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Professional Noticing of Student Thinking 
in the Context of Mathematical Modeling 

Rui Kang 

This study examines how professional noticing of student mathematical 
thinking evolves in the context of modeling and what is special about 
the context of modeling. Eight middle and secondary school teachers 
participated in this one-semester long study and received three 
training sessions on professional noticing. Teachers provided more 
substantial detail about the mathematical aspects of student strategies 
after participating in the training, and they benefited from 
conversations with colleagues scaffolded by three phases of 
professional noticing: attending to, interpreting, and responding to 
student thinking. Teachers also identified specific aspects of student 
thinking in the context of modeling, especially local conceptual 
development. 

The mathematical modeling process tends to produce rich 
discourse and abundant artifacts (Lesh & Doerr, 2003). 
Therefore, it can be used to develop what Jacobs et al. (2010) 
called “professional noticing of children’s mathematical 
thinking” (p.170). However, this potential of mathematical 
modeling has not been fully explored. One exception is a study 
by Alwast and Vorhölter (2022), which found that teachers’ 
noticing of student thinking in the context of modeling is 
important for helping students solve modeling tasks because 
students often do not directly express their difficulties and 
instead rely on their teachers to notice and make sense of their 
strategies.  

Background 

I first introduce the definition of modeling, followed by a 
presentation of the theoretical framework of this study and an 
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explanation of why mathematical modeling provides a special 
context for developing noticing expertise.  

Defining Mathematical Modeling 

Mathematical modeling is a process of developing systems 
of mathematical objects (e.g., operations, relationships, rules) 
that can be used to describe, explain, and predict a wide variety 
of phenomena in natural sciences (e.g., physics, chemistry, 
biology), engineering, technology, and social sciences (e.g., 
history, politics/policies; Doerr & English, 2003). It is a cyclic 
and iterative process that starts with a realistic situation and ends 
with a reporting of mathematical results. Mathematical 
modeling is complex and often involves the following steps. 
First, a realistic situation is read, understood, simplified, and 
systematized. Second, the situation is mathematized and 
represented symbolically. Third, an emerging model is 
generated and then subjected to a validity test against the 
situation. Fourth, a decision is made about the validity and 
limitations of the emerging model. Finally, the process is 
revisited as the emerging model is revised and refined. The 
product of modeling usually is not a definitive solution but 
multiple plausible solutions and sometimes conceptual tools and 
artifacts (Galbraith & Stillman, 2006).  

There is a critical difference between the traditional 
perspective on solving word problems and mathematical 
modeling. The traditional way of solving a word problem can be 
viewed as a transition from mathematics to reality or realizing 
mathematics, whereas mathematical modeling is a transition 
from reality to mathematics or mathematization (Wess et al., 
2021).  Traditional word problems, in which the situation has 
already been mathematized for students, sometimes are referred 
to as “pre-modeled problems,” “illustrative applications,” or 
“dressed up” word problems (Blum & Niss, 1991), but 
mathematical modeling tasks require students to develop 
symbolic descriptions of realistic problem situations. Another 
major difference between “dressed up” traditional word 
problems and mathematical modeling is that the validation of 
real results is necessary. The traditional perspective on solving 
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word problems does not require students to go through the 
modeling cycle.  

Researchers of mathematical modeling (e.g., Cetinkaya et 
al., 2016; Doerr, 2007) have noted that for teachers to effectively 
enact mathematical modeling in their classrooms, they need a 
broad and deep understanding of various solution methods 
including unexpected ideas from their students. This is a highly 
cognitively demanding expectation of teachers and “requires 
rapidly seeing, understanding, and interpreting … multiple ways 
of thinking” (Cetinkaya et al., 2016). In other words, successful 
enactment of mathematical modeling in the classrooms depends 
on a teacher’s ability to notice and make sense of student 
thinking (Jacobs et al., 2010). This means that on one hand, 
developing noticing skills will enhance teachers’ abilities to 
successfully teach modeling; on the other hand, mathematical 
modeling as a complex and often open-ended, ambiguous 
process (Lesh & Doerr, 2003) provides abundant opportunities 
to further develop teachers’ noticing of student thinking.  

Theoretical Framework: Professional Noticing of 
Children’s Mathematical Thinking 

Goodwin (1994) defined professional vision as “socially 
organized ways of seeing and understanding events” (p. 606) 
that enables members of a profession to view and make sense of 
complex situations from a unique perspective. Similarly, 
Stevens and Hall’s (1998) notion of disciplined perception and 
Mason’s (2002) intentional noticing have also been used to 
distinguish perceiving or noticing in professional settings from 
similar activities in everyday life.  Inspired by these various 
concepts, Jacobs et al. (2010) developed the professional 
noticing of children’s mathematical thinking framework to 
explore how mathematics teachers view and make sense of their 
complex classroom environments from a professional lens. 
Instead of noticing every single aspect of teaching and learning, 
Jacobs et al.’s framework has a particular focus on children’s 
mathematical thinking and include three distinct but 
interconnected components of teacher noticing: “attending to 
children’s strategies, interpreting children’s understandings, and 
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deciding how to respond on the basis of children’s 
understandings” (p. 172). More specifically, attending to 
children’s strategies is to identify noteworthy thoughts and 
important mathematical details in children’s strategies, which 
requires teachers to use their expertise to discern patterns and 
chunk information in complex instructional situations. 
Interpreting children’s understandings is to provide productive, 
evidence-based explanations of children’s strategies. 
Interpreting is deeper than attending to and requires analysis and 
reasoning supported with evidence. Deciding how to respond is 
to propose next steps or next problems based on what teachers 
have learned about children’s understandings. It is a type of 
intended responding and requires no execution of the response 
(Jacobs et al., 2010).  

