions of others (cf. Ayalon & Wilkie, 
2019), we propose introducing a set-theoretic function definition 
to students only after they have experienced an intellectual need 
for it and its properties (e.g., exploring the analysis of 
relationships in the context of concepts like differentiation and 
integration). We suggest freeing the horse from the cart as the 
horse can do the same work for the student with, or without, the 
cart. Just as we do not introduce the definition of “polygon” prior 
to introducing students to triangles and rectangles, nor the 
definition of “group” prior to introducing students to the lines of 
symmetry of a square, we question the value of introducing a 
set-theoretic definition of function early in students’ 
mathematical experiences that can serve to make students feel 
like “aliens in knowledge construction” (Harel, 2018a, p. 38).  
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