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Covariational reasoning has emerged as a productive construct to 
characterize students’ mathematical development. Researchers have 
illustrated its importance for major middle, secondary, and 
undergraduate mathematical concepts, including rate of change, 
accumulation, and modeling. Within this line of work, several 
researchers have indicated differences between experiential and 
conceptual time with respect to the covariational relationships 
students construct. I draw on this body of literature and return to 
Piaget’s perspective of time to provide a framework for the role of time 
in students’ covariational reasoning. The framework also clarifies the 
nature of the multiplicative objects underlying students’ covariational 
relationships. To illustrate the framework and capture its emergence 
from second-order models of students’ mathematics, I describe the 
framework as it relates to students’ engagement in a task.   

“We are far too readily tempted to speak of 
intuitive ideas of time, as if time, or for that 
matter space, could be perceived and 
conceived apart from the entities or the events 
that fill it” (Piaget, 1970, p. 1). 

Time has been a topic of contemplation for researchers and 
philosophers for centuries, and ontological and epistemological 
considerations of time are certainly not restricted to the 
academy. The mere question of “What is time?” can provoke a 
lively conversation among most groups of individuals, and 
numerous pop culture pieces have built their plotlines around the 
fabric of time and its manipulations. The prevalence of time as a 
subject of rumination is unsurprising, given its inseparable role 
from existence and experience. Kant (1781/2003) considered 
time and its properties to be so ubiquitous as to be given a priori. 
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Countering Kant’s perspective, Piaget considered time to be a 
constructed concept subject to the mental operations defining a 
person’s experience (Piaget, 1954; von Glasersfeld, 1995, 
1997). He dedicated several studies to developing conceptual 
models of that construction (e.g., Piaget, 1954, 1970), ultimately 
determining that the mental operations involved in coordinating 
at least two objects’ motions are fundamental to an individual’s 
construction of time. Piaget concluded that concepts of time are 
inseparable from the mental operations defining space, motion, 
and objects; not only is time a constructed concept, but it is also 
the product of coordinating mental operations involved in the 
construction of other concepts (Piaget, 1970; von Glasersfeld, 
1984). Ludwig and Luciano expressed as much, “We cannot 
compare a process with the ‘passage of time’ – there is no such 
thing – but only with another process” (2021, p. 240). 

Building on the work of researchers who have alluded to 
covariational reasoning—which involves the variation and 
motion of objects—being connected to conceptions of time, I 
return to Piaget’s (1970) conceptual models for time to further 
develop the role of time in students’ covariational reasoning. In 
doing so, I elaborate on the constructs of experiential time and 
conceptual time (Castillo-Garsow, 2012; Thompson & Carlson, 
2017) to provide a framework for characterizing students’ 
covariational reasoning in relation to concepts of time. 
Reflecting its empirical roots, I illustrate the framework by 
describing a task designed to provide insights into the role of 
time with respect to students’ covariational reasoning. The task 
and its description are informed by second-order models of 
students’ mathematics developed during a series of teaching 
experiments (Steffe & Thompson, 2000), and I mention salient 
aspects of those models to connect the task and framework.  

Covariational Reasoning and Time 

The connection between time and the motion or variation of 
objects has been indicated within work on students’ 
covariational reasoning (e.g., Johnson, 2015b; Paoletti & Moore, 
2017; Patterson & McGraw, 2018; Stalvey & Vidakovic, 2015; 
Thompson & Carlson, 2017). Covariational reasoning—the 
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cognitive activities involved in reasoning about how quantities 
vary in tandem (Carlson et al., 2002; Saldanha & Thompson, 
1998)—is an emergent area of research within the landscape of 
quantitative reasoning. Researchers exploring covariational 
reasoning have illustrated its importance for the learning of 
middle, secondary, and undergraduate mathematics concepts 
(Byerley & Thompson, 2017; Carlson et al., 2002; Ellis, 2011; 
Ellis et al., 2015; Johnson, 2015a, 2015b; Moore, 2014; Paoletti 
et al., 2023; Thompson et al., 2017), with other researchers 
identifying its importance beyond mathematics classrooms and 
contexts (Gantt et al., 2023; Rodriguez et al., 2019; Sokolowski, 
2020; Yoon et al., 2021). For example, Yoon et al. (2021) 
illustrated its importance for citizens’ assessment of COVID-19 
pandemic data representations. 