Noticing students’ ways of thinking is an essential 
professional skill for teachers, and therefore, mathematics 
educators need to search for ways to help teachers develop this 
skill within a variety of contexts. Research has shown that 
noticing is teachable and can be developed through 
conversations with teachers (Sherin & Van Es, 2009). For 
example, Sherin and Van Es found that teachers in their study 
initially tended to focus on all the parties in the video they were 
discussing, including the teacher, students, and sometimes an 
administrator. In addition, their “general approach for making 
sense of the issue under discussion” (p.24) was either descriptive 
or evaluative. However, after a year-long professional 
development, the teachers were able to focus their attention on 
students’ mathematical thinking. They were also able to refrain 
from premature judgement and instead take an interpretive 
approach to understand students’ thinking. Noticing can be 
developed in a variety of specific mathematical domains such as 
the derivative concept, early numeracy, and algebraic thinking 
(see Sherin et al., 2011).  

Connecting Modeling and Noticing 

Modeling provides a carefully controlled and 
mathematically enriched environment that serves as an ideal 
context for supporting the development of noticing. Model 
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Eliciting Activities (MEAs) are thought-revealing problems that 
challenge students to develop constructs (e.g., a concept system 
or a model) to represent, interpret, and provide solutions for 
open-ended mathematical situations (Lesh & Doerr, 2003). Lesh 
and colleagues (e.g., Lesh & Doerr, 2003; Lesh & Harel, 2003) 
observed that when their students were engaged in MEAs, they 
were able to improve or modify their initial interpretations or 
conceptualizations of the underlying constructs of a problem 
situation within a relatively short period of time (typically 
between 60-90 minutes), a phenomenon these researchers 
referred to as local conceptual development. This phenomenon 
bears striking similarities to the stages of development outlined 
by Piaget (1950), albeit the development is situated within one 
task or a small set of similar tasks. The word “local” is used to 
signal the rapid conceptual development observed in the 
modeling process in contrast with the stages of human cognitive 
development typically observed over several years.  

The process of local conceptual development not only 
cultivates mathematical habits of mind (e.g., revision and 
refinement of ideas, perseverance, productive struggles) but also 
makes student thinking visible and noticeable. When initial 
mathematical models are evaluated against each other or against 
reality, between-model mismatches and model-reality 
mismatches often lead to the development and refinement of 
conceptual tools (Lesh & Doerr, 2003). Between-model 
mismatches often occur when several competing models are 
proposed in a group, and these models reflect alternative ways 
of thinking. This is expected in the context of modeling since 
there is often more than one way to solve a modeling problem or 
multiple solutions can be equally valid. Model-reality 
mismatches often occur when a model is found to be inconsistent 
with a real-life situation or requirements. These mismatches 
often lead to cognitive dissonance as well as productive 
struggles, which prompt the learner to revise their initial way of 
thinking to resolve the mismatches (Lesh & Harel, 2003). When 
teachers notice local conceptual development, they often feel 
excited and sometimes surprised. This helps teachers take on an 
asset-based perspective of their students’ abilities.  
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The purpose of this study is to identify special focuses and 
trajectories for professional noticing of student mathematical 
thinking in the context of modeling. Two research questions 
guide this study: (a) How is noticing developed in the context of 
modeling? (b) What is special about the context of modeling for 
developing noticing? 

Methods 

Participants and the Context 

Participants included eight mathematics teachers enrolled in 
a secondary (6-12) teacher preparation program at a mid-sized 
public university located in the southeastern region of the United 
States. All the teachers were non-traditional students seeking a 
new career, and their ages ranged from mid-20s to late-40s. Six 
of the eight teachers were high school mathematics teachers; two 
were middle school mathematics teachers. These teachers taught 
a variety of mathematics subjects at the time of the study, 
including algebra, geometry, statistics and probability. Their 
years of teaching experience ranged from 0 to 5 years. One of 
the participants in my study was receiving training to become a 
teacher and was completing a master’s degree in education; the 
rest were practicing teachers who were beginning, full-time 
classroom teachers on provisional certifications. None of the 
teachers reported taking a course in mathematical modeling or 
engaging in any formal training on how to teach mathematical 
modeling before this study. Although they participated in a 
professional noticing activity in an earlier mathematics methods 
course, none of them had any prior experience of applying 
Jacobs et al.’s (2010) framework in the context of modeling. 
More information about the teachers and students, along with the 
contexts of this study, is provided in Table 1. 

This entire study was conducted in a 15-week, semester-
long, student teaching/internship course that was taught during 
the COVID global pandemic. I (the researcher) was the course 
instructor and ran all the sessions of the study. Prior to 
professional noticing, I engaged the teachers in the following 



Professional Noticing in the Context of Mathematical Modeling 

 164 

Table 1 
Background Information for the Videos 

Group 
& 
Video # 

Teachers* 
 

Task & 
Main Underlying 
Ideas or Concepts 

Teacher 
Who 
Enacted 
the Task 

Students* 
 

1 Alicia, 
Eric, 
Carrie 
Katherine 

COVID-19 – Where 
would we be now?? 
(see Appendix A) 
 
Exponential 
functions, curve 
fitting, 
multiplicative 
reasoning 
 

Katherine Josh, Lily, 
Olivia 
 
9th graders 

2 Alexis, 
Ann, 
Brian, 
Sarah 

We’re Moving! 
(see Appendix B) 
 
Ranking, 
aggregating ranked 
quantities, 
weighting ranks, 
and transforming 
data sets 

Brian Emma, Jack, 
and Liam 
 
7th graders 

Note. *All names are pseudonyms.  

activities to help them develop theoretical knowledge about 
modeling. First, following the recommendation of previous 
researchers (e.g., Anhalt & Cortez, 2016), I asked the teachers 
to work through several MEAs in small groups and then to 
reflect on their group’s modeling process and analyze the 
characteristics of the MEA tasks.  

Second, the teachers collaboratively designed modeling 
tasks in their small groups. Group 1 created a task that asked 
students to generate a mathematics model using their knowledge 
about functions to predict the number of COVID cases based on 
data over a period of 109 days and then relate graphs of COVID 
cases to the mitigation policies adopted by various states (see 
Appendix A). Group 2 chose to adapt an MEA from Doerr and 
English (2003) that they themselves had worked on earlier in the 
course. They changed the context of the original task to help 
clients decide which state to move to during the COVID-19 
pandemic using ranking and weighting (see Appendix B). 



 

 165 

 Two teacher volunteers, Katherine and Brian, each worked 
with a small group of three students and recorded their 
instruction via Zoom due to the Institution Review Board (IRB) 
COVID-19 pandemic guidelines and regulations. Katherine 
taught the first task, which involved exponential functions, curve 
fitting, and multiplicative reasoning. Two of Katherine’s 
students, Josh and Lily, were studying exponential functions at 
their school when the task was implemented, whereas Olivia had 
not yet learned about exponential functions. Brian taught the 
second task, which involved ranking, aggregating ranked 
quantities, weighting ranks and were not included in the middle 
school mathematics curriculum. Brian’s three students had no 
formal exposure to these concepts at their school. Neither task 
required students to collect additional data. Although students 
were expected to use their prior knowledge to solve these tasks, 
they were not directed to use any specific concepts or methods.  

I divided the professional noticing training into three two-
hour sessions so that teachers had the opportunity to interact 
with the same video multiple times (Han et al., 2023). More 
specifically, teachers in Group 1 watched Video 1 in which 
Katherine enacted Group 1’s modeling task with her three 
students. Similarly, Group 2 watched Video 2 in which Brian 
enacted Group 2’s modeling task with his three students. Jacobs 
et al. (2010) recommended that teacher educators use discussion 
prompts to support teacher candidates and practicing teachers to 
develop professional noticing expertise. These researchers 
provided a couple of broad prompts for each of the three phases 
of their framework. I expanded Jacob et al.’s list of discussion 
prompts based on the context of this research (Table 2). 

The activities in each of the three sessions are outlined 
below: 

• In the first professional noticing session, I instructed the 
teachers to independently take in-the-moment notes of 
what they observed on the video using the discussion 
prompts in Table 2 as a guide. 

• In the second professional noticing session, I engaged 
the teachers in video clubs (Sherin & Van Es, 2009) 
facilitated through Jacobs et al.’s (2010) professional 
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noticing framework. Besides the video, each group of 
teachers also analyzed the students’ written responses 
and triangulated the students’ strategies observed on the 
video with the strategies in the written responses.   

• In the third and last professional noticing session, 
teachers watched their group’s video again individually 
and answered the same prompts in writing. After the last 
session, I also conducted a semi-structured interview 
with each teacher and asked them to explain to me the 
written responses they wrote in the third session.  

More details are warranted for the second session. Video 
clubs are “video-based professional development environment” 
(Sherin & Van Es, 2009, p. 20), in which teachers learn how to 
teach by observing and analyzing student learning, and 
researchers/educators study teachers’ learning simultaneously. I 
selected video clips (between 1 and 10 minutes) for each group 
of teachers from the videos (i.e., Video 1 and Video 2), which 
featured critical incidents (Tripp, 2011) or mathematically rich 
episodes during which student thinking were the most visible. 
Ulusoy & Çakıroğlu (2020) found that raw classroom videos 
include “useful and useless events which reduce the productivity 
of group discussions in teacher education” (p. 259). However, 
micro-case video clips not exceeding ten minutes and featuring 
noteworthy instances were the most likely to generate 
productive conversations about student thinking. Teachers 
watched the entire video but focused on the short clips with 
playback and stops upon request.  

Data Analysis 

I recorded all the interviews and professional development 
sessions using the Gallery View with Shared Screen setting in 
Zoom to ensure both participants and the written artifacts were 
visible in the recordings.  Transcripts of semi-structured 
individual interviews, student written artifacts, and the teachers’ 
written responses constitute the data corpus of this study. I 
entered both interview transcripts and written 
documents/artifacts into the ATLAS.ti.9 data management  
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Table 2 
Scaffolding Prompts for Professional Noticing  

Phases Prompts 
Attending 1.* Please describe in detail what you think the group did 

in response to this task. 
2.* Please describe in detail what you think each student 
in the group did in response to the task. 
 

Interpreting 1.* Please explain what you learned about these students’ 
understandings as a group. 
2.* Please explain what you learned about each of the 
students’ understandings.  
3. Please explain what you think are the strengths in these 
students’ understandings either as a group or as 
individuals or both. 
4.Please explain what you think are the weaknesses in 
these students’ understandings either as a group or 
individuals or both. 
5.Please explain what you think are the major obstacles 
in students’ understanding either as a group or 
individuals or both. 
6.Did any students’ response surprise you? Why or why 
not? 
7. How do you describe students’ process of solving the 
model task? How is it similar to or different than your 
own approach to the same task? 
 

Deciding how 
to respond 

1.* Pretend that you are the teacher of these students. 
What task or tasks might you propose next? 
2.What other pedagogical strategies come to your mind? 
In other words, what comes next in your instruction? 
3. What would you do similarly as the instructor in the 
video, why? What would you do differently and why? 
4.* Overall, did the task turn out as you had imagined? 
Why or why not? 
 