With respect to relationships between time and covariation, 
researchers have primarily focused on time as a parameter 
(Keene, 2007; Kerrigan, 2023; Kertil et al., 2019; Paoletti & 
Moore, 2017; Patterson & McGraw, 2018; Stalvey & Vidakovic, 
2015). A focus on time as a parameter is sensible given the 
ubiquitous role of time in experience and mathematical 
parameterization. Accordingly, these researchers have focused 
on the extent to which time is held implicitly or explicitly in 
students’ minds as they construct and reason about relationships 
between quantities. For instance, Patterson and McGraw (2018) 
explored students’ meanings in the context of dynamic situations 
and their graphing of quantitative relationships that did not 
include elapsed time—quantified time as measured or displayed 
on a clock—as a graphed quantity. Relatedly, Paoletti and 
Moore (2017) explored how graphing experiences with 
quantitative relationships not explicitly involving elapsed time 
can create an intellectual need for time as a parameter. Taking a 
different approach, Stalvey and Vidakovic (2015) focused 
explicitly on students constructing relationships between 
elapsed time and two other quantities and their subsequent 
construction of a relationship between those two quantities. In 
each of these studies, the authors’ framing of time focused on 
whether or not a student or task identified time as an explicit 
quantity. 
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Some researchers have drawn on notions of conceptual and 
experiential time, which Castillo-Garsow (2010, 2012) and 
Thompson (2011, 2012) introduced to characterize students’ 
covariation. Having roots in Newtonian mathematics and loose 
connections to Piaget’s (1970) framing of time, Thompson 
(2012) described experiential time as “felt time that [passes]” in 
an experience, while conceptual time is “Not time on a clock, 
but an imagined, smoothly changing, quantified time—a 
measured duration that grows in extent” (p. 147). Modeling 
students’ meanings for growth, Castillo-Garsow (2010) added 
that experiential time is that which passes for oneself and is thus 
always in progress and “inherently continuous” (p. 202). By 
inherently continuous, Castillo-Garsow was not referring to 
conceptions of measured time, nor was he speaking to recalled, 
subjective perceptions of distinct events and judgments of 
temporal experience. Rather, he was referring to our inability to 
escape the present, and that experiential time is that which is 
always passing. We are continuously constrained by experiential 
time. Experiential time is a lived and figurative form of time, 
whereas conceptual time is an operative form of time. Thompson 
and Carlson (2017) added that conceptual time as an image of 
measured duration does not necessarily imply the individual has 
in mind actual timed values, but rather that the individual 
imagines “a quantity as having different values at different 
moments, and envision[s] that those moments happen 
continuously and rhythmically” (p. 437). This framing of 
conceptual time underscores the centrality of “images” or 
“imagery” in conceptions of time, which refer to the re-
presentation of experience and are not as well-defined as 
operations. Images or imagery incorporate a plethora of 
experiential aspects, including kinesthesia, affect, and sensory 
sensations (Thompson, 1994; Thompson et al., 2024). 

Thompson and Carlson’s descriptions of conceptual and 
experiential time also underscore that they are akin, but not 
identical to the aforementioned parametric distinctions. Whereas 
parametric distinctions frame time as an implicit or explicit 
attribute in and of itself, the experiential and conceptual 
distinctions position time as an emergent, intrinsic property of 
covariation that differs based on the covariation conception. Said 
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another way, parametric distinctions are with respect to the 
extent a task or reasoner explicitly identifies time as a relevant 
quantity. A task either states time as an explicit quantity or not, 
or an individual explicitly identifies time as a relevant quantity 
or not. The distinction between conceptual and experiential time 
concerns an individual’s conception of a relationship, regardless 
of the extent to which time is explicitly identified as a relevant 
quantity. Conceptual and experiential time are organic to 
quantities’ covariation, and thus the distinction between the two 
is situated in how a phenomenon’s attributes are conceived, 
which mirrors Piaget’s (1970) positioning of time.  

Piaget, Time, and Co-Variation 

Piaget considered space and time to be inseparable, with 
time being an emergent property of the co-ordination of 
simultaneous positions and the co-ordination of successive, 
spatial states (i.e., co-seriation). Whereas Fraisse (1984) referred 
to time concepts as succession and duration, Piaget referred to 
these co-ordinations as simultaneity and succession (with 
displacement), respectively, and he positioned their 
development and, hence, the development of time as occurring 
in the context of motions with different velocities. Given two 
objects in motion, time concepts emerge from both the co-
ordination of one object’s position with the other object’s 
simultaneous position in combination with the co-ordination of 
their successive respective positions in space. 

Piaget’s view of time as rooted in conceptions of space and 
motion reflects his stance that concepts arise from the 
coordination and abstraction of mental actions. To Piaget, our 
temporal experience and memory of a situation are constructions 
subject to mental actions. We transition from intuitive 
conceptions of time to operative conceptions as we develop 
operative ways for organizing experience in place of experiential 
or figurative organizations. An individual lays the basis for 
operational or conceptual time through the construction and 
abstraction of the operations involved in the co-ordinations of 
simultaneity and succession (Piaget, 1970). For example, given 
two objects in motion, an individual lays the foundation for 
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operational or conceptual time as they transition from 
conceiving motion in terms of the relative perceptual location of 
each object (e.g., the ending place of each object’s movement) 
to coordinating the simultaneous displacement of objects (e.g., 
the entire span covered by each object’s movement).  