Note. * Questions included in the original prompts in Jacobs et al. (2010). 

program and read and re-read the data before the beginning of 
the coding process. I used a hybrid approach of deductive 
(theoretically guided, derived from prior research) coding and 
inductive (emergent) coding to analyze the entire data (Fereday 
& Muir-Cochrane, 2006). I coded attending, interpreting, and 
deciding on how to respond separately. For attending, my 
analysis was initially informed by coding categories derived 
from the literature, but codes that emerged during the analysis 
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were also allowed to avoid premature closure. Van Es and Sherin 
(2008) identified four “topics” that teachers typically notice in a 
busy classroom: mathematical thinking, pedagogy, climate, and 
management. These four topics served as my initial codes, but I 
used them as sensitizing concepts for “seeing, organizing, and 
understanding experience” (Charmaz, 2003, p. 259) and did not 
force or impose them onto my data (Patton, 2002). One of them 
survived data analysis, mathematical thinking. One code was 
discarded due to lack of match in the data. Specifically, 
management issues were not observed in the videos since each 
teacher only worked with a small group of three students. Two 
codes were modified to better fit the context of this study. 
Climate was changed to the Zoom Environment because the 
entire study was conducted during the COVID global pandemic 
via Zoom. Pedagogy was changed to teachers’ role as a 
facilitator because the only pedagogical aspect that caught the 
teachers’ attention was their own or their colleague’s role as a 
facilitator.  An additional code, group dynamics and student 
interactions, emerged from the data.  

In addition, I further divided the code, mathematical 
thinking, into several subcategories to capture the special 
characteristics of mathematics thinking in the context of 
modeling. Earlier I mentioned that I was interested in whether 
the teachers would be able to recognize the students’ local 
conceptual development as related to the task they were solving 
(Lesh & Harel, 2003). Prior research also emphasized the 
importance of identifying blockages (e.g., Galbraith & Stillman, 
2006), model-reality mismatches (e.g., Lesh & Doerr, 2003), and 
multiple solutions or between-model mismatches (e.g., 
Borromeo Ferri, 2006; Lesh & Doerr, 2003). These four codes 
served as my starting point for coding mathematical thinking. I 
was also open to emergent codes, and identified a new code, 
breakthroughs.  

For interpreting, I also started with codes found in prior 
research. In particular, Jacobs et al. (2010) emphasized the 
difference between (a) making sense of students’ strategies 
grounded in evidence and (b) making snap evaluations based on 
minimal evidence. Therefore, my initial codes for interpreting 
were snap evaluation and sense making. As analysis went on, I 
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found sense making was too broad to capture the nuanced 
interpretations made by the teachers. I then turn to open coding 
(Strauss & Corbin, 1990) and found two emergent codes: 
mismatches driving local conceptual development and inflexible 
thinking due to rule-based pedagogy.  

Finally, prior research provided limited guidance for 
analyzing and deciding on how to respond.  Therefore, I relied 
on open coding to categorize teachers’ anticipation of their 
future strategies and identified two categories of strategies: 
behavior-based strategies and thinking-based strategies. The 
final coding scheme along with a definition of each code is 
displayed in Table 3.  

For establishing the validity of data analysis, I applied 
multiple rounds of coding to the data and used the constant 
comparative method (Strauss & Corbin, 1990) iteratively to 
refine my initial codes until I reached a well-justified, robust 
data-code match. In addition, I used the constant member 
checking technique during the interviews, for example, 
rephrasing a response from a teacher and then asking: “Am I 
understanding your thoughts correctly?” I also had the 
opportunity to share my initial drafts of research findings with 
the teachers during a follow-up study and invited them to point 
out any inaccurate portrayal of their views. Teachers read my 
initial draft but provided no further suggestions. Finally, to 
improve the reliability of the study, I shared all the relevant data 
excerpts with an expert in mathematics education who served as 
a “critical friend.”  We coded the data excerpts separately and 
resolved our discrepancies collaboratively through peer 
debriefing.  

Results 

Below, I contrast the teachers’ initial, in-the-moment notes 
during the first session of this study with their verbal and written 
responses during group discussions and semi-structured 
individual interviews to show shifts in each of the three phases 
of professional noticing: attending, interpreting, and deciding on 
how to respond.   
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Table 3 
The Final Coding Scheme 

Codes Definitions 
Attending  
The Zoom Environment Instruction and interactions in a Zoom setting 
Group Dynamics and 
Student Interactions 

The roles students play in their group and how well 
they work with each other 

Teacher’s Role as a 
Facilitator 

A teacher’s behavior and verbiage when performing 
the facilitator role during enactment of modeling   

Mathematical Thinking—
Breakthroughs  

An important revelation or discovery that leads to a 
successful solution  

Mathematical Thinking—
Blockages  

Progress cannot be made after a significant amount 
of time (> 10 minutes) has lapsed 

Mathematical Thinking--
Model-reality Mismatches   

A model is found to be inconsistent with a real-life 
situation or a client’s requirements 

Mathematical Thinking—
Multiple Solutions or 
Between-model 
Mismatches   

Different ways or paths to solve a problem or several 
competing models demonstrate alternative ways of 
thinking. 
 

Mathematics Thinking—
Local Conceptual 
Development 

Improvement or modification of initial 
interpretations or conceptualizations of a problem 
situation within a relative short period of time 

  
Interpreting  
Snap Evaluation Judge students’ strategies as good or bad without 

citing evidence from students’ work or verbiage 
Mismatches Driving Local 
Conceptual Development  

Students demonstrated local conceptual development 
due to the necessity to resolve mismatches 

Inflexible Thinking due to 
Rule-based Pedagogy 

Students demonstrate inflexibility in solving a 
problem encountered during modeling that can be 
explained by the rule-based pedagogy they are used 
to 

  
Deciding on How to 
Respond 

 

Thinking-based Strategies Proposed strategies rooted in student thinking 
observed during the attending and interpreting 
phases of professional noticing 

Behavior-based Strategies  Proposed strategies rooted in observations of student 
behaviors 

Shifts in Attending  

Topics other than mathematical thinking dominated the 
teachers’ initial in-the-moment notes (see Table 4). All eight 
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teachers noted that the Zoom environment made it more difficult 
for the students to collaborate with each other and slowed down 
the modeling process. Ann’s remark (see Table 4) was 
representative of the observations of the eight teachers since 
students in both groups seemed to be affected by the Zoom 
environment in a similar way. Group dynamics and student 
interactions were also noted by all of the teachers, especially 
how the students worked with each other (e.g., Alicia’s 
comments in Table 4) and the roles and status of each student in 
the group (e.g., Alexis’s comments in Table 4). In addition, both 
teachers who enacted the modeling activities were very self-
conscious and critical when reflecting on their role as a 
facilitator (see remarks from Katherine and Brian in Table 4), 
whereas their colleagues were generous with their evaluations 
(see remarks from Eric and Ann in Table 4).  

Only three of the eight teachers (Ann, Brian, and Sarah, all 
in Group 2) attended to mathematical thinking in their in-the-
moment notes, and their focus was limited to the breakthroughs 
during the students’ modeling process. One of the three teachers, 
Sarah noticed that Liam was the first to discuss assigning points 
to each of the factors and then “totaling them up,” and 
“eventually led the group to a scaling/weighted ranking.” Ann 
and Brian made similar comments about how the students came 
up with a weighted ranking system (see Table 5).  

After I started to use Jacobs et al.’s (2010) framework and 
discussion prompts to facilitate the teachers’ professional 
noticing experience, their verbal and written responses shifted to 
focus on students’ mathematical strategies (see Table 5). This 
was especially obvious when I directed the teachers to focus on 
the “micro-case video clips” that included key dialogues during 
which students’ mathematical thinking was the most visible. 

In particular, teachers provided more details of student 
thinking related to several of the most important aspects of 
mathematical modeling (see Table 5). Teachers in both groups 
noticed the blockages their students experienced during the 
modeling process. For example, in Group 2, Ann was the first to 
point out that failing to consider all the relevant factors 
simultaneously while focusing on the one or two factors each 
student considered as important to themselves was the biggest  
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Table 4 
Sample Responses of Attending to Student Strategies – Non-
Mathematical Thinking Topics 

Codes Sample Responses 
Zoom Environment  “It would have been a lot more collaboration …. 

They did a lot of solo work. I believe this would 
have been different if they had been allowed to 
perform this task in person.” (Ann, group 
discussion) 

Group Dynamics and 
Student Interactions 

“You could tell that the students weren’t familiar 
with each other. They were hesitant to 
collaborate.” (Alicia, in-the-moment notes) 
 
“I’m going to pick Liam and I will say 
‘leadership,’ James I’m going to say ‘confidence’ 
for sure and Emma, I’m not sure what to say 
about Emma to be honest, because I mean she 
was kind of lost and confused the whole time, but 
she did have some strong points.” (Alexis, in-the-
moment notes) 

Teacher’s Role as a 
Facilitator 

“I helped them out with some very big hints, and 
I feel I handed them the answer.” (Brian, in-the-
moment notes) 
 
“He [Brian] is ensuring that the students were 
able to explain why and how they come to the 
conclusions.” (Ann, in-the-moment notes) 
 
“After that I kicked myself a little because I 
shouldn’t throw that word out there.” (Katherine, 
in-the-moment notes)  
 
“She [Katherine] did a good job of asking 
questions to draw out student thinking in regard 
to creating a model for the data.” (Eric, in-the-
moment notes) 
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Table 5 
Sample Responses of Attending to Student Strategies – Mathematical 
Thinking 

Codes Sample Responses 
Breakthroughs “The biggest kind of revelation is when Liam brought 

up the weighted system all on his own.” (Brian, in-the-
moment notes) 
 
“They begin using a weighted system, assigning points 
to each option such as 1 for mostly open business, 5 for 
mixed, and 10 for mostly closed.” (Ann, in-the-moment 
notes) 

Blockages “They geared all their results towards just those one or 
two few things … instead of looking across the broad.” 
(Ann, group discussion) 
 
“One keyed in on one factor, the other one keyed in on 
another factor, and then they didn’t really start 
combining the factors until they started actually talking 
and engaging.” (Brian, group discussion) 

Model-Reality 
Mismatches  

“They changed a few of the weights for Client 1 and 
ended up with Idaho and New Mexico being number 
one and two, but with Brian’s help, quickly realized 
that their number two actually only provided virtual 
school! Liam stated that they would need to change 
their weighting scale so that wouldn’t happen … (Ann, 
group discussion) 
 
“She [Olivia] looked at the data and said it was steady 
over a certain interval, then she noticed there was a 
jump in that rate of change. It increased or became 
larger than it was during that earlier interval.” (Eric, 
semi-structured interview) 

Multiple 
Solutions/ 
Between-Model 
Mismatches 

“Liam stated that they would need to change their 
weighting scale so that wouldn’t happen, and James 
stated maybe they could just toss those states out!” 
(Ann, group discussion) 

Local 
Conceptual 
Development 

Majority rule 

   
considering factors one at a time and separately 

  
combining/adding/summing scores on each factor 

 
from an unweighted system to a weighted system 
(Brian, Ann, Sarah, and Alexis, group discussion) 
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blockage at the beginning stage of the students’ modeling 
process. Brian totally agreed: “Yeah, I think you’re right Ann, 
that’s really good” (see remarks from Ann and Brian in Table 5). 
Teachers in Group 1 also recognized that Katherine’s students 
encountered a blockage when they failed to find a common 
multiplier that they could plug into the exponential function 
formula.  