Piaget (1970) formalized the construction of simultaneity 
and succession of multiple events as shown in Figure 1. Figure 
1 is not an exact reproduction of Piaget’s model of events (see 
Piaget, 1970, p. 264). I change some symbolic conventions of 
his model to better connect to the models I provide below and be 
more consistent with current symbolic conventions. Here, X0 
represents the initial state of event X. I use the term state to 
capture the generic conception of some event having a condition 
at an experiential moment that can be indexed with respect to the 
event’s condition at other experiential moments. These different 
experiential moments necessarily have temporal components, 
but a conception of an event’s different conditional states need 
not foreground those components beyond understanding that 
they occur at different moments of experience. For example, a 
golfer could recall, index, and order each event in which they 
shot a personal best score without an explicit conception of the 
time elapsed between those events. In terms of event, event X 
could be any attribute of an object or phenomenon. With respect 
to Figure 1, A, B, and C could represent a person’s height, 
weight, and age, respectively. X#, X#+1, X#+2, and so on represent 
successive conditional states of event X with ∆t# representing 
the duration between two successive states (e.g., #-1 and #). 
Thus, A0, B0, and C0 represent the person’s height, weight, and 
age, respectively, at some chosen initial state. A1, B1, and C1 
represent the person’s height, weight, and age, respectively, at 
some subsequent state, and ∆t1 represents the elapsed time 
between those states. Piaget used  to link states of events 
occurring simultaneously (e.g., an object’s weight and height). 
One explanation for Piaget’s use of is that it can be thought 
of as a null vector. As opposed to a symbol that might imply a 
transformation between the state of one event to the 
corresponding state of another event (e.g., A1 and B1), a null 
vector has zero magnitude and no particular direction and thus 

emphasizes the states as occurring or existing independently, 
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yet simultaneously. This is consistent with Piaget’s (1970) 
model that captures the multiplicative basis of co-seriation, in 
which events are united to form a multiplicative object—the 
cognitive uniting of multiple attributes so that an object is 
simultaneously all of them (Inhelder & Piaget, 1964). Saldanha 
and Thompson (1998) identified that constructing such an object 
is fundamental to the covariation of quantities, a point I return to 
below. 
 
Figure 1. A model of simultaneity and succession as modified from 
Piaget (1970, p. 264). 

 

 
Drawing on Piaget’s model of time and the simultaneity and 

succession of events, I present three conceptual models of time 
as it relates to an individual’s conception of a phenomenon that 
entails quantities’ magnitudes (e.g., ||x||, ||y||, ||z||, …) varying. To 
support the presentation of these models, I provide  

 
Table 1 to define the symbols used in each. After briefly 

defining each model, I elaborate upon the structure and 
covariational relationship conveyed by each. Before presenting 
each model, I note two general modifications to Piaget’s model 
(Figure 1). Firstly, Piaget’s model does not make explicit the 
operative aspect of conceptual time, which entails being able to 
imagine time elapsing forward or backward. In order to 
differentiate between conceptual and experiential time, the latter 
of which only flows forward, I use ↔ and →, respectively. 
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Secondly, I modify Piaget’s use of  to capture various levels 
of conceptual linkages between quantities’ magnitudes. I also 
modify it to not imply a transformation or cognitive switch of 
focus between quantities’ magnitude. I elaborate on this below. 

 
Table 1. Glossary of symbols. 

SYMBOL DESCRIPTION 

||x|| The magnitude of quantity x 

||x||0 
The magnitude of quantity x at its initial state (i.e., state 
0) 

te 
Experiential time 

 
The magnitude of quantity x at some moment of flow in 
experiential time 

t# 
The duration of (conceptual) time that elapses between 
state 0 and state # 

∆t# 
The duration of (conceptual) time that elapses between 
state # - 1 and state # (i.e., t2 = t1 + ∆t2) 

 
The magnitude of quantity x at (conceptual) time t# 

||x||# The magnitude of quantity x at state # 

 

The flow of experiential time or bi-directional nature of 
conceptual time 

, , 

and  

Conceptual linkages between quantities’ magnitudes 
that indicate coupled variation, a connection mitigated 
by conceptual time, and a multiplicative object, 
respectively 

 
The first model (Figure 2) conveys a conception tied to 

experiential time. The second and third models (Figure 3a and 
Figure 3b) each convey a conception tied to conceptual time. 
Figure 3a foregrounds the phenomenon as conceived with 
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respect to elapsed time, while  Figure 3b involves disembedding 
the quantities from the phenomenon and elapsed time so that 
their invariant relationship—the deterministic pairing that exists 
through linking each quantity’s variation—is taken as the object 
of thought. Here, my use of disembedding is informed by the 
disembedding operation introduced in number and fractional 
reasoning research (see Steffe, 2001; Steffe & Olive, 2010). The 
disembedding operation refers to the mental act of removing a 
part from a whole while keeping the whole mentally intact, 
which is critical to the act of constructing and iterating a unit 
(Steffe, 2001). Regarding Figure 3b, I speak to a more general 
form of disembedding, in which the quantities are removed or 
pulled from a phenomenon and its experience while not only 
keeping the phenomenon intact, but also keeping the 
covariational properties between them mentally intact 
independent of the phenomenon and its experience. Such an act 
is critical to constructing graphs as re-presentations of 
covariational relationships (Lee et al., 2020; Moore, 2021; 
Moore et al., 2013). 

 
Figure 2. Conceiving covarying quantities of a phenomenon with 
respect to experiential time. 
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Figure 3. Conceiving covarying quantities of a phenomenon with 
respect to (a) conceptual, elapsed time and (b) so that the quantities 
are disembedded and their invariant relationship is taken as the object 
of thought. 

  

(a) (b) 
 

Adopting expression notation and restricting the focus to the 
two quantities x and y, we can represent Figure 2, Figure 3a, and 
Figure 3b with ||𝑥||!!⋁	||𝑦||!!, (||𝑥||!⋁||𝑦||!), and 
(||𝑥||#⋀||𝑦||#), respectively. I use ||𝑥||!!⋁	||𝑦||!! with ⋁ (OR) 
and no parentheses to indicate that when a phenomenon and its 
constituent quantities are conceived with respect to experiential 
time, the quantities are both understood as present and varying 
in experience. They are observed to co-occur, but they are not 
cognitively linked beyond that. A conception of their 
relationship involves sequentially recalling the intuitive, in-the-
moment experience or flow of each quantity’s variation; as I 
illustrate using an example below, each quantity’s variation is 
constrained to being conceived in experience, and thus, this form 
of covariation is technically coupled variations. This is captured 
by the faded and backgrounded link between ||x|| and ||y|| in 
Figure 2, as well as the foregrounding of each quantity’s 
variation with the continuous flow of experiential time, te, rather 
than with durations between each state. Recall that experiential 
time is not a form of measured time, and thus te is used to convey 
that each quantity and its variation are always conceived in the 
flow of experience.  

I use (||𝑥||!⋁||𝑦||!) and (||𝑥||#⋀||𝑦||#) to indicate a 
phenomenon and its constituent quantities conceived with 
respect to conceptual time, whether that be elapsed time or their 
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relationship being disembedded and understood with respect to 
variations between different indexed states. With respect to 
(||𝑥||!⋁||𝑦||!), I use parentheses to indicate that the quantities 
are understood as occurring simultaneously, but I use ⋁ to 
indicate that elapsed time is the driver of the relationship such 
that the two quantities are related through their sharing a 
relationship with elapsed time. They are understood to covary, 
but their pairing does not form a multiplicative object with each 
other. This is captured by the link between ||x|| and ||y|| in Figure 
3a, which is stronger and more foregrounded than that in Figure 
2. But, the link is mitigated by the connection to elapsed time, 
and this is indicated by a faded connector. With elapsed time as 
the driver of the relationship, experiential time moves to the 
background, and durations are foregrounded in its place.  

With respect to (||𝑥||#⋀||𝑦||#), I use ⋀ (AND) and 
parentheses to indicate that the quantities are understood as 
occurring simultaneously and persistently. The quantities’ 
magnitudes are the driver of the relationship, and thus properties 
of the relationship are understood as strictly defining the two 
quantities’ magnitudes. These properties are understood as being 
sustained irrespective of figurative aspects of experience or how 
one steps through durations of elapsed time. In tandem with 
fading specific durations to the background, this is captured by 
the link between ||x|| and ||y|| in Figure 3b. This solid link 
indicates their simultaneous and persistent co-existence so that 
their covariation is defined precisely by their simultaneous 
variations. I also note that the shape linking ||x|| and ||y|| in Figure 
3a and Figure 3b is different than that in Figure 2 to indicate an 
operative association between the two magnitudes that 
necessarily entails a conception rooted in conceptual time 
(Piaget, 1970). Despite the bi-directional nature of this operative 
association (Paoletti, 2020; Paoletti & Moore, 2017), I choose 
not to use arrows for such a link so as not to imply a 
transformational or motion image. Relatedly, I use O with this 

link (e.g., ) to reflect Piaget’s perspective that states of 
events paired to form a multiplicative object (e.g., an object’s 
weight and height) can be thought of as connected by a null 
vector due to their simultaneity. 
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Returning to the relationship between constructing a 
multiplicative object and covariational reasoning, Saldanha and 
Thompson (1998) noted that merely thinking of two quantities’ 
magnitudes or values does not necessarily imply an individual 
has united those two quantities into images of covariation. 
Figure 2 involves the co-occurrence of two quantities’ 
variations, but this is conceptually different from covariation as 
described by Saldanha and Thompson (1998) because each 
quantity’s variation is constrained to its in-the-moment 
experience or flow. In such a case, that quantity’s variation is 
not held in mind with the “immediate, explicit, and persistent 
realization that, at every [magnitude], the other quantity also has 
a [magnitude]” (Saldanha & Thompson, 1998, p. 298). The 
conceptions captured by Figure 3a and Figure 3b each indicate 
the quantities’ values existing in a multiplicative object. The 
primary difference between the two, which is illustrated below, 
is that Figure 3a entails explicit attention to how the quantities’ 
variations occur with respect to specified elapsed time, while 
Figure 3b has measured durations fade to the background so the 
relationship is not tied to any particular experience or measured 
duration.  