Teachers in both groups also noticed that students were able 
to discover model-reality mismatches when engaging in self-
evaluation. Two examples are given in Table 5. One was from 
Ann who noted that Liam and James discovered that their initial 
weighted ranking system ranked a state (i.e., New Mexico) that 
offered only virtual schools as the second-best state, which was 
in contradiction with the client’s priority to move to a state that 
offered in-person education. The other example was from Eric 
who noticed that Olivia was not able to reconcile what she was 
observing in the data, “steady over a certain interval” but “then 
there was a jump in the rate of change,” with the linear model in 
her mind (see Table 5 for Eric’s complete remark).   

Since there is often more than one path to solve a modeling 
problem, it was not surprising that teachers in this study noticed 
multiple solutions proposed by different students (see Table 6). 
For example, teachers in Group 1 noted the differences between 
Lily’s exponential solution and Olivia’s linear solution. Eric 
during his interview with me commented that Lily used the term 
“percentage increase” between two consecutive numbers and 
“that’s the basis of exponential growth, right? Exactly is a 
certain percentage increase each unit of time, and that just keeps 
building at that same growth rate.” When it came to Olivia, Eric 
noted that “one thing that struck me was how she said, going 
from 55 to 237, which looked at the data from Day 41 to 45. She 
multiplied by 4 and then added 17” (i.e., a linear function).  

Teachers in Group 2 also noticed some different strategies 
from Brian’s students.  For example, Ann pointed out that when 
Liam and James found out that their initial weights did not 
satisfy a client’s request of in-person education, Liam proposed 
to reassign weights, whereas James proposed to toss out the 
states that offered only virtual schools (see Ann’s remark in 
Table 5). In addition, teachers in Group 2 noticed the 
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disagreement between James and Liam when they discovered 
that both South Dekota and Texas received a score of 11. While 
Liam proposed to have the two states both ranked as number 
three, James proposed to use “vaccine availability” as a “tie 
breaker.”  

Table 6 
Student Approaches or Local Conceptual Development Trajectory for 
the Tasks 

Group 
& 
Video 
# 

Task Student Approaches or Local Conceptual 
Development Trajectory 

1 COVID-19 – 
Where would we 
be now?? 
(see Appendix A) 
 
 

1. Applying additive reasoning to data 
or fitting data with a linear function, 

2. Looking for and recognizing the new 
patterns in small chunk of data, 

3. Finding a common ratio or multiple 
that represents the entire dataset by 
averaging and applying multiplicative 
reasoning to the data/formally 
applying the exponential function to 
the dataset. 

2 We’re Moving! 
(see Appendix B) 
 

1. Majority rule, 
2. Consider factors one at a time and 

separately,  
3. Combine/add/sum scores on each 

factor,  
4. From an unweighted system to a 

weighted system, based on 
prioritization of factors. 

 
Teachers in Group 2 were able to collectively map out a 

local conceptual development trajectory of student thinking in a 
similar fashion that a Jigsaw puzzle would have been built (see 
Table 6). Each teacher contributed at least one piece of the 
puzzle. In particular, teachers characterized this particular group 
of students’ modeling process into four stages, and delineated 
how, from stage to stage, students gradually developed 
mathematical concepts such as ranking, aggregating ranked 
quantities, and weighting ranks: 
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1. Majority rule: Sarah and Ann noted that initially students 
were comparing their own rankings with the others. 
Liam found that James’s and Emma’s rankings were 
more like each other’s than to his: “I will make mine look 
more like you guys’ because you guys’ are kind of 
similar.”  
 

2. Consider factors one at a time or separately: All four 
teachers noted that at this stage, students encountered a 
blockage where they did not know how to consider 
multiple factors simultaneously and what mathematical 
tools or concepts they could use.  

 
3. Combine/add/sum scores on each factor: Ann, Brian, 

and Sarah noted that Liam was the first one to consider a 
point system by stating:  

If we are going to do the point thing like ranking it 
1 to 3 or 1 to 8, you want the lower numbers, except 
for on vaccine availability, yeah, you want lower 
numbers so like a perfect score would be a 3. 

Then he calculated New Mexico’s score as “1 and 6 and 
1, that’d be eight.” 

 
4. From an unweighted system to a weighted system: All 

four teachers recognized this stage, especially how Liam 
figured out the idea of weighting on his own and 
proposed to double or triple the scale for the business 
factor.  

Noticing students’ local conceptual development helped 
teachers develop more confidence in their students’ ability to 
tackle challenging mathematical concepts, for instance, in 
Alicia’s word, “I was in awe.” Alicia reflected during the exit 
interview: “I should expect more from my students. I learned 
that. I think I have handicapped them because by assuming that 
they wouldn’t be able to do something without even trying it.” 
Sarah also ended her interview with me on a very positive note: 
“It gave me more confidence as the teacher being able to 
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introduce modeling, and then it gave me more confidence, I 
guess, in the students.”  

Shifts in Interpreting 

All eight teachers’ in-the-moment notes contained limited 
interpretations of students’ thinking. When the teachers 
attempted to respond to the prompts under the interpreting 
section, they tended to provide snap evaluations with no or very 
vague evidence of student thinking. An example from Eric is 
shown in Table 7. From this remark, he was taking a more 
evaluative stance than an interpretive stance.  