Illustrating the Framework – A Task 

In order to illustrate the framework provided above, I use a 
task that emerged when constructing second-order models of 
students’ mathematics (Steffe & Thompson, 2000; Thompson, 
2008) during a teaching experiment with undergraduate 
mathematics education students. The teaching experiment 
explored their reasoning within dynamic situations, including 
the extent they could construct and re-present relationships 
between quantities’ magnitudes (see Liang and Moore, 2021; 
Lee et al., 2019; Tasova and Moore, 2020; Moore et al., 2019). 
The teaching experiment was also part of a larger project 
focused on capturing middle grades and undergraduate students’ 
covariational reasoning through a series of teaching experiments 
and conceptual analysis methods (Thompson, 2008). The 
framework and task, including hypothetical student responses, 
reflect project findings. 
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Task Inspirations 

With respect to the task below, I drew on three sources of 
design inspiration beyond those stemming from emergent 
second-order models of student thinking. As one source, I drew 
on the tasks and perspectives demonstrated by Saldanha and 
Thompson (1998) and Carlson et al. (2002). Their tasks 
primarily included quantities that entail figurative material (e.g., 
segments) on which to enact quantitative operations (e.g., 
unitizing and partitioning), and I followed this principle in order 
to afford students’ enactment of quantitative operations. Their 
tasks also avoided the explicit use of time. Tasks that prompt 
students to construct graphs with respect to time make it difficult 
for a researcher to tease out whether the student is reasoning with 
respect to conceptual or experiential time (Thompson & Carlson, 
2017). Further complicating the issue, the quantity of time 
requires constructing proxy quantities (e.g., segment 
magnitudes) in order to enact quantitative and covariational 
operations (e.g., partitioning, unitizing, and iterating). 
Reflecting these issues, the task below includes two distances 
(i.e., segment magnitudes that provide the figurative material 
necessary to enact quantitative and covariational operations) 
with no reference to elapsed time. 

Piaget’s (1970) aforementioned work on time provided the 
second source of inspiration for the task. Piaget described, “It is 
only by the co-ordination of at least two motions with different 
velocities that purely temporal relationships can be 
distinguished from spatial relationships or from intuitive ideas 
about motion” (p. 26). The task foregrounds relations of 
simultaneity and succession by prompting the individuals to 
coordinate two objects in motion, with the two objects varying 
at different rates with respect to elapsed time. Combining these 
first two inspirations, I also designed the task to delay providing 
Cartesian points. I conjectured that providing a point might 
equally afford students reasoning about the motion of a point as 
one action (i.e., variation in experiential time), a sequence of 
actions (i.e., parameterized covariation with elapsed time), or 
two independent actions that occur simultaneously (i.e., 
covariation as a multiplicative object) (see Figure 4). But, 
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because a student’s observable behavior and utterances can 
appear the same with each form of reasoning, providing a point 
makes it difficult to generate the empirical evidence necessary 
to distinguish between them.  

As a third source of inspiration, I drew on the notion of an 
abstracted quantitative structure (Moore et al., 2022). Moore 
and colleagues introduced the notion of an abstracted 
quantitative structure in order to provide criteria by which to 
define the extent to which a student’s meaning for a system of 
quantities is operative. A key criterion of an abstracted 
quantitative structure is a student’s capacity to re-present that 
structure, which involves the student bringing forth an image of 
operations that have been previously enacted to either regenerate 
a previous experience or to accommodate a novel experience via 
assimilating that experience to operations understood as 
mathematically equivalent to those enacted during a previous 
experience. Importantly, students’ acts of re-presentation 
provide insights into aspects of their meanings not readily 
apparent during prior activity, particularly with respect to 
covariational reasoning and the role of time (Liang & Moore, 
2021; Moore et al., 2022). It is during a student’s act of re-
presentation that a researcher gains more salient insights into the 
role of time with respect to their constructed covariational 
relationship. With respect to the task below, it is their re-
presentational activity within a dynamic geometry environment 
(DGE) that enables a researcher to make inferences regarding 
the role of time in the covariational relationship they constructed 
prior to the DGE portion of the task. 

 
Figure 4. The motion of a point as (a) one action, (b) a sequence of 
actions, and (c) two simultaneous actions. 
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The Task: Which One? – Going Around Gainesville (GAG) 

  “Which One? – GAG” is from a series of tasks titled 
“Which One?” A “Which One?” task is implemented after an 
individual constructs, relates, and potentially re-presents a 
covariational relationship within phenomena or graphical 
representations (Liang & Moore, 2021). After such actions, a 
“Which One?” task provides several additional representations 
of covariational relationships. Examples of these representations 
include sets of magnitude bars that vary simultaneously or a 
collection of displayed graphs, sometimes shown as completed 
and other times shown as in-progress traces. With the 
representations provided, the individual determines which of the 
representations, from none to all, accurately capture the 
relationship they previously constructed (whence the name, 
“Which One?”). 

The part preceding “Which One? – GAG” involves a video 
depicting a car starting in Atlanta and traveling back and forth 
from Tampa (Figure 5, see Moore et al. (2022) and Moore et al. 
(2019) for example implementation and data). After viewing the 
animation, the individual is sequentially asked two graphing 
tasks (Figure 5). Axes are imposed on Part II. After an individual 
engages in each part and has constructed what the research team 
perceives to be a stable understanding of the covariational 
relationship, they work on “Which One? – GAG.” 

Which One? – GAG” is a three-part task, with each part 
consisting of three pairs of magnitude bars presented in a DGE. 
As support for the reader, videos illustrating each part of the task 
for each magnitude pair are hosted in a playlist 
(https://tinyurl.com/249xa7nk). For Part I of the task (see Figure 
6a for a snapshot), the individual is presented with three tabs, 
each containing a pair of magnitude bars. For each pair, one 
magnitude bar represents the distance from Atlanta (dfA), and 
one magnitude bar represents the distance from Gainesville 
(dfG). For each pair, the individual can push “Drive” to start or 
stop the bars dynamically changing together, and the individual 
can push “Reset” to return the pair to a zero-magnitude dfA and 
corresponding initial dfG. The individual is tasked with 
determining which, if any, of the pairs covary so as to accurately 



Framework for Time and Covariational Reasoning 

 

capture the previously determined relationship between the dfA 
and the dfG. Table 2 describes the design of each magnitude pair. 
Pair B and C capture the normative relationship between the two 
distances. 

 
Figure 5. The Going Around Gainesville (GAG) task, video at: 
https://tinyurl.com/2tz4fm9a. 

 

 
 

Figure 6. Example still shots for (a) Pair A – Part I, (b) Pair B – Part 
II, and (c) Pair C – Part III. 
 

 

 



Kevin C. Moore 

 

Table 2. The design of “Which One? – GAG”. 
PAIR RELATIONSHIP DESIGN PART III 

GRAPH 

A 

- With respect to dfA: dfG decreases at an 
increasing rate, decreases at a decreasing 
rate, remains constant, increases at a 
decreasing rate, and then increases at an 
increasing rate.  
- When Drive is pushed, with respect to 
elapsed time: (i) dfA increases at a 
decreasing rate, increases at an increasing 
rate, increases at a decreasing rate, increases 
at an increasing rate, and then increases at a 
decreasing rate; (ii) dfG decreases at a 
constant rate, remains constant, and then 
increases at a constant rate. 

 

B 

- With respect to dfA: dfG decreases at a 
constant rate, remains constant, and 
increases at a constant rate.  
- When Drive is pushed, with respect to 
elapsed time: (i) dfA increases at a 
decreasing rate, increases at an increasing 
rate, increases at a decreasing rate, increases 
at an increasing rate, and then increases at a 
decreasing rate; (ii) dfG decreases at a 
decreasing rate, decreases at an increasing 
rate, remains constant, increases at an 
increasing rate, and then increases at a 
decreasing rate. 

 

C 

- With respect to dfA: dfG decreases at a 
constant rate, remains constant, and 
increases at a constant rate.  
- When Drive is pushed, with respect to 
elapsed time: (i) dfA increases at a constant 
rate; (ii) dfG decreases at a constant rate, 
remains constant, and then increases at a 
constant rate.   

 
Part II of the task (see Figure 6b for a snapshot) presents the 

individual the same three pairs of magnitude bars, but they can 
reorient the magnitude bars, join them, and show a “link” 
between them. This link represents the process of joining two 
orthogonal magnitudes to form a Cartesian point. I direct the 
reader to the playlist (https://tinyurl.com/249xa7nk) to see 
examples for each pair. An individual is told that each pair 
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matches its respective pair from Part I (e.g., Pair A in Part I, II, 
and III covary equivalently), and that Part II of the dynamic 
sketch is designed to help them further explore the extent to 
which the two magnitude bars capture the determined 
relationship between the two distances. For Part III of the task 
(see Figure 6c for a snapshot), the individual is again presented 
with the same three pairs of magnitude bars. In this case, each 
pair is oriented orthogonally, a Cartesian point is displayed, and 
a trace is recorded as the bars move in tandem. Like Part II, the 
individuals are told each pair matches its respective pair from 
Part I, and Part III is to aid in further exploring the extent to 
which the two magnitude bars capture the appropriate 
relationship between the two distances. During Part II and Part 
III, an individual is also prompted to reflect on and describe any 
changes in their assessment of the paired magnitudes, and they 
can return to the previous parts if desired. They are asked to 
reflect on difficulties from previous parts and how subsequent 
parts assist their assessment. As a point of transparency to the 
reader, I intend Part I to be difficult, both conceptually and in 
functional design. This is in the hope of eliciting their thinking 
and allowing spontaneous requests for other representations. 