All eight teachers showed more confidence in interpreting 
student thinking after they had an opportunity to interact with 
each other. When they tried to make sense of the students’ 
evolvement during the modeling process, teachers in Group 2 
made deeper inferences beyond describing the four stages 
mentioned above. In particular, they hypothesized that 
disagreement among students (i.e., between-model mismatches) 
created the first necessity for them to move from Stage 1 to Stage 
2 and to Stage 3. The second necessity occurred when there was 
a failed validation from model to the goal or criteria (e.g., model-
reality mismatch). This mismatch created the second necessity 
that propelled the students to move from Stage 3 to Stage 4. 
Brian summarized the mechanisms that facilitated the students’ 
modeling process as “necessity is the mother of invention” (see 
Table 7), in other words, mismatches had driven the local 
conceptual development observed in the students. Group 1’s 
teachers also mapped out a local conceptual development 
trajectory for their students but did not make conjectures about 
what was the driving force behind students’ conceptual 
development.  

Teachers in Group 1 instead focused on looking for the root 
cause of the students’ initial struggles and attributed the 
blockage the students encountered to inflexible thinking due to 
rule-based pedagogy. For example, Katherine diagnosed her 
students’ way of thinking and concluded that their struggle 
during the modeling process was due to how the exponential 
function was taught to them (see Katherine’s remark in Table 7). 
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Table 7 
Sample Responses of Interpreting Student Thinking 

Codes Sample Responses 
Snap Evaluation “Lily does a good job of explaining her thinking 

and explaining her process and coming up with a 
model in describing how she came up with the 
growth rate.” (Eric, in-the-moment notes) 

Mismatches 
driving local 
conceptual 
development 

“Necessity is the mother of invention.” (Brian, 
group discussion and semi-structured interview) 

Inflexible thinking 
due to rule-based 
pedagogy 

“They were taught theoretically [rule-based] more 
than with models. While they could identify 
COVID as an exponential growth function, they had 
not covered scatterplots and therefore, were 
struggling with a curve of best fit that did not 
exactly fit the data.” (Katherine, final written 
response) 
 
“They do not know what to do when presented with 
an imperfect data set that doesn’t fit an equation 
perfectly ... there is not a lot of statistics or line of 
best fit, regression line type of thought [in the 
curriculum]” (Eric, semi-structured interview)   

 
Carrie, in her final written response also stated, “They were too 
focused on making sure that it fit exactly right.” During group 
discussion, both Carrie and Alicia commented on the “it’s got to 
work” type of mentality. It was used by the teachers to explain 
student behaviors. For example, none of the three students 
thought about graphing the data to observe its overall shape. 
Instead, all three students seemed to be at a loss at first, followed 
by checking their individual calculations. They hoped to find 
some errors that could help them reconcile the imperfect fit 
between model and data. Similarly, Eric, in his individual 
interview with me, also interpreted students’ way of thinking as 
an indication that the school mathematics curriculum lacks a 
modeling or statistical approach (see Table 7).   

Shifts in Deciding How to Respond  

None of the teachers provided any suggestions for next 
problems or next steps in their in-the-moment notes. They 



 

 179 

reported either failing to find any basis to respond or not being 
able to understand the task. By the end of the study, all eight 
teachers made recommendations for the next steps. Their 
responses came from two distinct perspectives. The first focused 
on strategies that connected the mathematics content with 
pedagogy and tended to be rooted in student thinking, i.e., 
“thinking-based strategies.” The second perspective tended to be 
rooted in student behaviors or roles, not in student thinking, i.e., 
“behavior-based strategies.”  

Ann’s next steps for Liam and Brian’s next steps for Emma 
were typical thinking-based strategies. Ann suggested having 
Liam solve another task in the modeling sequence on ranking to 
see if he was able to generalize his thinking to “other scenarios 
… not move into a city [during the COVID pandemic].” Ann 
justified her decision based on Liam’s comfort level with his 
group’s modeling task, especially how Liam was able to adjust 
his original weighting scheme for Client 1 to fit Client 2: “Even 
with Client 2, he did not give enough weight to his first factor, 
but he quickly realized it once he chose the best states and then 
stated he should have weighted heavier.” Brian suggested using 
the same task or a similar one for Emma. He justified his 
decision by diagnosing Emma’s blockage during the modeling 
process: “She understood ranking something the sixth highest, 
etc., … but let’s apply a point value to it, then tally up our point 
value.” Brian further explained that in his opinion, Emma was 
not as far behind the two boys as it seemed, and she was “on the 
verge” of coming up with a number system. But she fell short on 
“assigning a numerical value to each of the states that would lead 
her to a total score.”  

Most strategies proposed by Group 1’s teachers were 
thinking-based. For the students as a group, Alicia, Katherine, 
and Eric all proposed providing students with a graph as a visual 
aid to help students see the overall shape or trend of the data. 
Katherine and Eric went more in-depth to propose an entirely 
alternative approach to the task. Katherine stated in her written 
response: “Instead of giving them the numbers, if we gave them 
a graph they would see the scatterplot, they could probably 
develop a curve of best fit out of it and that would have been 
more appropriate for them.” Katherine’s decision was based on 
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her noticing of students’ struggle with choosing which function, 
linear or exponential, should be used to represent the dataset, 
when they could not find a common multiplier.  

Teachers also proposed behavior-based strategies such as 
continuing to use cooperative learning because the students 
worked well together and showed chemistry with each other 
(Sarah) and putting Josh in one-on-one tutoring situation where 
his thinking could be more visible because Josh was reserved 
during the group work (Katherine, Eric).  