Illustrating the Framework 

In this section, I summarize how an individual engaging in 
each covariation form might conceptualize the DGE. First, 
focusing on Figure 2 (i.e., ||𝑥||!!⋁	||𝑦||!!), due to the basis in 
experiential time, an individual reasoning in such a way attends 
to the variation of each magnitude separately, primarily through 
the experience of watching the DGE animated continuously. 
With respect to Pair A, the individual might conclude that dfG 
varies correctly while concluding that dfA varies incorrectly. For 
the former, dfG varies appropriately due to its smooth decrease, 
constancy, and then increase. For the latter, they anticipate that 
dfA should increase at a smooth rate, which reflects the manner 
in which it increases during the experience of watching the road 
trip animation. It does not vary in this way (i.e., dfA pauses) and 
thus they discard the pair. With respect to Pair B, and consistent 
with their response to Pair A, the individual might conclude that 
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dfG and dfA vary inappropriately due to anticipating both 
increasing or decreasing at smooth rates, again anticipating that 
each magnitude reflects the in-the-moment experiences of the 
variations with the road trip animation. With respect to Pair C, 
the individual is likely to conclude that both dfG and dfA vary 
appropriately due to the smooth variation of each. Across all of 
the pairs, the individual focuses on each magnitude separately 
and draws on intuitive or experiential notions of rate to draw 
their conclusions. Situating Figure 2 with respect to “Which 
One? – GAG”,  

Figure 7 captures that each quantity’s magnitude is 
considered separately. It also captures that each is constrained to 
the flow of continuously watching or imagining the animation, 
and thus the present state of each quantity (including experiential 
notions of rate) is always foregrounded. In short, the individual’s 
acts of re-presentation involve the independent variation of each 
quantity in the flow of experience.  
 
Figure 7. “Which One? – GAG” and covariation (i.e., (a) for dfA and 
(b) for dfG) with respect to experiential time. 

 
For Figure 3a (i.e., (||𝑥||!⋁||𝑦||!)), due to the basis in 

conceptual time, an individual attends to the variation of each 
magnitude separately, but they coordinate the variation of each 
using successive durations of elapsed time. This might be 
accomplished by stepping through states of the DGE and 
tracking the variation of each quantity with anticipated 
properties in mind. With respect to Pair A, as the individual 
tracks through successive, equal duration states of the DGE, the 
individual might conclude that although dfG varies by constant 
amounts, dfA does not vary by constant amounts, and thus, the 
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magnitude bars do not capture the appropriate relationship. With 
respect to Pair B, the individual might acknowledge the 
difficulty assessing the pair using the DGE because neither 
quantity varies at a constant rate with respect to elapsed time. 
Reflecting that the quantities are cognitively linked through their 
shared relationship with elapsed time in this form of covariation, 
the individual might attempt to “Drive” the bars for equal 
durations of time and then compare the variations of the 
magnitudes to each other. With respect to Pair C, the individual 
is likely to conclude that the pair covaries appropriately due to 
the smooth variation of each, and they might further test this by 
using successive, equal durations of “Drive.” Across all of the 
pairs, the individual’s re-presentation acts involve coordinating 
each magnitude with equal durations in order to draw 
comparisons within or across the magnitudes. Because of this, 
Pair B can lead to a perturbation that stems from the individual 
anticipating successive equal variations in each quantity for 
equal variations in duration due to the piecewise linear 
relationship between dfG and dfA. Situating Figure 3a with 
respect to “Which One? – GAG”, Figure 8 captures that each 
quantity’s magnitude is coordinated with respect to conceptual 
time, and their covariation is imagined in terms of moving 
through specific durations of elapsed time (e.g., the displayed 
clocks and associated durations). Thus, states of the situation are 
generated and coordinated by stepping through durations of time 
as defined by the DGE. 

For Figure 3b (i.e., (||𝑥||#⋀||𝑦||#)), due to the basis in a 
disembedded invariant relationship, an individual reasoning in 
such a way foregrounds coordinating a quantity’s variation with 
respect to the other quantity’s variation. Whether Pair A, B, or 
C, the individual is likely to vary one quantity’s magnitude 
systematically while tracking the variations in the other 
quantity’s magnitude. For instance, the individual might use 
“Drive” to step dfA through successive, equal increases, and then 
assess the appropriateness of the pair by investigating whether 
the dfG magnitude follows the pattern of constant decrease, 
constant, and constant increase. An individual engaging in such  
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Figure 8. “Which One? – GAG” and covariation with respect to 
conceptual, elapsed time with equal durations. 
 

 
 

covariational reasoning might experience a perturbation 
stemming from the functionality of the DGE (e.g., it is difficult 
to use “Drive” to step through equal amounts of increase), but 
they would not be significantly perturbed by how a single bar 
varies as the animation plays. They persistently foreground how 
the bars simultaneously covary, which can lead to expressing 
annoyance at Part I and motivating a desire for Parts II-III. 
Situating Figure 3b with respect to “Which One? – GAG”, 
Figure 9 captures that each quantity’s magnitude is coordinated 
with respect to the other quantity, and thus their covariation is 
imagined strictly in terms of coordinating their magnitudes. 
Hence, states of the situation are merely constrained by the  
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Figure 9. “Which One? – GAG” and covariation with respect to the 
quantities disembedded from time so that their invariant relationship 
is taken as the object of thought. 
 

 
quantities’ covariation, and the individual’s re-presentational 
actions with the DGE pairs center the invariant relationship 
across the quantities’ magnitude states (e.g., in Figure 9, 
numbered states have replaced the displayed clocks from Figure 
8). In fact, the individual might conclude that there are an infinite 
number of ways that the DGE pairs can vary with respect to 
elapsed time while achieving the same paired states. The 
individual would understand that each of those infinite ways re-
present the quantities’ covariation. For instance, if we took any 
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animation of DGE pairs known to re-present the quantities’ 
covariation, we could replay that animation at any frame rate we 
desire, including pausing and resuming it in any random manner, 
and it would still capture the invariant relationship with respect 
to the magnitude states of dfA and dfG.  