Discussion  

Jacobs et al.’s (2010) framework of professional noticing as 
a scaffolding tool, combined with the video club format, played 
an important role in shifting the teachers’ attention to student 
thinking. Initially, five of the eight teachers completely focused 
on other aspects of the videos even if they were asked to focus 
on student thinking. For example, teachers were quick to notice 
the limitations of the Zoom environment such as no shared, 
physically tangible space for students to observe each other’s 
work and collaborate. Both Brian and Katherine were critical 
and self-conscious of their own performance as a facilitator. 
Group dynamics and student interactions were also discussed, 
but the attention was given mostly to assigning leaders and 
followers. This finding is consistent with that of Van Es and 
Sherin (2008), who also found that teachers’ initial thoughts 
when discussing a video tended to be spread over multiple 
aspects of the learning environment, and deliberate training was 
needed to guide teachers to specifically attend to students’ 
mathematical thinking and detailed strategies.  

The results of this study also support that professional 
noticing in the context of modeling has some special aspects 
such as noticing students’ local conceptual development as 
related to the modeling task they were solving and the wide 
range in student thinking (Lesh & Doerr, 2003). Teachers were 
able to use their knowledge about the modeling process to 
identify blockages and mismatches that were crucial to push 
students to a higher stage, a phenomenon also observed in Lesh 
and Harel (2003). While acknowledging that meaningful and 
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lasting development of overall professional noticing skills often 
requires years of participation in professional development 
(Jacobs et al., 2010), I found that all eight teachers demonstrated 
growth in noticing skills related to the one video they observed 
within a short amount of time under the guidance provided by 
Jacobs et al.’s framework and discussion prompts. In addition, 
two types of responses to student thinking were also proposed, 
thinking-based strategies and behavior-based strategies. This 
finding was also consistent with that of Jacobs et al., who 
pointed out that there can be many effective ways for teachers to 
build on students’ existing understandings, including both 
thinking-based strategies such as proposing a new problem, 
asking students to compare strategies, probing students’ 
underlying reasoning, and behavior-based strategies, including 
pairing students up so that they can help each other.  

Earlier I noted that prior to designing their own tasks and 
engaging in professional noticing activities, I engaged teachers 
in solving several MEAs in small groups (i.e., Group 1 and 
Group 2), then analyzing the MEAs and reflecting on their 
group’s modeling process. These activities facilitated their 
development of theoretical knowledge of modeling and may 
help explain the growth observed in the teachers within a short 
amount of time. In fact, teachers’ development of knowledge 
about mathematical modeling happened along with their growth 
in noticing skills. Due to limited space, a report on teachers’ 
growth in theoretical knowledge about mathematical modeling 
will be presented elsewhere. However, the results of this study 
should also be treated with caution because all of the teachers 
only watched and analyzed student thinking in one video (i.e., 
either Video 1 or Video 2). Given their limited knowledge about 
mathematical modeling before this study, the professional 
development sessions implemented need to be iterated with 
multiple modeling tasks, including tasks beyond MEAs, for 
developing strong overall professional noticing skills.  

Like all research endeavors, this study has some limitations. 
First, because of the restrictions due to the COVID pandemic, 
each group of teachers enacted their modeling task with a small 
group of three students via Zoom. This compromise made it 
impossible for me to observe teachers’ selective attention in a 
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busy and more complex whole-classroom environment (Sherin 
et al., 2011). On the other hand, teachers in this study were not 
familiar with mathematical modeling, and they had never been 
asked to engage in professional noticing of student thinking in 
the context of mathematical modeling prior to the study. 
Therefore, teachers learning to engage in professional noticing 
could benefit from first focusing on a small group of students 
before they are asked to observe a whole class of students. 
However, the benefits for teachers to observe a small group of 
students as an intermediate step before observing a whole class 
of students have not been examined in the literature of 
professional noticing. Future researchers may design 
experiments to provide empirical evidence of the benefits of 
adding this intermediate step. Second, some key developments 
in student thinking during the modeling process seemed 
perplexing to the teachers, for example, how Liam was able to 
come up with the idea of weighting by multiplying on his own 
and how Olivia, who had no prior exposure to exponential 
functions, caught up with her group. Future researchers are 
recommended to interview students as well as their teachers to 
triangulate interpretations of student thinking from both 
perspectives, especially when a student seems to show local 
conceptual development.  

Despite the short duration of the professional noticing 
training during which each group of teachers only worked with 
one video, the study contributes to our understanding of some of 
the special characteristics of noticing in the context of modeling 
including noticing blockages, mismatches, multiple solutions, 
and local conceptual development. Future researchers may 
consider using the information in this study to design formal 
diagnostic or assessment tools for professional noticing in the 
context of modeling. The study also provides preliminary 
evidence that Jacobs et al.’s (2010) framework together with 
discussion prompts are effective scaffolding tools for generating 
productive conversations among teachers about student thinking 
and for developing teachers’ professional noticing skills. Future 
researchers may adapt the training sessions in this study and 
implement multiple cycles of these sessions with a sequence of 
MEAs or other types of modeling tasks. In the past, modeling as 
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a means to developing professional noticing has not been fully 
taken advantage of. This study shows that the modeling process 
can generate rich student thinking and therefore is a fertile 
ground for developing professional noticing. Finally, in spite of 
the various limitations of the Zoom environment pointed out by 
the teachers in this study, this online synchronous environment 
also seems to be a viable alternative tool for research, especially 
during a time when in-person observation is not possible. Future 
researchers are recommended to continue to explore the pros and 
cons of the Zoom environment as a medium for research in 
mathematics education.  
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Appendix A 

Group 1’s Task 

 

 
Note. Part II of the task and a background reading piece are omitted. I am happy 
to share the complete task upon request.  
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Appendix B 

Group 2’s Task 

 
Note. A background reading piece is omitted. I am happy to share the complete 
task upon request.  

 