Closing 

The framework presented here provides three forms of 
covariational reasoning that are differentiated based on the role 
of time and, hence, the extent to which a multiplicative object is 
formed between the two quantities. Drawing on Piaget’s 
approach to time, the framework positions time as an emergent 
property of a relationship, as opposed to an attribute in and of 
itself. That is, time is an emergent property of how the 
relationship is conceived and, specifically, how the motions of 
the two objects and their velocities are conceived with respect to 
each other. Thus, the framework is relevant to any relationship 
between two quantities’ values, including those that implicitly 
or explicitly involve time as a measured quantity.  

The fact that three forms are provided naturally invites 
questions regarding their developmental or hierarchical nature. 
Regarding their development, the three forms emerged from 
work primarily conducted with undergraduate students, and thus 
I have little insight into their developmental trajectory and 
relationships. With respect to hierarchy, there is a relative 
sophistication and generativity across the forms that is reflected 
in Piaget’s exposition of time in combination with Carlson, 
Castillo-Garsow, Saldanha, and Thompson’s descriptions of 
covariation. This relativeness is captured by Patterson and 
McGraw (2018), who described, 

We hypothesize that it is advantageous to be able to envision 
the covariation between two dynamically changing 
quantities and, to some degree, decouple this image of 
covariation from a unidirectional, experiential image of the 
passage of time. This process is essential for developing an 
understanding of an invariant relationship between two 



Framework for Time and Covariational Reasoning 

 

quantities and explaining how changes in one variable 
constrain changes in another variable. (p. 320) 

Patterson and McGraw hedge in their hypothesis, as the 
process of decoupling quantities’ covariation from experiential 
time is intrinsic to the form of covariation captured in Figure 3b 
and that suggested by Carlson, Castillo-Garsow, Saldanha, and 
Thompson. Constructing a multiplicative object between two 
quantities’ magnitudes necessarily involves decoupling images 
of quantities’ variations from experiential images of time 
(Saldanha & Thompson, 1998; Thompson & Carlson, 2017). 
Furthermore, decoupling quantities’ covariation from specified 
durations of time is necessary for their covariation to be taken as 
an object of thought so that an invariant relationship can be 
understood to constrain the two quantities’ simultaneous 
variations (i.e., Figure 3b). I agree with Thompson and Carlson’s 
(2017) assessment that reflecting abstraction (Piaget, 2001) 
likely provides an explanatory mechanism for such a 
developmental process of covariation, and future work is needed 
to identify the specific accommodations and conceptual 
operations constituting those abstractions, as well as the 
instructional settings that might engender them. 

Although the forms have a hierarchical nature, the 
implications of such remain unclear. This is particularly true as 
it relates to how the forms of covariation play a role in students 
constructing concepts such as rate of change and accumulation. 
Rate of change involves images of covariation and acts of 
quantifying an attribute of that covariation (Thompson, 2011). 
Accordingly, Kertil et al. (2019) introduced the notion of 
intensive quantification. Intensive quantification foregrounds 
that constructing rate of change involves the quantitative 
operation of comparing the simultaneous change between 
covarying quantities so as to determine “how many times as 
large as” one change is than the other. Implied in this description 
is that an individual conceives quantities’ covariation as a 
conceptual object that affords constructing an attribute 
eventually named “rate of change”. Supported by empirical 
findings (e.g., Patterson & McGraw, 2018), the third form of 
covariation (Figure 3b) is likely an important foundation for a 
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student’s construction of such an object and, hence, rate of 
change as a measure of change. The third form involves 
constructing a multiplicative object constituted by ||x|| and ||y|| so 
that their relationship is defined precisely and persistently by the 
simultaneous variation between the two. With that object (i.e., 
(||𝑥||#⋀||𝑦||#)) in mind, students are positioned to quantify rate 
of change as an attribute of it. The first form (Figure 2) entails 
both quantities varying with respect to experiential time and is 
thus subject to intuitive or figurative images of rate. With respect 
to the second form (Figure 3a), a student is positioned to 
conceive the rate of change of each quantity’s variation with 
respect to elapsed time. They might then form comparisons 
between the variation of each quantity with respect to time, but 
such comparisons are not quantitatively equivalent to 
constructing rate of change as an attribute of the multiplicative 
object formed by uniting precisely the two quantities. Although 
subtle, these differences may have significant implications for 
their constructing calculus concepts like rate of change and 
accumulation.  
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